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Part I
Basic Components

The blood system is multi-scale, from the organism to the organs to cells to intracellu-
lar signaling pathways to macromolecule interactions. Blood consists of circulating
cells, cellular fragments (platelets and microparticles), and plasma macromolecules.
Blood cells and their fragments result from a highly-ordered process, hematopoiesis.
Definitive hematopoiesis occurs in the bone marrow, where pluripiotential stem cells
give rise to multiple lineages of highly specialized cells. Highly-productive and con-
tinuously regenerative, hematopoiesis requires a microenvironment of mesenchymal
cells and blood vessels.

In this first section, we shall cover the important components of blood: begin-
ning with the microenvironment and then focusing on erythrocytes, megakaryocytes,
phagocytic cells, and platelets. In Chap. 1, the editors of this volume provide a multi-
disciplinary overview of hematopoiesis and systems biology. This should serve to
introduce hematology to the quantitative and modeling scientists as well as to in-
troduce basic mathematical principles and Text modeling to the hematologists. In
Chap. 2, Krinner and Roeder discuss the interactions among hematopoietic stem
cells and the microenvironment. No other tissue undergoes the tremendous amount
of regeneration and accurate specialization of diverse tissues as the blood system. For-
tunately, defects in production (overproduction or underproduction) are infrequent
occurrences. In Chap. 3, Socolovsky and associates focus on how erythropoietin
drives production of red blood cells through basal and stress conditions. This high-
lights an important property of the blood system—the ability to function for the most
part within a narrow range of physiological conditions and still retain the dynamic
capacity to respond quick to stressful stimuli and other environmental changes. In
Chap. 4, the Kaushanskys describe in detail thrombopietin’s intracellular signaling
that drives the differentiation of megakaryocytes. Interestingly, many of its proximal
components are found activated in response to other cytokines. In Chap. 5, Alber
and colleagues detail how platelets are formed from megakaryocytes and how they
become activated. Platelet production and homeostasis highlights their clinical sig-
nificance—a sufficient number of platelets must remain quiescent and then be able
to respond briskly to bleeding. Too many platelets and too much activation result
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in life-threatening clots; whereas too few platelets and too little activation result in
life-threatening bleeding. Lastly in this section, in Chap. 6, Corey and colleagues
discuss granulocytes and monocytes, two critical components in innate immunity.

Seth Joel Corey, MD, MPH
Chicago, IL

Mark Kimmel, PhD
Houston, TX

Joshua N. Leonard, PhD
Evanston, IL



Chapter 1
Systems Hematology: An Introduction

Seth Joel Corey, Marek Kimmel and Joshua N. Leonard

Abstract Hematologists have traditionally studied blood and its components by
simplifying it into its components and functions. A variety of new techniques have
generated large and complex datasets. Coupled to an appreciation of blood as a
dynamic system, a new approach in systems hematology is needed. Systems hema-
tology embraces the multi-scale complexity with a combination of mathematical,
engineering, and computational tools for constructing and validating models of bi-
ological phenomena. The validity of mathematical modeling in hematopoiesis was
established early by the pioneering work of Till and McCulloch. This volume seeks to
introduce to the various scientists and physicians to the multi-faceted field of hema-
tology by highlighting recent works in systems biology. Deterministic, stochastic,
statistical, and network-based models have been used to better understand a range of
topics in hematopoiesis, including blood cell production, the periodicity of cyclical
neutropenia, stem cell production in response to cytokine administration, and the
emergence of drug resistance. Future advances require technological improvements
in computing power, imaging, and proteomics as well as greater collaboration be-
tween experimentalists and modelers. Altogether, systems hematology will improve
our understanding of normal and abnormal hematopoiesis, better define stem cells
and their daughter cells, and potentially lead to more effective therapies.

Keywords Hematology · Models · Reductionist · Systems biology
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Blood, pure and eloquent, wrote Max Wintrobe, one of the pioneers of modern hema-
tology. His description was but a reference to lines written by the seventeenth-century
English poet John Donne. Hematology, the study of blood and its components, has
undergone dramatic changes over the millennia, since man first recognized its power.
The first plague visited upon the Egyptians was blood, “I will strike the water of the
Nile, and it will be changed into blood. The fish in the Nile will die, and the river will
stink and thus the Egyptians will not be able to drink its water.” What we consider
so vital to human life was viewed as deleterious. Rabbis later writing commentary
warned against circumcising a third son after two had died of bleeding. Contempo-
raneously, Hippocratic writings described blood as one of the four humors. More
appreciative of its vital nature, the Greek physicians equated blood with spring and
air. The Greek word for blood, haima, has been sustained in all things hematologic
and hematopoietic.

Like other branches of medicine, hematology has undergone paradigm shifts.
From the ancient Jews’and Greeks’attribution of blood to health and disease through
the seventeenth century’s rationalists who described its circulation through arteries
and veins, to the modern physiologists of the past century, our understanding of blood
and its components has advanced. The past 50 years have provided us with more inti-
mate knowledge of its components at the subcellular level. This reductionist approach
to science has now been superceded by the awareness of complex, large datasets,
made possible by proteomic, flow cytometric, microarray, genomic sequencing, and
epigenetics. The complexity of blood and its components is also recognized at mul-
tiple levels from the subcellular to the macroscopic, such as the environment and its
effect on the organism. While physical and chemical laws have been applied to biol-
ogy, limitations to their applicability and predictability are frequently encountered.
Biology is dynamic.

