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Preface

The Scottish Universities Summer Schools in Physics (SUSSP) was established in
1960, and since then there have been 68 schools (up to the end of 2011). A quick
glance at the list of past schools indicates just how wide ranging the SUSSP school
topics have been, and represents the breadth of research in Physics which continues
to be conducted in Scottish Universities.

The 66th school in the SUSSP series (SUSSP66) was held over 10 days at
Heriot-Watt University, Edinburgh, Scotland, between the 11 and 21 of August
2010. The topic of the school was the broad area of “Ultrafast Nonlinear Optics”,
and it consisted of lectures from 14 renowned international experts in this highly
research active area. This book consists of 13 contributed chapters, each of which is
either authored or co-authored by one or more of the SUSSP66 lecturers or executive
committee members.

The field of Ultrafast Nonlinear Optics is broad and multidisciplinary, and en-
compasses areas concerned with both the generation and measurement of ultrashort
pulses of light, as well as those concerned with the applications of such pulses.
Ultrashort pulses are extreme events – both in terms of their durations, and also
the high peak powers which their short durations can facilitate. These extreme
properties make them powerful experimental tools. On one hand, their ultrashort
durations facilitate the probing and manipulation of matter on incredibly short
timescales. On the other, their ultrashort durations can facilitate high peak powers
which can drive highly nonlinear light-matter interaction processes. The chapters
contained within this book cover a complete range of topics, both applied and
fundamental in nature, within the area of Ultrafast Nonlinear Optics.
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x Preface

Including lecturers, guest lec-
turers, organisers and students,
SUSSP66 attracted 133 participants
from 28 countries. This included 14
lecturers, 4 guest lecturers and 115
students. Over the 10 working days
of the school, there were 42 lec-
tures, 1 computer laboratory based
tutorial session, 2 panel discussions
(1 industry focused, and 1 on future
directions) and 2 lively poster ses-
sions where students presented 82 posters.

In addition to the academic-related activities, the packed social programme also
formed an important and highly enjoyable part of the school. Students were invited
to take part in various activities, such as a trip to the Edinburgh Military Tattoo,
a coach tour to the Scottish Highlands, a guided scientific history walk round
Edinburgh which culminated in a well-deserved dram at the top of Arthur’s seat,
hiking in the Pentland hills, a Scottish Ceilidh and a banquet to finish the school.
The students also organised a number of social events themselves – including
a commendable attempt by a small band of enthusiastic students to reenact the
first observation of a soliton – made by John Scott Russell on the Union Canal
nearby the Heriot-Watt University Riccarton Campus (see picture above). The
SUSSP66 executive committee sincerely thank Ruth Livingstone and Tobi Lamour
for coordinating the social programme – their considerable effort was a key to its
success. The executive committee also thank the numerous post-graduate students
from the Physics Department at Heriot-Watt University for helping with the social
events.

The executive committee are also extremely grateful to the SUSSP66 spon-
sors: the Scottish Universities Physics Alliance (SUPA), the UK Engineering and
Physical Sciences Research Council (EPSRC), the European Physical Society
(EPS), the Institute of Physics (IOP) – Quantum Information, Quantum Optics
and Quantum Control group, the IOP – Quantum Electronics and Photonics group,
the Atomic Weapons Establishment (AWE), Innolume, Venteon, Toptica, Thorlabs,
Philips, Coherent, Molecular Machines and Industry (MMI), the James Watt
Institute for High Value Manufacturing, Elliot Scientific, Stratton Technologies,
Time-Bandwidth, M-Squared Lasers, the Royal Society of Edinburgh, Newport,
Spectra-Physics, the European Office of Aerospace Research and Development,
the Air Force Office of Scientific Research, the United States Air Force Research
Laboratory, the Scotland-Stanford Universities Partnership (SU2P), the Scottish
Universities Summer Schools in Physics (SUSSP), the Scottish chapter of the IEEE
Photonics Society, Selex-Galileo, Taylor and Francis, Fastlite, Laser Quantum, the
Optical Society of America (OSA), Fast-Dot and Alcatel-Thales.



Preface xi

The executive committee hope that this book will act as part of a lasting legacy of
an extremely interesting and fulfilling school, where participants not only expanded
their knowledge, but also formed lasting friendships and networks.

