Rituparna Bose

Palaeobiology of Middle Paleozoic Marine Brachiopods A Case Study of Extinct Organisms in Classical Paleontology

For further volumes: http://www.springer.com/series/8897

Rituparna Bose

Palaeobiology of Middle Paleozoic Marine Brachiopods

A Case Study of Extinct Organisms in Classical Paleontology

Rituparna Bose City University of New York New York, NY USA

ISSN 2191-5369 ISSN 2191-5377 (electronic)
ISBN 978-3-319-00193-7 ISBN 978-3-319-00194-4 (eBook)
DOI 10.1007/978-3-319-00194-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013935487

© The Author(s) 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through Rights Link at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Brachiopods are among the most ubiquitous of all Paleozoic groups, and their relatively high preservation potential has resulted in an exceptionally rich fossil record. Although there are approximately 100 extant genera, perhaps 50 times this number are known only from fossils. Brachiopods therefore represent an extant clade that was once vastly more diverse, containing species that were a much more staple and important component of marine ecosystems than they are today. As a group, their diversity was little more than dented by the End-Ordovician, Frasnian, and Serpukhovian events, and they maintained their dominance of most infaunal communities throughout the Paleozoic. Only the End-Permian event severely compromised their diversity, with brachiopods giving way to bivalves as the dominant infaunal clade during the subsequent post-Paleozoic recovery. This book considers their mid-Paleozoic heyday.

The fossil record may offer valuable insights into the current biodiversity crisis. It records 'natural experiments' in which groups have repeatedly faced environmental challenges or habitat destruction, and may therefore document patterns of extinction susceptibility and resistance. It also records in which groups have been able to reradiate and diversify in the wake of these environmental upheavals. Thorough scrutiny and analysis of fossil data may therefore yield general principles that can be used to predict the probable responses of living species in the current phase of extinction. Underpinning all such inferences is taxonomy of a uniformly high standard, coupled with detailed stratigraphic, paleobiogeographical, morphological, and ecological data. Dr. Bose makes very significant strides in this direction here.

This book offers an excellent introduction to the paleobiology of mid-Paleozoic brachiopods. It also contains a rich collation of landmark data describing their shape, stratigraphic data describing their temporal ranges, and paleogeographic data detailing their spatial distributions. In combination, these resources enable several novel analyses, including plots of diversity and taxonomic turnover through time, analyses of morphological disparity, and clade dispersal through empirical morphospaces, as well as investigations of speciation mode. In addition, the author discusses the role of brachiopods in extinct ecosystems, as well as the manner in which these ecosystems changed during periods of increased turnover. The book

vi Foreword

therefore offers an invaluable reference for graduate students and others seeking to make macroevolutionary and macroecological inferences from paleobiological data. More specifically, it offers an excellent complement to the usual resources on brachiopod taxonomy and evolution.

Dr. Matthew A. Wills Reader in Evolutionary Biology Department of Biology and Biochemistry University of Bath

Preface

The prerequisite to developing effective strategies for conserving biodiversity is a profound understanding of the taxonomy, evolution, and ecology of all life forms. It is especially important to comprehend the link between evolution, ecology, and environment and perhaps, appreciate the significance of such studies in extinct organisms; especially in organisms that were abundant in a certain geologic era, but have subsequently dwindled or become extinct. Such studies should help to understand extinction, accurately gauge the underlying causes behind loss of biodiversity and make predictions about future distribution of biodiversity. I apply novel quantitative techniques to track biodiversity loss, what should also serve as a starting point for conservation.

An increasing number of species are becoming extinct at an alarming rate today. This will soon lead to a colossal biodiversity crisis; and eventually to the paucity of non-renewable resources of energy making our Earth unsustainable in future. To save our mother planet from this crisis, studies need to be performed at large to discover abundant new fossil sites on Earth for continued access to oil-rich locations. Most importantly, a holistic approach is necessary in solving the present problem of biodiversity loss. This book presents the use of advanced quantitative models in understanding emerging topics in evolutionary biology that include biodiversity, taxonomy, phylogeny, evolution, and ecology of extinct organisms.

Traditionally, the broader view was that ecological interactions occurred in such short time scales than evolution could be easily ignored. A recent study by an evolutionary biologist, Dr. David Reznick in University of California Riverside has shown that certain organisms (freshwater fish) can evolve rapidly in response to ecological interactions. Thus, it is ecology that shapes evolution. These significant results are now published in the journal, Proceedings of the National Academy of Sciences. My study on brachiopods is unique in that it involves quantification of the ecological consequences of both slow and rapid adaptation of organisms, which is also known as the evolutionary response of organisms to environment. Ecology also has a direct association with biodiversity; with changing ecological conditions, biodiversity of organisms can also change. Thus, this book will assist future evolutionary biologists in understanding the natural and anthropogenic causes behind biodiversity crisis and ecosystem collapse. Besides