The biomedical discipline that has been called physiology has evolved to a new
approach—a modern synthesis of biochemistry, genetics, mathematics, engineering,
and machine-based learning. Complex, large datasets of genes, lipids, metabolites,
and proteins have made it impossible for one investigator to intuit the whole. This
new, integrative field has been called systems biology. In this volume, we seek to
introduce physicians and scientists, qualitative and quantitative, to the different facets
of systems hematology. Systems hematology embraces this complexity, utilizing
engineering principles and computational methods to build and validate models using
experimental data. The approach rests on (i) defining all (or the known knowns) of
the components, (ii) systematically perturbing and monitoring the components of the
system, (iii) reconcile the experimentally observed responses with those predicted
by the model, and (iv) designing and performing new experiments to distinguish
between multiple or competing models. The goals are to understand how the system
works, identify new systems-based properties, and predict outcomes.

The major obstacle to success in systems biology lies in the disciplines practiced
by physicians and scientists. Major differences exist in the methods, jargon, and
philosophies between quantitative scientists, the theoretical physicists, the mathe-
maticians, the engineers, computer programmers, and experimentalists. Even within
the experimentalists, there is diversity and increasing technologization, as evidenced
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by cell biology, molecular biology, and proteomics. Until there is a common vernac-
ular, fundamental concepts in the fields of biology, mathematics, engineering, and
computation can be understood and transdisciplinary studies can be successful.

Blood as a System

Biological systems operate at multiple levels (or scales): molecular, cellular, tissue,
and organismal, and environmental. Stem cells generate differentiated blood cells
through a continuous process of asymmetric stem cell division, yielding daughter
cells with different capacities for renewal or differentiation. This process occurs in a
specialized microenvironment. The blood system consists of highly specialized cells
and plasma containing a range of proteins to regulate different processes. Among
the blood cells are erythrocytes that shuttle oxygen or its waste product to and from
tissues; white blood cells to fight infection and mediate inflammation; and platelets
to stop bleeding. Within the compartment of white blood cells, there is variability:
neutrophils to engulf foreign agents, lymphocytes to make antibodies and coordinate
immunity, and monocytes to process and regulate host defense. Plasma contains more
than 1000 proteins [1]. Homeostatic mechanisms insure that the right number of cells
is produced, but they are sufficiently dynamic to meet the needs of environmental
changes (e.g., hypoxia, infection, or bleeding). While hematologists diagnose and
treat patients with anemias, immune deficiencies, leukemias and lymphomas, and
hypercoagulability, it is astonishing that such high level of quality control of blood
and its elements exists and that blood diseases are not more common.

Systems Properties in Hematopoiesis

Because of the facility in sampling blood or bone marrow repetitively and quantita-
tively, the blood system is well suited for modeling and validation. Hematopoiesis
and the functioning of specialized blood cells involve complex processes that can be
examined at the level of genes [2], signal transduction proteins [3], or the population
distribution of diverse cell types [4]. Both deterministic and stochastic processes
contribute. By viewing hematopoiesis (cell proliferation and differentiation) as a dy-
namic system and disease as perturbations of the system, one can learn more about
both disease and physiological states.

Proliferation and loss are fundamental properties of hematopoietic stem cells and
their progeny. Population dynamics offers a quantitative approach in studying them.
Asymmetric division results in a stem cell dividing into either another stem cell or
a more committed cell, while symmetric division yields either two stem cells or
two differentiated daughter cells. These processes can be combined in a series of
short steps [5–8]. Models built around these division (a)symmetries usually result
in exponential cell growth, but such growth cannot be realistically sustained in vitro
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due to spatial and nutrient limitations. Models based on heterogeneous population
account for cell proliferation and loss due to death or differentiation.

Differentiation is the other fundamental property of hematopoietic progenitor cells
and requires critical processes of cell fate decision making. Decision making occurs
as a result of biochemical signaling and gene regulatory networks within the cell [9],
[10]. Ultimately, transcription factors determine cellular differentiation and special-
ization [11]. The relative contributions of instructive and permissive programming in
hematopoiesis have long been debated [6, 12–23]. To describe hematopoietic stem
cell renewal and differentiation, deterministic and stochastic models have been con-
structed. James Till, a biophysicist, and Ernest McCulloch, a physician, pioneered
the study of hematopoiesis in the early 1960s through their development of a quan-
titative spleen colony assay, establishment of a hematopoietic stem cell, and data
analysis that yielded a stochastic model of hematopoiesis [24], [25]. In their stochas-
tic model [5], cells have two possible fates: (1) differentiate and leave the proliferative
compartment or (2) undergo symmetric division forming two colony-forming cells.
Each fate was assigned a probability. Drawing random numbers to determine the fate
of each cell, Till and McCullouch calculated the diversity of stem cell populations
after the course of several generations. Colony generation appears as a well-defined
process even though individual cell-fate decisions are random. Regulation acts at the
population, not cellular, level and the population of stem cells can be affected by
influencing processes that define the effective probabilities of birth and death.