Edinburgh, January 2012 Robert R. Thomson





Editors’ Note

The chapters contained in the book are based on the lectures given by the lecturers
at SUSSP66. The chapters are aimed at graduate-student level and are intended to
provide the student with an accessible, self-contained and comprehensive gateway
into each subject. Chapters 1, 2, 3, and 4 are concerned with the generation
and measurement of ultrashort pulses. Chapters 5, 6, and 7 are concerned with
fundamental applications of ultrashort pulses in metrology and quantum control.
Chapters 8 and 9 are concerned with ultrafast nonlinear optics in optical fibres.
Chapters 10, 11, 12, and 13 are concerned with the applications of ultrashort pulses
in areas such as particle acceleration, microscopy and micromachining. The editors
sincerely thank the authors for their excellent and timely contributions. Matthew
Edmonds is acknowledged and thanked by the editors for his help in proofreading a
number of chapters.

xiii

http://dx.doi.org/10.1007/978-3-319-00017-6_1
http://dx.doi.org/10.1007/978-3-319-00017-6_2
http://dx.doi.org/10.1007/978-3-319-00017-6_3
http://dx.doi.org/10.1007/978-3-319-00017-6_4
http://dx.doi.org/10.1007/978-3-319-00017-6_5
http://dx.doi.org/10.1007/978-3-319-00017-6_6
http://dx.doi.org/10.1007/978-3-319-00017-6_7
http://dx.doi.org/10.1007/978-3-319-00017-6_8
http://dx.doi.org/10.1007/978-3-319-00017-6_9
http://dx.doi.org/10.1007/978-3-319-00017-6_10
http://dx.doi.org/10.1007/978-3-319-00017-6_11
http://dx.doi.org/10.1007/978-3-319-00017-6_12
http://dx.doi.org/10.1007/978-3-319-00017-6_13




Contents

1 Measuring Ultrashort Optical Pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Adam S. Wyatt and Ian A. Walmsley

2 Ultra-Broadband Optical Parametric Amplifiers . . . . . . . . . . . . . . . . . . . . . . . 23
Giulio Cerullo and Daniele Brida

3 Attosecond Generation and High Field Physics . . . . . . . . . . . . . . . . . . . . . . . . . 45
Jon P. Marangos and Malte Oppermann

4 Advances in Solid-State Ultrafast Laser Oscillators . . . . . . . . . . . . . . . . . . . . 73
Christopher G. Leburn and Derryck T. Reid

5 Ultrafast Quantum Control in Atoms and Molecules . . . . . . . . . . . . . . . . . . 105
Philip H. Bucksbaum

6 Femtosecond Optical Frequency Combs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Thomas Udem, Ronald Holzwarth, and Theodor Hänsch
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Chapter 1
Measuring Ultrashort Optical Pulses

Adam S. Wyatt and Ian A. Walmsley

1.1 Introduction

Modern laser and laser-driven sources can generate light pulses of unprecedented
brevity, with durations in the range of picoseconds to attoseconds. Such durations
are significantly shorter than any photodetector response time. Further, there is
a need for more information about the pulse than the temporal intensity profile
obtained from a simple photodetector. Sophisticated applications, such as coherent
control of atomic and molecular dynamics demand a detailed knowledge of the
electric field of the pulse, and not merely its duration [1].

The need for metrology has increased along with the development of new sources
and their application in a wide range of new fields. Of course, the need to determine
the pulse duration remains a primary application, both because this parameter is an
important specification of the laser output needed for other applications, and because
it acts as a diagnostic of the system operation.

Modern mode-locked lasers, for example, generate pulses with spectral band-
widths exceeding one octave and with durations below 10 fs, well beyond anything
that can be characterized by means of fast photodetectors. The operation of such
lasers relies on a complex combination of linear pulse propagation, influenced
by the chromatic dispersion of the laser material, the mirrors and the intra-cavity
dispersion compensating devices, together with nonlinear effects, such as self-phase
modulation of the pulse in the laser material or by saturation of an intracavity
absorption, such as in a semiconductor saturable absorber mirror (SESAM), as
well as, in some cases, space-time coupling. The optimization of a mode-locked
laser is made practicable by means of a diagnostic providing the electric field as a
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Clarendon Laboratory, Department of Physics, University of Oxford,
Parks Rd, Oxford OX3 0BU, UK
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2 A.S. Wyatt and I.A. Walmsley

function of time or frequency, or at least providing some temporal information such
as the second order intensity autocorrelation. One of the primary limits at present
to the generation of few-cycle pulses directly from a laser is the dispersion of the
intracavity mirrors and other optical elements. Historically, detailed measurements
of the laser output were able to identify this as a major obstacle to generating shorter
pulses [2].