A cell uses complex intracellular signaling and gene regulatory networks in order
to integrate the multiplicity of cues in its environment and to ultimately make a
specific decision. In particular, gene regulatory networks have provided great insights
into lineage commitment of hematopoietic progenitors.

Types of Mathematical Models

Different methods of modeling have been developed to describe and predict biolog-
ical processes. Not all models are accurate, but some are more useful than others.
Deterministic models describe the state of a system over time in the absence of
random events. These always produce the same output for a given input [26]. In
contrast, stochastic models describe the effects of randomness and noise on system
output [27]. Statistical models use existing data to estimate a functional relationship
between system input and output. Network models graph the direction and magnitude
of interactions that exist between the various components in a system [28].

Deterministic models typically consist of one or more differential equations, with
each equation describing the change in a system state variable over time, as it depends
on other system variables and rates. If the state variable of interest is the number of
cells in the population, a differential equation modeling the change in the population
over time would consist of the difference between rates of cell production and rates
of cell loss:
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dNX

dt
= (rate at which precursor of X differentiates into X)

− (rate at which X differentiates into next cell lineage)

− (rate at which X dies) (1.1)

where NX is the number of cells of type X.
Each equation describes the rate of change in the number of cells of given type and

maturity in the system by including terms for the rates of cell production, death, and
differentiation. Once the equations are established, they are solved either analytically
or numerically to determine the population’s functional dependence on time. In
models describing physiological conditions, the equations tend toward a steady-state
solution representing system homeostasis; that is, after sufficient time has elapsed,
positive and negative contributions to cell number balance and the population attains
a constant level (e.g., dNX/dt = 0 in Eq. 1.1). For disease-state cell populations, other
types of behavior such as oscillations or uncontrolled growth are frequently modeled.

Stochastic models are employed to examine the effects of intrinsic and extrinsic
randomness on a system. Intrinsic randomness arises from interactions of a finite
(“small”) number of discrete components, e.g., binding of a given gene’s promoters
(two copies per diploid genome) by transcription factor’s molecules (also a limited
number). Extrinsic randomness arises either from variability (genetic and pheno-
typic) among cells or from environmental fluctuations. The most common type of
stochastic model is a Markov process, in which the future state of the system de-
pends only on its current state and is independent of its past states. Monte Carlo
simulations are an empirical method to investigate dynamics of a stochastic system,
by generating repeated random trajectories and computing frequencies that estimate
probability distributions.

Statistical models are sometimes confused with stochastic models. Whereas
stochastic models reflect the structure of the biological system, statistical models
are data driven. Statistical models can be employed even when no knowledge about
system’s structure exists and can generate predictions, which may be only statisti-
cally validated. However, some statistical models such as Bayesian networks may
provide insights concerning the structure. Bayesian network models are built from
graphs in which the states of and relationships between network elements are prob-
abilistic. While graph theoretical models can be circular, Bayesian networks have a
definite, distinct set of termini. These models have a wide range of uses. For exam-
ple, a Bayesian network model could be used to predict the probabilities of certain
cellular mutations based on abnormalities in protein expression levels (assuming, of
course, that there is a relationship between the two). Their structure and necessary
constants have to be estimated based on data. Though popular, Bayesian networks
suffer from the possible reversal of causality [29].

Network models have recently gained popularity in the social, physical, and
biological sciences from the widespread application of graph theory, an area of
mathematics that investigates the relationships between the objects of a group [30].
Graph theory lends itself to visual representations making it an appealing tool for bi-
ologists investigating phenomena ranging from the interactions between populations



8 S. J. Corey et al.

in an ecosystem to the interactions between molecular species involved in a signaling
pathway. At its simplest, a graph is a map of all known system components or system
states and their possible interactions or transitions. Circles (nodes) represent com-
ponents and states, and lines and arrows (branches or edges) represent relationships
between nodes. Graphs help portray topological structures such as loops. Complex
dynamics can arise from relatively few interacting components [31], and network
maps are widely used to help visualize the interactions. Building upon existing graph
theoretical notation, an international group has developed Systems Biology Graph-
ical Notation to standardize the visual representations used to describe biological
interaction networks [32].

Current Status of Systems Biology

The success of systems analysis of hematopoiesis will depend upon technological
breakthroughs and collaborations between the biological and physical sciences that
yield accurate predictions and emergent properties. With each discipline using a dif-
ferent language, this is easier said than done. Changes in undergraduate, graduate,
and medical curricula must be implemented to train a new generation of biomedical
researchers fluent in quantitative or engineering disciplines [33–35]. Systems biol-
ogy requires a balance between models sufficiently complex to describe a system and
yet simple enough to be clinically useful. Understanding large quantities of data well
enough to validate a model is especially challenging. The development of Systems
Biology Markup Language (SBML) has made it easier to develop biology-oriented
software packages, such as COPASI, Simmune, MetaCore, and Cytoscape, which
aid model building and data analysis [32, 36–39]. Since 2001, the number of such
packages developed for systems biology has grown from 5 to over 170. With compu-
tational power becoming ever greater and cheaper, the number and diversity of such
software packages will only increase, bringing within their scope models that may
not be impossible to validate with current technology. At present, most models of
hematopoiesis are built at a single scale, e.g., cellular or molecular. The future lies
in building models that span multiple scales, incorporating more of the connections
that exist between them and thereby being able to account for some of the complexity
that arises from the connections. Among the fundamental questions in normal and
leukemic hematopoiesis that systems biology will address are: integration of signal-
ing pathways, circuits, and networks that determine cell fate, multi-scale modeling
of stem cell plasticity, synthesis of genetic and epigenetic data, global analysis of
phosphoproteins, dynamics of hematopoiesis in the bone marrow microenvironment
presented in three-dimensional imaging, and cellular engineering to expand selective
blood cell compartments for therapy. The complexity or density of experimental data
will demand a systems approach. More in-depth coverage may be found in the few
textbooks of systems biology and bioinformatics that have appeared, none solely
devoted to hematologic topics [40–43].
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Chapter 2
Quantification and Modeling of Stem Cell–
Niche Interaction