Chirped pulse amplification (CPA) operates by lowering the peak power of the
pulses in the amplifier gain medium, which would otherwise induce non-linear
phase distortion of the pulse [3, 4]. To achieve this, the pulses are stretched in
time by means of a dispersive delay line, often based on angular dispersion from
diffraction gratings or prisms. After amplification, the pulse is temporally recom-
pressed using an “inverse” dispersive delay line, or compressor, that compensates
the dispersion introduced by the stretcher and the propagation through the other
amplifier elements. Obtaining peak performance from such a scheme requires a
reliable and rapid method to characterize the output. Accurate characterization of
the output pulses enables the optimization of the parameters of the system, such as
the distance between the two gratings of a compressor and the angle of incidence
of the input beam on the gratings. The usual optimization parameters in such an
application are the duration of the recompressed pulses, since the peak power scales
like the ratio of the energy per pulse to the duration, and the temporal contrast,
since pre-pulses can hinder the control or observation of the physical processes of
interest, for example the ionisation of a target. Some examples of this application
can be found in [5, 6]. The spectral phase of the output pulse from a Ti:sapphire CPA
system can be used directly as the basis for a controller to optimize the compressor to
minimize the pulse duration, for example. The compressor optimization consists of
adjusting the angle of diffraction gratings relative to the input beam and the relative
distance between the two gratings. A large cubic spectral phase, for example, gives
rise to significant pre-pulses, and the compressor optimization leads to a better pulse
shape with a higher intensity.

The bandwidth of an optical pulse can be increased while maintaining a
deterministic phase relation between different spectral components by means of
various nonlinear optical processes such as self-phase modulation and harmonic
generation. All of these require careful compensation of the spectral phase in order
to lead to an output pulse with a shorter duration than the input. Further, these
processes are dynamically complicated and sensitive to the details of the input pulse
shape. Therefore, even characterizing the raw output pulse before recompression
can be a difficult task.

Shaped pulses, sometimes of a quite complex temporal structure, are now
commonly used to both probe and manipulate fundamental processes in atoms
and molecules (see Chap. 5 by Bucksbaum). For instance, the study of primary
processes in biologically-relevant systems via ultrafast microscopy is now quite
common. The details of the pulse shapes usually contain important information
about the dynamical process under study, and this information, residing in both the
temporal amplitude and the temporal phase of the field, can only be extracted using
modern techniques of metrology. For example, the important phenomenon of the

http://dx.doi.org/10.1007/311820_1_En_5


1 Measuring Ultrashort Optical Pulses 3

self-action of intense optical pulses in nonlinear media gives rise to a complicated
set of dynamics that has analogues in many branches of physics. The study of the
changes in the shapes of pulses propagating through such media provides access to
these dynamics.

1.2 General Considerations

An electromagnetic pulse may be specified by its electric field alone, at least below
intensities that give rise to fields that will accelerate electrons to relativistic energies.
Thus a useful notation is that of the analytic signal, whose amplitude and phase we
seek to determine via measurement. The (real) electric field of the pulse is given in
terms of the analytic signal by Eq. (1.1).

E.t/ D ".t/C "�.t/ (1.1)

where ".t/ is an analytic function of time (and space, although we suppress other
arguments here for clarity). The signal ".t/ is taken to have compact support in the
domain .�T; T /, and we shall refer to it henceforth as the “field of the ultrashort
pulse”.

The spectrum of the pulse is then defined by the Fourier transform (Eq. (1.2))

Q" .!/ D
TZ

�T
dt ".t/ ei!t; (1.2)

so that QE .!/ D Q" .!/C Q"� .�!/. Note that Q" .!/ contains only positive frequency

components, since ".t/ D
1R
0

dt Q".!/e�i!t . This is therefore a reasonable descrip-

tion for the fields of pulses propagating in charge-free regions of space, for which

the pulse area, ‚.T / D
TR

�T
dt ".t/ D Q".! D 0/ must be zero.

A single pulse is said to be completely characterized if the function ".t/ is
known on the domain .�T; T /. In practice one usually adopts the approximation
that the pulse is also characterized by the function Q" .!/ on the domain .��;�/,
where � >> 1 =� with � the rms pulse duration. The sampling theorem prevents a
function from having compact support in both domains, but it is usually a reasonable
approximation to truncate the spectral function at large frequencies, where the
spectral energy falls below the noise level of the detector.