Axel Krinner and Ingo Roeder

Abstract Adult stem cells persist lifelong in the organism, where they are responsi-
ble for tissue homeostasis and repair. It is commonly assumed that their maintenance
and function are facilitated in local environments called “stem cell niches.” Although
there is convincing evidence that a variety of niche components determine stem cell
fate, the regulatory details of stem cell–niche interactions are widely unknown. To
pave the way for a substantiated discussion of these interactions, we first focus on the
stem cells themselves and describe the stem cell defining criteria and their implica-
tions. The fate of the cells that fulfill these criteria is regulated by a broad spectrum of
factors and regulatory mechanisms. A summary of established components and their
action is given exemplary for the hematopoietic system. The complexity resulting
from the interplay of various cell types, signaling molecules, and extracellular struc-
tures can be boiled down to important key features as exemplified by the presented
model of hematopoietic stem cell organization. Although neglecting many details,
we show that this and similar models have the power to yield intriguing results as
proven by the agreement of the presented model with experimental data and the
predictions derived from model simulations. Finally, we will discuss the paradigm
of systems biology and give a summary of the techniques that promise to unveil
further details of the organization principles of stem cell niches at different levels.
The synergistic effect of the described techniques together with the integration of
their results into a unified model that allows quantitative evaluation and predictions
may lead to a better and more systematic understanding of the most relevant niche
elements and their interactions.
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Introduction

Although it is generally accepted that microenvironmental cues play a key role in
regulating stem cell function, and although many individual regulatory mechanisms
and pathways of cell–microenvironment interaction have been identified, a systemic
understanding of stem cell–microenvironment interaction and its impact on stem
cell fate regulation is still missing. This is also the case for hematopoietic stem
cells (HSCs), which have been extensively studied for more than 40 years, starting,
e.g., with the pioneering work of James Till and Ernest McCulloch in the early
1960s. The two scientists were able to demonstrate the existence of undifferentiated
hematopoietic cells in the bone marrow (BM) that are capable of both, self-renewing
and differentiating—two features that are classically used to define cells as stem
cells. Based on serial transplantation experiments, Till and McCulloch showed that
these (stem) cells are able to develop into spleen colonies of irradiated mice, which
contain cells with an identical potential [1–3]. These were called colony-forming
units in spleen (CFU-S cells) and regarded as stem cells. Later, they turned out to
be progenitor cells, which are, in contrast to true stem cells, characterized by only a
limited self-renewal and repopulation potential.

Clearly, the origin of CFU-S cells was the BM, but it was by no means clear,
whether there are specific regions in the BM that functionally support stem and/or
progenitor cells. Unlike other stem cell systems, such as the intestinal crypt [4],
the BM is lacking an obviously structured spatial arrangement. This absence of
clearly visible, stem-cell-supporting areas widely hampered the study of HSCs and
their interactions with local microenvironmental components in the in vivo situation.
Nevertheless, the perspective of an instructive local microenvironment of HSCs was
introduced already in the early 1970s by John Trentin [5, 6] and Raymond Schofield
[7]. Schofield proposed a concept that includes a context dependency of stem cell
behavior. In this concept, stem cells live in a certain environment, the niche, where
differentiation and maturation is prevented and thereby continuous proliferation and
maintenance of stem cell potential is guaranteed. Therefore, stem cells lose their
potential, if they lack this specific environment. This concept is consistent with the
results of contemporary coculture experiments. For instance, Dexter and coworkers
were able to maintain proliferative CFU-S cells over several months in vitro using
a mixture of feeder cells from the BM, whereas these cells differentiated if cultured
without feeder cells [8, 9].

Since these days, new ideas and experimental techniques have extended the list
of cells and other microenvironmental factors that presumably act in combination
to form the stem cell niche. Other factors, such as geometry and biomechanics,
nutrient supply, signaling molecules, metabolic conditions, and contact dependent
cues have been shown to contribute to the niche environment, too. Later in this
chapter, we will give an overview of some important examples of these presumably
stem-cell-regulating niche components with a particular focus on the hematopoietic
system.
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Defining Stem Cells

Before talking about stem cell regulatory components and effects of a niche envi-
ronment, we need to precisely define what we mean by a stem cell or by stem cell
potential. Because the term stem cell resulted from the conceptual aftermath of the
discovery of a multipotent and self-renewing cell population, its definition almost
exclusively contains functional criteria. Only in the case of embryonic stem (ES)
cells [10, 11], the functional definition has its counterpart in a definition by origin.
When the blastula is formed, this cell population emerges from the first differenti-
ation step, the separation of trophoblast and inner cell mass. While the first forms
only extraembryonic structures, all cell types of the embryo itself develop from the
cells of the inner cell mass. Therefore, these cells are characterized as pluripotent.
They are the source for the in vitro derivation of ES cell lines, which are usually
denoted as pluripotent ES cells, as they preserve the potential to differentiate into
cells of all tissue types. In vivo, the development of the embryo involves further dif-
ferentiation steps beginning with the development of three germ layers. From those,
the different tissues are derived and with this specification process the ability of the
cells to generate cells from other tissues is lost. Pluripotency, therefore, turns into
multipotency. Multipotent cells still have the potential to differentiate into various
cell types of a particular tissue and are maintained as so-called (adult) tissue stem
cells lifelong. They preserve their proliferation and self-renewal capacity as well as
their multilineage potential in order to guarantee homeostasis and to repair damaged
tissues, which represents the core of their functional definition [12].

Whereas the details of the definition of a tissue stem cell depend on its author,
functional characteristics such as self-renewal, differentiation, and proliferative po-
tential were always cornerstones of this definition. Tissue stem cells are defined by a
number of qualities, which enable them to guarantee a lifelong maintenance and, in
case of injury, to reconstitute a fully functional tissue. Over the years and with new
experimental results, the definitions have been modified and a more flexible inter-
pretation of this concept of a functional definition has been introduced. Flexibility
has been included in the sense that stem cell fate decisions depend on the environ-
ment. This dependence results in some flexibility or even reversibility of stem cell
properties and functionalities [13].

A general problem with the functional definition is the fact that it does not allow
for a prospective selection of stem cells on an individual cell basis: Any particular
assay (e.g., a colony formation assay) that is required for the examination of a
particular cellular function (e.g., proliferative potential) will always alter the state of
the cell. Therefore, the assessment of one function of a particular cell might impair
the assessment of any other of its functions by another assay. In other words, the
measurement process itself (to test for stem cell functionality) alters the object of
measurement. This perception is the reason why Potten and Loeffler [14] compared
this dilemma to Heisenberg’s uncertainty principle of quantum physics. Although
this analogy is certainly not perfect, it points to a very important aspect that applies
to both areas: Any prospective statement about the function of a particular object (in
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our case a potential stem cell) can only be made in a probabilistic sense. This should
be kept in mind if talking about stem cells; we will come back to this aspect later.

To meet this problem of characterization and selection of tissue stem cells,
scientists have put large efforts in the development of purification protocols that
enrich a cell population for functional stem cells. Fluorescence-activated cell sort-
ing (FACS) applied simultaneously to a large set of cell surface markers has led
and still leads to continuously refined selection protocols. Latest protocols allow for
very high enrichment rates of HSCs with long-term repopulating ability (LTRA),
which are considered as the true HSCs. As an example, the Lin-Sca+c-Kit+ (LSK)
CD34-SLAM (CD244-CD48-CD150+) marker combination allows to enrich mouse
primary BM cells to a degree of up to one LTRA-HSC in two target cells [15, 16].
Surprisingly, for most of these markers, no functional, mechanistic link to LTRA has
been found. However, it should be noted that despite the high enrichment, prospective
statements about the purified cells are still only possible in a statistical, probabilistic
sense.

Furthermore, there are two other flaws that are inherently connected with this char-
acterization approach. First, for the application of sorting protocols, the cells have to
be removed from their natural habitat. As mentioned above, such a treatment might
alter cellular properties during this time of in vitro culture due to the dependence
of stem cell properties on environment. Second, for assessment of in vivo function-
ality, the cells have to be reinjected into host animals. Usually lethally irradiated
mice provide the environment that guarantees efficient engraftment. Unfortunately,
irradiation does significantly damage the niche environment and the physiological
structures in the BM [17–19]. Therefore, cellular and microenvironmental effects
are inevitably confounded by the application of such assay protocols.

These two remarks bring us back to the role of the local microenvironment. In
our opinion, it does not make sense to talk about HSCs without considering these
cells as being embedded in a particular environmental context. This is most likely
also true for any other tissue type. However, in the following, we will focus on the
hematopoietic system and use HSCs as a model system to describe a general approach
to systematically analyze the underlying mechanisms of microenvironment-based
stem cell regulation. Herein, we will focus on a description of (potential) regulatory
components of the stem cell niche and on mathematical modeling approaches to study
the systems dynamics of stem cell–niche interactions. These two major paragraphs
will be complemented by some thoughts about a potential road map for a more
complete understanding of stem cell–niche interactions.