The analytic signal is complex and therefore can be expressed uniquely in terms
of an amplitude and phase

E.t/ D jE.t/j exp Œi�t .t/� exp.i�0/ exp.�i!ot/; (1.3)
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Where jE.t/j is referred to as the time-dependent envelope, !0 is the carrier
frequency (usually chosen near the centre of the pulse spectrum), �t .t/ is the
time-dependent phase, and �0 a constant, known as the carrier-envelope offset
(CEO) phase. The square of the envelope, I.t/ D jE.t/j2, is the time-dependent
instantaneous power of the pulse which can be measured if a detector of sufficient
electronic bandwidth is available. The derivative of the time-dependent phase
accounts for the occurrence of different frequencies at different times, i.e. �.t/ D
�@�t
@t

is the instantaneous frequency of the pulse that describes the oscillations

of the electric field around that time. The frequency representation of the analytic
signal

QE.!/ D ˇ̌ QE.!/ˇ̌ exp Œi�!.!/� D
TZ

�T
dt E.t/ ei!t ; (1.4)

can be decomposed similarly, so that
ˇ̌ QE.!/ˇ̌ is the spectral amplitude and �!.!/

is the spectral phase. The square of the spectral amplitude, QI .!/ D ˇ̌ QE.!/ˇ̌2, is
the spectral intensity (strictly speaking this quantity is the spectral density – the
quantity measured in the familiar way by means of a spectrometer followed by
a photodetector). The spectral phase describes the relative phases of the optical

frequencies composing the pulse, and its derivative
@�!

@!
is the group delay T .!/ at

the corresponding frequency, i.e. the time of arrival of a subset of optical frequencies
of the pulse around ¨.

The necessary and sufficient conditions that must be satisfied by any method
that provides a complete specification of an ultrashort pulses field can be found
quite generally from a theory based on manipulating the pulses by means of linear
filters. The fact that this is possible already implies that apparati based entirely on
linear optical elements are capable of pulse characterization, something that was not
appreciated until relatively recently [7]. In practice, many of the popular methods
make use of nonlinear optical processes, but this is because it has proven difficult to
construct linear filters of the correct character or response time, rather than for any
fundamental reason.

The inversion protocols for extracting the pulse shape from measured data are
also made clear by working with linear transformations, and allows a categorization
of different methods, and the development of a catalogue of what is possible in
principle. An important feature introduced by the use of nonlinear optics is that
the inversion algorithms become more complicated. In some cases they remain
deterministic, but in others an iterative search for a solution satisfying the twin
constraints of the signal form and the data must be implemented. Thus the two
major considerations in pulse characterization are the physical arrangement of the
linear and nonlinear components and the inversion procedure [8].

The basic elements required for the complete characterization of optical pulses
are quite simple: at least one fast shutter or phase modulator, a spectrometer or an
element to temporally stretch the pulse via dispersion, and one or two beamsplitters.
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One can think of all elements, except the beamsplitters, as two-port devices: a pulse
enters at one port and exits at another. There may be ancillary ports for control
signals, such as the timing signal for the shutter opening, for example, but these are
essentially linear systems, in that the output pulse field scales linearly with the input
pulse field. Thus the input/output relations for these devices are all of the kind

"o.t/ D
TZ

�T
dt 0H

�
t; t 0

�
"i
�
t 0
�
; (1.5)

Where ".t/ is the analytic signal (with subscripts i and o representing the input and
output fields respectively), and H.t; t 0/ is the (linear, causal) response function of
the device. We will specify the functional forms of the common linear filters given
above in subsequent paragraphs.

The beamsplitter is a four-port device, having two input and two output ports. The
input-output relations for this device are well known, and the main utility in pulse
measurement applications is either in providing a means to generated a replica of a
pulse (one input and two outputs) or to combine the unknown pulse with a reference
pulse (two inputs and two outputs), or as elements of a interferometer in which
phase to amplitude conversion takes place.

We take it that all detectors available have a response that is slow compared to the
pulse itself, though they need not be integrating. For pulses with temporal structure
of duration less than 100 fs or so, this is usually the case. The measured signal from
an integrating detector is related to the incident field, for our purposes, via

S.f / D
TRZ

�TR
dt 0
ˇ̌
"f
�
t 0
�ˇ̌2
; (1.6)

where TR is the integration time of the detector apparatus.
Combining Eqs. (1.5) and (1.6) implies that the detector signal depends on the

two-time correlation function of the field:

C
�
t; t 00

� D "�.t/"
�
t 00
�
: (1.7)

In general, the signal will be averaged over a train of pulses. If each pulse in the
train is not identical then the root quantity characterizing the ensemble of pulses is

C
�
t; t 00

� D ˝
"�.t/"

�
t 00
�˛
: (1.8)

where the brackets indicate either a time average over the pulse train, or an
ensemble average over repeated experiments. Eqs. (1.7) and (1.8) are identical
only if each pulse in the train is identical with all others. Note that C.t; t 00/ is
not the same as the correlation function that is derived from the pulse spectral
intensity j Q" .!/j2. In that case, the Fourier transform yields the reduced correlation
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C 0.�/ D
1R