Components of the HSC Niche

Already decades ago, the BM has been identified as the natural environment and,
therefore, a “niche” of HSCs. Basically, it is composed of a scaffold of extracellular
matrix components, a cell population comprising cells of various lineages, and a
fluid filling the rest of the space (Fig. 2.1). In the marrow, two main structures are
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Fig. 2.1 Components of the
niche. The niche environment
comprises several factors. All
of them are dynamically
dependent on the cells of the
niche environment. They
provide growth factors, build
and remodel the extracellular
matrix and constitute
endosteum and vascular
network

obvious, mineralized bone and vascularization. Most of the cell types found within
the marrow have been attributed to either of these basic structures. Directly associated
with the bone is its lining, the endosteum. It is mainly composed of undifferentiated
mesenchymal bone-lining cells and the two bone-remodeling cell types, osteoblasts
(OBs) and osteoclasts. Also, there is the vascular system connecting the marrow to
the rest of the organism by vessels and sinusoids. The walls of these tubular structures
are formed by endothelial cells (ECs), which coexist with so-called perivascular cells
in their direct vicinity.

There are a number of reports proposing that these two structures represent two
distinct local environments in the BM: the endosteal and the perivascular environ-
ment, which form two distinguishable stem cell niches fostering different stem cell
populations [20]. Whereas the so-called endosteal niche is associated with prolif-
erative quiescence (low cell cycle activity), the vascular niche has been described
to support stem cell proliferation [21, 22]. As a consequence of the two different
environments, stem cells with LTRA are found preferentially in the endosteal niche,
while the vascular niches hosts stem and progenitor cells with only short-term re-
populating ability (STRA) [23]. In this view, the dormant cells form a reserve pool
for emergencies, which can be repopulated after a potential emergency operation
[23]. In contrast, a more recent study suggests a continuous and frequent exchange
of cells between quiescent and proliferative states [24]. The hypothesis inevitably
comes up that this exchange happens between the two niche environments. How-
ever, these studies only quantify the number of cell divisions in a certain time (using
label retaining experiments), but their observations do not link transitions between
dormant and proliferative states to translocations between the two niches.

A thorough identification of niche environment and function would require a
separation of the two niches. As already shown by early histological studies, the
interior vascular system of the bone is connected with the exterior system by a
dense system of vessels through mineralized bone, which consequently indicates
highly vascularized endosteum [25]. This difficulty of defining a spatial separation
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of vasculature and endosteum was recently confirmed by in vivo tracking experiments
of HSCs in mice [26]. By fluorescence staining of blood, OBs and injected HSCs,
relative positions of HSCs, vasculature, and OBs were measured. In this way, it
was shown that sinusoids are abundant in the whole BM, though more dense in the
BM cavities [26]. Therefore, a rigorous spatial separation of the two hypothesized
niche environments seems impossible. Taking one step beyond, this might suggest
integrating the signals emanating from the two presumed “niche environments” into
one self-organizing system featuring one continuous niche. This view is supported
by the fact that concentrations of various soluble molecules, e.g., chemokine (C-X-C
motif) ligand 12 (CXCL12, also known as stromal cell-derived factor, SDF-1), stem
cell factor (SCF), or osteopontin (OPN), seem to exhibit continuous rather than step-
like gradients. Also, the supply of nutrients and oxygen continuously changes with
distance from the bone surface. The latter observation was the origin of yet another
idea, the metabolic niche [27, 28]. In such a continuous niche, all components may be
present throughout the niche, although with certain tendencies or activities. We will
now summarize these components of the niche by describing the cells themselves
and their role within the BM, because they represent the active components in the
BM that are motile, remodel the bone, and produce HSC-supporting factors.

Hematopoietic Cells

Hematopoietic Stem and Progenitor Cells

An important contribution to the niche organization is made by the HSCs themselves.
It is their active migratory behavior that finally determines the niche by bringing them
into particular environmental conditions and keeping them there. For example, most
dormant HSCs are detected in an isolated position [23]. Also, it has been reported that
dormancy and LTRA is associated with cells homing close to the endosteal surface
[21]. Furthermore, several properties related to HSC migration, such as membrane
fluctuations, cell adhesion, and cell motility, vary with distance to the bone [29]. A
prominent cell-adhesion molecule that has been in the focus of discussion in recent
years is N-cadherin. Intermediate levels of N-cadherin expression have been reported
to indicate a quiescent state, while activated cells express low levels [30]. However,
the conditional knockout of N-cadherin in mice illustrates the complexity of the niche
system, since it caused no observable change in HSC frequency or repopulation
potential [31]. An interesting link to the metabolic niche is given by the observation
that reactive oxygen species downregulate N-cadherin in HSCs [32]. Further support
of a hypoxic BM niche comes from Parmar and colleagues. They used a perfusion
tracer to identify the location of most HSCs in an area of low perfusion [33]. Also
consistent with the idea of a hypoxic in vivo niche is the analysis of HSCs in hypoxic
culture. In vitro hypoxic conditions induce quiescence in hematopoietic cells [34] and
support the Hoechst-stained side population in LSK cells that is commonly accepted
as a typical HSC quality [35].
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Many different factors have been identified in the context of the stem cell niche,
including Angiopoietin-1 (Ang-1) [36], Kit-ligand (Kitl) [37], CXCL12 [38], throm-
bopoietin (TPO) [39], and OPN [40]. However, in most cases, the identity of their key
cellular sources promoting this maintenance remains unclear. Just now conditional
knockouts of known factors in hematopoietic cells begin to reveal the cell types most
that are most important for a particular signaling route [41].