�1
dt C .t; t C �/. This obviously contains no more information than the

spectrum itself, in contrast to C.t; t 00/.
A key issue for all methods of pulse characterization is that it is assumed that

Eq. (1.7) is the correct form of the correlation function. All inversion algorithms
assume this. Of course, for single shot measurements, based on just one pulse from
an ensemble, the assumption is necessarily valid. Further, single-shot methods can
be used to determine whether the ensemble consists of identical pulses by repeated
measurements on single realizations of the ensemble on individual pulses drawn
from the train.

It is frequently productive to work with a variation of the correlation function
that uses a two dimensional space of time and frequency – the chronocyclic phase
space [9]. The intuitive concept of chirp (that is, time-dependent frequency in the
pulse) can be most easily seen within this space. A particularly useful function in
this regard is the chronocyclic Wigner function, defined as;

W .!; t/ D
TZ

�T
dt 0 C

�
t C t 0

2
; t � t 0

2

�
ei!t

0

(1.9)

A particular feature of the Wigner representation is that the marginals of the
distribution are the temporal and spectral intensities respectively

I.t/ D j".t/j2 D
Z
d! W .!; t/ ; (1.10)

QI .!/ D jQ".!/j2 D
Z
dt W .!; t/ : (1.11)

Note also that the Wigner function is sufficient to characterize both individual
pulses and partially coherent pulse ensembles. However, the function is not in
general positive definite, and cannot therefore be considered a probability distri-
bution of the pulse field. Indeed negative Wigner functions characterize many of
the complicated pulse shapes that are in current use in, say, quantum control. For
example, a pair of phase-locked Gaussian pulses has a significant region of phase
space where its Wigner function is negative. The restrictions on the pulse duration
and bandwidth required by Fourier’s theorem are inherent in the Wigner function,
and there is a minimum area of the chronocyclic phase space that it may occupy.

Example Wigner functions for a number of simple pulse shapes are shown in
Fig. 1.1. The concept of a time-dependent frequency or chirp is clearly visible in
Figs. 1.1b, d, and the coherence between two separate pulses, that is a well-defined
relative phase, is shown in Fig. 1.1c.

This representation sheds some light on the general form of measurements, since
Eq. (1.5) may be written in terms of the Wigner representation of the pulse field and
that of the measurement apparatus as an overlap integral
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Fig. 1.1 Wigner functions of (a) a Fourier-transform limited Gaussian pulse, (b) a pulse with
Gaussian spectrum and quadratic spectral phase, (c) a pair of identical Fourier-transform-limited
Gaussian pulses, and (d) a pulse with Gaussian spectrum and third-order spectral phase. In each
case, the temporal and spectral marginals are plotted

S .�; T / D
1Z

�1
dt

1Z

�1
d!W .!; t/WS .!; t I�;T / : (1.12)

Where WS .!; t I�;T / is the Wigner chronocyclic representation of the apparatus
response function, with ˝ and T representing parameters associated with the
settings of the apparatus. For example, ˝ might be the passband of a spectrometer,
and T the time shift introduced by a delay line.

More generally, considering an apparatus characterized by a set of parameters
fpig, with phase-space representation WS .!; t I fpi g/ then this function should be
able, by suitable choices of the pi, to explore all of the phase space occupied
by the pulse. In this case the data S .fpi g/ contains sufficient information to
reconstruct the pulse field. Indeed, this is both a necessary and sufficient condition
for characterizing the pulse. The apparatus function can be considered a “window”
onto the chronocyclic phase space, through which the pulse itself can be seen.

The chronocyclic phase space may be explored in a number of ways. The three
main approaches are: spectrography/sonography, tomography, and interferometry.
In the first, the window function is a band-limited function whose representation
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is similar to that of the pulse shown in Fig. 1.1a. The parameters describing this
function are W and T noted in the previous paragraph. The window function moves
around the phase space as these parameters are adjusted: parallel to the time axis
as T changes, and parallel to the frequency axis as W changes. At each location a
“sample” of the field Wigner function is taken. The overlap integral in this case is
a convolution, and the inversion algorithm is a deconvolution in two dimensions.
Because these dimensions are complementary variables, the inversion is unique.

The second approach makes use of a window function that approximates a line
in the phase space. The orientation of this line is adjusted by one parameter and
the offset with respect to the origin by another. For example, the window function
may be oriented parallel to the time axis, intersecting the frequency axis at ˝ .
The overlap integral determining the signal is therefore a projection of a “slice”
of the pulse Wigner functionW .!; t/ onto the frequency axis. As the orientation is
changed about the intersection frequency, a different section ofW .!; t/ is projected
onto this frequency, thereby building up a set of spectra parameterised by the
window function orientation, so fSi g � S .�I f�i g/. This is called phase-space
tomography, by analogy to the process used in medical diagnostics to assemble a
3-dimensional representation of an organ from a set of 2-dimensional projections.

The third approach makes use of an apparatus that shifts the pulse Wigner
function in time or frequency (or some combination of the two) and then mixes
it with the original, unshifted, version. As can be imagined from Fig. 1.1c, this
gives rise to fringes that reveal the relative phase between different components
of the pulse. The spectral or temporal phase can be read off from the position of
these fringes, and this, together with the direct measurement of the pulse spectral
or temporal intensity (the marginals of W .!; t/) gives the pulse field directly. This
approach has the simplifying feature that the shifted pulse replica need not be moved
around the phase space, since the interference property of Wigner representations
enables the important phase information to be mapped into the amplitude domain.

These operations need to be implemented in laboratory apparatus. We may use
the linear filter model to help delineate the necessary and sufficient conditions for
such an apparatus. Linear filters are those for which the output field scales linearly
with the input field. These filters modulate the pulse being measured and possess a
characteristic response time of the order of the pulse itself, though not significantly
shorter than it. They change the pulse in a way that is prescribed by an external
signal, say the voltage applied to an electroabsorption modulator. Linear filters
may be separated into two classes: those with time-stationary response functions
and those with time-nonstationary responses. For the former class, which includes
the spectrometer and dispersive delay line, the shape of the output pulse does not
depend on which time the input pulse arrives. For the latter class, which includes
the modulator and the shutter, the output pulse shape clearly depends on the timing
of the input pulse with respect to the shutter opening or the modulator drive signal.

Time stationary filters are characterized by response functions of the form
H .t; t 0/ D S .t � t 0/, and non-stationary filters by H .t; t 0/ D N.t/ı.t � t 0/.
Equivalently in the frequency domain, stationary filters take the general form
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QQH .!;!0/ D QS .!/ ı .! � !0/, and nonstationary the form QQH .!;!0/ D QN.!�!0/,
where the tilde represents a Fourier transform.

Representative response functions for the various common elements that facili-
tate analysis of all pulse measurement apparatuses, are:

Shutter W NA.t/ D e�.t��/2=�2g ; (1.13a)

Modulator W NP .t/ D e�i'.t��/2 ; (1.13b)

Dispersive line W QSP .!/ D ei'
00.!�!R/2; (1.13c)

Spectrometer W QSA.!/ D e�.!��/2=�2; (1.13d)

Spectrographic techniques make use of two sequential filters, one time-stationary
(spectral filter) and one time-nonstationary (time gate) followed by a square-law
detector. The recorded signal is either a measure of the spectrum of a series of time
slices or a measure of the time of arrival of a series of spectral slices depending
upon the ordering of the filters. There is no difference in principle between the
two possible filter orderings and thus this type of apparatus should be thought of
as one that makes simultaneous measurements of the conjugate variables rather
than sequential measurements. The success of this approach has been extensively
demonstrated in the technique of frequency resolved optical gating (FROG) [10].

Tomographic techniques require in-series time-stationary and time-nonstationary
filters so that the entire phase-space can be explored. However, unlike spectro-
graphic techniques, the first filter in a tomographic apparatus is a phase-only
filter (either a quadratic temporal phase modulator or a quadratic spectral phase
modulator). The inclusion of a quadratic phase-only filter results in a distinctly
different interpretation of the measurement, leading to a fundamentally different
inversion algorithm. To see this, notice that a phase-only filter does not provide any
information on the frequency or the arrival time of a pulse ensemble and hence
does not constitute a measurement of either frequency or time. So, a tomographic
apparatus does not make a simultaneous measurement of these incompatible
variables. Rather, the quadratic phase modulation acts to rotate the phase-space.
The square-law detector in combination with the amplitude-only filter records the
resulting intensity distribution. A sufficiently large number of phase-space rotations
between ��=2 and �=2 allows in principle reconstruction of the Wigner function
via the inverse Radon transform or of the ambiguity function via a set of inverse
Fourier transforms, but such task has not been performed experimentally. However,
the assumption that the pulse train is coherent reduces the requirements on the
modulator considerably. In that case, a complete rotation of the phase space density
is not necessary, and one can use two rotations with small angle (with one of them
possibly being zero) to reconstruct the amplitude and phase of the field.