Macrophages and Monocytes

Recent studies suggest a key role for monocytes in maintenance of HSCs [42–44].
Chow et al. applied four different techniques to induce specific loss of defined subpop-
ulations of monocytes and macrophages [42]. Loss of the addressed cells resulted
in HSC mobilization into peripheral blood and spleen. It was accompanied by a
40 % reduction of CXCL12 that is known to critically regulate niche retention of
HSCs via activation of its receptor CXCR4 [45, 46]. Addressing the transcription
of CXCL12 and other HSC retention factors in stromal cells, it was shown that
CXCL12, SCF, Ang-1, and vascular cellular adhesion molecule 1 (VCAM1) mR-
NAs were not reduced in OBs but in Nestin-positive osteoprogenitors/mesenchymal
stem cells (MSCs). Interestingly, total cell numbers of both populations were not
affected. These results indicate that the key factors themselves are regulated by fur-
ther components as in this case the macrophage/monocyte cell numbers. In a similar
approach, Winkler et al. [44] depleted phagocytes and also observed mobilization
of HSCs. Transcripts of CXCL12, Ang-1, and SCF decreased in total BM and in
endosteal stroma, too. Most striking was the simultaneous loss of osteomacs, a par-
ticular macrophage subpopulation specifically associated with the endosteal lining
[44, 47]. Additionally, a significant reduction of bone remodeling activity was ob-
served. In the depleted system, the proportion of bone surface lined with OBs and
the amount of newly formed bone matrix decreased significantly. Thus, both studies
nicely illustrate two aspects of the regulation of the stem cell niche: the tight inter-
action of different cell types, here HSCs, macrophages, and osteoprogenitors, and
the complexity resulting from combination of various feedback mechanisms such as
bone remodeling, cell numbers, and HSC mobilization.

Osteoclasts

Although osteoclasts take part in the process of bone remodeling, they do not be-
long to the mesenchymal lineage like OBs and osteocytes, but are derived from
hematopoietic cells [48]. They are responsible for bone resorption and, therefore,
for Ca2+ blood levels. The calcium-sensitive receptor (CaR) is expressed on various
hematopoietic lineages and, in particular, on LSK cells [49, 50]. Ca signaling and its
role in niche regulation were investigated by studying a CaR -/- mouse model [49]. In
CaR -/- mice, BM cellularity and relative frequency of LSK cells among hematopoi-
etic cells were clearly reduced. The function of fetal liver mononucleated CaR -/-
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cells was tested by their transplantation into irradiated mice, and although 100 %
survival was observed, homing of these cells in the BM was markedly reduced [49].
Despite no differences in surface expression of many homing related molecules (e.g.,
CD49d, CD62L and CXCR4) was found, they also showed a remarkably reduced
adhesion to one of the main components of bone, collagen I. All together the osteo-
clasts represent another niche player that intimately connects signaling, extracellular
matrix, cell migration, and control via differentiation.

Mesenchymal Cells

Mesenchymal Stem and Progenitor Cells

Like HSCs, MSCs are defined by their functional potential to self-renew, prolifer-
ate, and differentiate. As for HSCs, a strictly phenomenological characterization is
limited. For MSCs, the multilineage potential comprises three main lineages: the
chondrogenic, adipogenic, and osteogenic lineage [51]. In the BM, they directly
participate in the regulation of hematopoiesis as adventitial reticular cells (ARCs) in
humans [52] or in mice as CXCL12-abundant reticular (CAR) cells [38] or Nestin-
positive cells [53]. Additionally, they differentiate into two other cell types that are
involved in the control of a HSC niche: OBs [e.g., 54, 55] and adipocytes [56].
Within the BM, they are found in the reticular space as mural or subendothelial cells
[57]. Definitely impressive is the variety of cytokines expressed by MSCs that are
involved in niche regulation: SCF, leukemia inhibitory factor (LIF), SDF-1, Onco-
statin M (OSM), bone morphogenetic protein-4 (BMP-4), Flt-3, and transforming
growth factor-β (TGF-β) [57]. MSCs are also capable of producing a variety of in-
terleukins [58], niche related adhesion molecules such as VCAM1 and N-cadherin
[52, 53] or even the key hematopoietic growth factors G-CSF and GM-CSF [58].
However, since most of the related experiments have been carried out in vitro, their
interpretation regarding the in vivo situation should be done with caution. The role of
stromal cells for HSC fate was shown early by their coculture with HSCs where they
support proliferation and differentiation in vitro [59]. Another indication of their role
as niche keepers is given by subcutaneous transplantation of CD146 + MSCs into
immunodeficient mice, where they are able to generate heterotopic BM, trigger its
vacularization, and there eventually give rise to hematopoiesis [52].