Interferometric techniques require only one slice of the correlation function
(or equivalently, the Wigner function) to obtain the electric field amplitude and
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phase. Roughly speaking, if one wishes to reconstruct the field at N time points,
then at least 2N independent data points are required. While interferometric
techniques are capable of reconstructing the field by recording only the necessary
2N points, spectrography and tomography require the measurement of N2 points.
The acquisition of excess data is necessary to obtain a reliable estimate of the pulse
shape. Of course, an overcomplete data set is available from direct measurement of
the entire correlation function as well.

1.3 A Catalogue of Methods

1.3.1 Intensity Autocorrelation

The simplest technique for gathering at least moderate quantitative information
about the temporal structure of an ultrashort pulse is the intensity autocorrelation.
In a conventional autocorrelator, two pulse replicas are mixed in a nonlinear
material, and the average power of a generated beam (measured with an integrating
detector) is recorded as a function of the relative delay between the two test pulse
replicas. By assuming a functional form for the temporal shape of the test pulse, one
can estimate its duration from the autocorrelation trace. Because of its simplicity,
autocorrelation is by far the most common method of “measuring” ultrashort optical
pulses. However, the autocorrelation trace by itself provides little more than an
estimate of the pulse duration.

The data consist of a one-dimensional array of numbers representing the output
pulse energy as a function of the delay, represented here by the function S2 .�/. This
is related to the input field by

S2 .�/ D 1

T

TZ

�T
dt j".t/" .t C �/j2: (1.14)

The autocorrelation yields directly a measure of the root-mean-square (rms)
pulse duration through the relation:

�rms D

�maxR
��max

d� �2S2 .�/

�maxR
��max

d� S2 .�/

: (1.15)

However, the autocorrelation provides very little information about the temporal
phase structure of the pulse, so from it alone, there is no way to determine
whether all the frequencies of the pulse arrive at the same time or not. If they
do, then the pulse is said to be “transform-limited”, and has the shortest possible
duration consistent with a given spectrum. The pulse duration obtained from the
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Fig. 1.2 Implementation of a
spectrogram

autocorrelation combined with the bandwidth obtained from a measurement of the
spectrum thus determines the proximity of the pulse to transform-limited duration.
If the pulse is not transform-limited, then these measurements are insufficient to
characterize the way in which the pulse is distorted. Thus there are two difficulties
with inferring the pulse shape from autocorrelation-related measurements: the
temporal intensity profile is not unique and the chirp cannot be determined [11].

1.3.2 Spectrograms

Spectrography is based on the sequential action of a time-stationary and time-
nonstationary filter (Fig. 1.2). Under experimentally accessible conditions, the
measured trace is exactly a spectrogram or a sonogram of the electric field under
test, as can be calculated for signal representation in many other domains [12].
A typical implementation of spectrography uses a temporal gate for the signal under
test (for example, the action of the pulse under test with one or several other pulses
in a nonlinear optical medium [13], or a “shutter” function provided by a temporal
modulator) and a device capable of measuring the optical spectrum (for example,
an optical spectrum analyser based on a diffraction grating and imaging optics, or
a scanning Fabry-Perot etalon, together with a photodiode whose time response is
longer than the inverse bandwidth of the spectrometer itself). The spectrogram of
the electric field of the test pulse is obtained by measuring the optical spectrum of
the pulse after temporal gating for various relative delays between the pulse and the
gate. The experimental trace is therefore:

S.!; �/ D
ˇ̌
ˇ̌Z E.t/R.t � �/ exp.i!t/dt

ˇ̌
ˇ̌2 (1.16)

Where ! is the optical frequency and � the relative delay between the gate and the
test pulse. It is important that the resolution of the spectral filter is very high in order
to ensure that the measured trace is effectively the spectrogram of the test pulse.
A sonogram can be measured by reverting the order of the temporal and spectral
gate [13, 14].

The spectrogram is the double convolution of the Wigner function of the pulse
with the Wigner function of the gate with a change of sign on the frequency
variable [12]:

S.!; �/ D
“

WE.t; !
00/WR.t � �; ! � !00/dtd!00 (1.17)
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Thus, the pulse field may be estimated from a spectrogram by means of phase
retrieval that implements a deconvolution [15]. In fact, this is the only option if the
gate is unknown. The spectrogram of Eq. (1.16) is the modulus square of the short-
time Fourier transform of the pulse. The trick in phase retrieval is to estimate the
phase of the transform, since then, a Fourier transform would directly lead to the
recovery of the pulse under test and additionally the gating function.