Osteoblasts

Multiple studies have shown that OBs play a crucial role in supporting HSCs. Ge-
netic data indicate that functional stem cells do need to interact with OBs [16, 20,
55]. In these studies that involved transgenic mice to address the effect of the factors
BMP and parathyroid hormone, the number of the stromal pool of OBs was found
to correlate with HSC number involving Notch-ligand and N-cadherin interactions
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[54, 55]. Coculture with endosteal cells characterized by typical osteogenic markers
(such as alkaline phosphatase and OPN) maintains the pluripotent state and hinders
HSC proliferation [59] confirming the role of OBs in HSC regulation. Direct com-
munication between HSCs and OBs is given, for example, by Ang-1/Tie2 signaling,
which has been reported sustain HSC quiescence [36]. Thus, Ang-1/Tie2 signaling
might directly correlate with the long-term repopulation ability of HSCs. However,
two details that are mentioned rather rarely have to be considered: (1) OBs are a
transient cell state in the osteoblastic lineage finally leading to osteocytes and (2)
bone deposition by OBs is a dynamic process restricted to less than 10 % of the bone
surface in adults [60]. This leads to the question on the influence of other cells in the
osteoblastic lineage and the mechanisms of regulation. If only OBs would enable
hematopoiesis and this regulation would act on a purely local scale, hematopoiesis
would be limited to the sites of bone deposition. The solution for this conflict might
be found in the role of pre- and post-osteoblastic stages. While the role of osteo-
progenitors has already been confirmed, it remains elusive whether the abundant
osteocytes contribute a regulatory function in the niche.

Adipocytes

The triple differentiation potential of MSCs includes both, osteogenic, and adi-
pogenic lineages. Generally, lineage commitment is an exclusive choice and,
therefore, the HSC-supporting OB population competes with the adipocytes for pro-
genitor cells. Interestingly, a study evaluating the occurrence of HSCs in different
body regions of wild-type mice and in fat-free transgenic mice has shown that the
number of adipocytes in the BM correlates inversely with hematopoietic activity of
the BM and suggests a negative regulation of hematopoiesis by adipocytes. Engraft-
ment of HSCs in these fatless mice after irradiation is more efficient than in their
wild-type litter mates [56]. Although this effect might be due to an apparent recip-
rocal correlation of adipocytes and OBs, the control of adipocyte/OB differentiation
clearly represents a process that not only regulates HSC number and engraftment but
also depends on biomechanics and, thus, introduces biomechanical stress to the set
of regulatory mechanisms [61].

Endothelial Cells

Very early hints to a contribution of ECs to hematopoiesis were given in the 1970s
when Knospe et al. [62] reported that hematopoietic regeneration in areas of curetted
BM in adult mice corresponded with sites of BM sinusoidal vascular regeneration.
Further evidence was given by coculture in vitro. Primary human BM ECs sup-
ported the proliferation and differentiation of human CD34 + cells (which represent
a HSC-enriched subpopulation of BM cells) and produced several hematopoietic cy-
tokines. This stem cell support by ECs is restricted to neither hematopoietic tissues
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nor HSCs, but is found in most stem cell systems [63]. Chute and coworkers, there-
fore, tested the effect of human ECs on self-renewal of human HSCs. Interestingly,
noncontact culture of human BM or cord blood HSCs with primary human brain
ECs induced a tenfold expansion of human HSCs with the potential to repopulate im-
munodeficient mice, suggesting that adult brain ECs produced soluble factors, which
induce HSC self-renewal [64, 65]. Analysis of several candidate proteins revealed
that concerted action of either angiopoietin-like 5, insulin-like growth-factor-binding
protein-2 (IGFBP-2) or pleiotrophin together with early acting cytokines (SCF, TPO,
Flt3-L) significantly supports the expansion of HSCs in vitro.

Adrenergic Neurons

Circulating HSCs and their progenitors exhibit robust circadian fluctuations in the pe-
ripheral blood [66]. They fluctuate in antiphase with the expression of the chemokine
CXCL12 in the BM microenvironment. This cyclic release of HSCs follows the oscil-
lations of the circadian clock and is transmitted by the sympathetic nervous system.
BM adrenergic nerves secret noradrenaline and this signal leads to the rapid down-
regulation of CXCL12 via the β3-adrenergic receptor and subsequent mobilization
of HSCs. This interaction with the sympathetic nervous system adds a totally new
aspect to the complex control mechanisms of the hematopoietic niche.

Already from the above given overview, it becomes clear that a mechanistic un-
derstanding of niche-driven HSC regulation is still a rather “white spot on the map of
hematopoiesis.” Although there is no doubt about the importance of the local environ-
ment in stem cell regulation, and although a number of important components of niche
functionality have already been identified, a number of major ingredients for a sys-
temic understanding of stem cell organization and its dependence on the local growth
environment (GE) are still missing. These include (i) the spatial organization of niche
components, (ii) the general rules of stem cell–niches “communication” (e.g., feed-
back mechanisms), as well as (iii) a quantification of the functional relationships
between the individual components of the stem cell–niche complex.

One way to foster a comprehensive understanding of niche-mediated stem cell
regulation is the application of systems biological methods. In particular, the applica-
tion of mathematical models provides a means for quantitatively studying the effect
of different regulatory rules (such as feedback loops or dose–response relations),
can help to guide the experimental strategy and to foster a quantitative, mechanistic
understanding. However, to be able to mathematically model the dynamics of stem
cell systems, it is necessary (a) to derive adequate model assumptions, (b) to estimate
model parameters, and (c) to experimentally test model predictions. In the follow-
ing, we will give an overview on different strategies to measure and quantify stem
cell–niche interactions and illustrate a modeling framework that is able to integrate
these measurements and to quantitatively study emerging system properties.