Phase retrieval is usually ambiguous in one dimension, but is usually unique
in two dimensions. The excess data available in the spectrogram enables iterative
reconstruction of N complex numbers specifying the field from the N2 data points,
and this can also lead to the simultaneous reconstruction of the gate [16, 17]. Fur-
thermore, in the case of the nonlinear spectrogram, there is often a known functional
relation between the pulse and the gate, since the gate is often implemented as a
nonlinear interaction with replicas of the pulse under test. Also, other information
might be available, such as the spectrum of the pulse or the transfer function of the
gate. The recovery can be performed by means of several algorithms. A very robust
approach is based on the Principal Component Generalised Projections Algorithm
[18]. The protocol works as follows: from sampled representations of the field En

and gate Rn, one calculates the complex “square root” spectrogram. The modulus
of the calculated “square-root” spectrogram is replaced by the measured signal,
while the reconstructed phase is kept. A new set of representations (EnC1, RnC1)
is calculated by decomposing this constructed function into its singular values.
The pair of vectors corresponding to the largest singular value is taken as the set
(EnC1, RnC1). The convergence of the algorithm can be monitored by examining
the difference between the measured spectrogram and the calculated one using, for
example, the rms difference. Also, the consistency of the decomposition into an
outer product can be quantified by considering the eigenvalues of the decomposition
since, for a perfect decomposition, there is only one non-zero singular value.
Moreover, the precision of the estimate of the field can be obtained from the
distribution of the eigenvalues [19].

1.3.3 Interferograms

Interferometry is a well-known approach to the characterization of optical fields
in the spatial domain. It is a simple method for converting phase information into
amplitude information that can then be read using square-law detectors. A similar
approach can be taken for the characterization of temporal fields. There are two
general classes: test-plus-reference and self-referencing. The former requires a well-
characterized reference pulse with spectral support across the entire bandwidth
of the test pulse, and with similar temporal support. On the other hand, self-
referencing interferometers can do without such an ancilla [20]. This is important,
since possessing a well-characterized reference pulse suggests that the problem of
measurement has already been solved.

A common means for characterizing spatial wavefronts is by spatial shearing
interferometry, in which the spatial phase profile of a beam is determined by
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Fig. 1.3 A spectral shearing
interferometer

interfering it with a laterally shifted (or sheared) replica. The resulting intensity
interferogram can be measured with a square-law detector, and the phase simply
extracted. The spectral analogue, in which two spectrally sheared pulses are
interfered also allows direct reconstruction of the electric field in the spectral domain
using the measured spectral phase and a pulse spectrum [21].

We will focus here on techniques that use the two-frequency correlation
function QE.!/ QE�.!��/, the phase '.!/�'.!��/ of which can be concatenated
or integrated to get the spectral phase of the initial pulse (note that the spectral
intensity can be measured directly with an optical spectrum analyser). The spectral
shear � is set by the sampling theorem, and it is typically a few percent of the total
bandwidth of the pulse under test. Too large a shear would lead to undersampling
of the pulse spectrum, while too small a shear could lead to increased sensitivity
to noise, and thus reduced precision and in some circumstances reduced accuracy
of the reconstruction. The spectral intensity can be obtained either from a separate
measurement using the spectrometer, or can be extracted from the correlation
function directly.

The quantity QE.!/ QE�.! � �/ can be obtained by measuring the interference
of the pulse under test with its sheared replica with an optical spectrum analyser
(Fig. 1.3) The frequency shear � can be implemented for example using a linear
temporal phase modulation exp.i�t/. The spectral intensity of the two interfering

pulses is
ˇ̌ QE.!/ˇ̌2 C ˇ̌ QE.! ��/

ˇ̌2 C QE.!/ QE�.! � �/ C QE�.!/ QE.! � �/. The
interferometric component of interest can be extracted from several measurements
of the spectral density for various relative phases between the two interfering
pulses. However, if a delay is introduced between the non-shifted and the shifted
replica, this leads to spectral fringes with small spacing, by virtue of the phase
'.!/�'.! ��/ C !� . In this case, the interferometric component can be directly
extracted using Fourier processing of a single interferogram [22].

1.3.4 Tomograms

The spectrum of a light source is easy to measure experimentally. Mathematically
it is the spectral projection of the Wigner function on the frequency axis. This is
the key to understanding tomography. If the pulse Wigner function can be rotated in
phase space, then a series of spectra measured for different rotation angles consti-
tutes the complete data set needed for tomographic inversion of the pulse itself.


