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Preface

In June 2012, a workshop on the corona problem was held at the Fields Institute
in Toronto, Ontario, Canada. The organizers were Ronald G. Douglas, Steven G.
Krantz, Eric T. Sawyer, Sergei Treil, and Brett D. Wick. About forty people attended
the workshop. The weeklong event was exciting, stimulating, and productive.
Several new papers grew out of the interactions, and they appear in this volume.

In particular, we offer a history of the corona problem—the first article of its
kind. The other articles that we present describe various directions of research, and
many offer new results. All of the articles were refereed to a high standard, and each
represents original and incisive scholarship.

We thank the Fields Institute, and particularly the Director Ed Bierstone, for
providing a supportive and nurturing atmosphere, and financial support, for our
mathematical work. We also thank the National Science Foundation for financial
support.

College Station, TX, USA Ronald G. Douglas
St. Louis, MO, USA Steven G. Krantz
Hamilton, ON, Canada Eric T. Sawyer
Providence, RI, USA Sergei Treil
Atlanta, GA, USA Brett D. Wick
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Abstract We give a history of the Corona Problem in both the one variable and the
several variable setting. We also describe connections with functional analysis and
operator theory. A number of open problems are described.
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1 Ancient History

The idea of a Banach algebra was conceived by I. M. Gelfand in his thesis in 1936.
A Banach algebra is a complex, normed algebra which is a complete Banach space
in the norm metric.

The theory of Banach algebras rapidly revealed itself to be a rich and powerful
structure for attacking many different types of problems in analysis. It represented
a beautiful marriage of analysis, functional analysis, algebra, and topology. It gave
elegant, soft proofs of results in classical analysis (such as the Wiener Inversion
Theorem, a particular case of Wiener’s Tauberian Theorem) that were quite difficult
to prove by classical methods.

In 1941, S. Kakutani posed the Corona Problem. The question concerned the
maximal ideal space of the Banach algebra H1.D/, where D � C is the unit disc.
The only maximal ideals of this algebra that one can actually “write down” are the
point evaluation functionals at z 2 D. The question was whether the point evaluation
functionals are dense in the maximal ideal space (in the weak-� topology). If the
point evaluation functionals are not dense in the maximal ideal space of H1, then
a big chunk of the maximal ideal space “sticks out” off the set of point evaluations
(i.e., off the unit disc D), akin the sun’s Corona.

People were fascinated by this question, but made little headway on it for twenty
years or more. Some preliminary remarks on related ideas in function algebras
appear in [32]. A lovely paper [57] was written in 1961 that laid the foundations
for the study of the Corona Problem.1 Among the key results of [57] are the
following:

(a) The notion of fiber is introduced. The maximal ideals which are not point
evaluations live in fibers over boundary points of the disc.

(b) The paper gives a complete and explicit description of the Sı̆lov boundary of
H1.D/.

(c) Even though any two fibers are homeomorphic, it is shown that the maximal
ideal space less the disc (the point evaluations) is not the product of the circle
with a fiber.

(d) It is shown that each fiber contains a homeomorphic replica of the entire
maximal ideal space.

It is a good exercise in functional analysis to translate (recalling the definition
of the topology in the maximal ideal space) the topological statement about density
given above into the following algebraic Bezout formulation:

1This paper is very entertaining because its author I. J. Schark is a fiction. “I. J. Schark” is actually
an acronym for the authors Irving Kaplansky, John Wermer, Shizuo Kakutani, R. Creighton Buck,
Halsey Royden, Andrew Gleason, Richard Arens and Kenneth Hoffman. The letters of “I. J.
Schark” come from their first initials. The references to this paper, plus consultation with experts,
show that virtually no work was done on the Corona Problem between 1941 and 1961.
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Suppose that f1; f2; : : : ; fk are bounded, analytic functions on the disc D that satisfy

jf1.�/j C jf2.�/j C � � � jfk.�/j > ı > 0 8� 2 D

for some positive, real number ı. Then do there exist bounded, analytic functions
g1; g2; : : : ; gk such that

f1.�/g1.�/C f2.�/g2.�/C � � � C fk.�/gk.�/ � 1 ‹

It is a pleasure to thank Nikolai Nikolski for enlightening conversations about
some of the topics of this paper. We also want to thank Ted Gamelin, Nessim Sibony,
Richard Rochberg, and Tavan Trent for reading an early draft of this history and
providing many interesting comments that ultimately improved the paper.

2 Modern History

The Corona Problem was finally answered by Lennart Carleson in his seminal paper
[19], which built on foundational work in [18]. Carleson’s paper was important not
only for his main theorem, but for the techniques that he introduced to solve the
problem. In particular, one of the main tools used in Carleson’s solution was the idea
of Carleson measure, an idea that has become of pre-eminent importance in function
theory and harmonic analysis. Carleson uses these measures to control the lengths of
certain curves in the disc that wind around the zeros of a bounded analytic function.
This construction was very clever and quite involved and has proved to be useful in
other areas of mathematics. In particular, as pointed out by Peter Jones, [38]: The
corona construction is widely regarded as one of the most difficult arguments in
modern function theory. Those who take the time to learn it are rewarded with one
of the most malleable tools available. Many of the deepest arguments concerning
hyperbolic manifolds are easily accessible to those who understand well the corona
construction.

In the mid-1960s, Edgar Lee Stout [61] and Norman Alling [3] proved that the
Corona Theorem remains true on a finitely-connected Riemann surface. By contrast,
Brian Cole [29] gave an example of an infinitely connected Riemann surface on
which the Corona Theorem fails. Cole’s counterexample was built by exploiting the
connections between representing measures and uniform algebras. Around the same
time, Kenneth Hoffman [35] showed that there is considerable analytic structure in
the fibers of the maximal ideal space of H1. It may be mentioned that the paper
[57] also constructs analytic discs in the fibers.

In the remarkable paper [36], Lars Hörmander introduced a new method for
studying the Corona Problem. His approach was first to construct a preliminary
non-analytic solution of the Bezout equation, and then “correct” it to get an analytic
one by solving an appropriate inhomogeneous @-equations. He used the Koszul
complex to find these equations, although in the one complex variable case (he also
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considered some algebras of analytic functions in several variables) one can use
elementary methods to deduce the equations, especially after the equations are
already known.

In the unit disc he used the result that the equation

@w D � ;

has a bounded solution if � is a Carleson measure (this fact can be easily proved
by duality). To construct the preliminary solution, given a Carleson measure in the
right hand side of the @-equation, Hörmander used the Carleson contours from the
original Carleson construction, so the main technical difficulty remained.

However, the main advantage of the new approach was that it allowed one to
solve the Bezout equation with n functions (generators). The original Carleson
construction gave a method of solving the equation with two generators. To move
from two to n generators Carleson used a clever trick. This trick was based on
the Riemann Mapping Theorem, so there was no hope to generalize it to higher
dimensions.

Hörmander’s paper raised hopes that the Corona Theorem can be generalized
to higher dimensions, but the hopes for an easy generalization were squashed by
N. Varopoulos [82], who had shown that in the unit ball in C

2, the Carleson measure
condition on the right hand side does not imply existence of a bounded solution of
the @-equation.

In 1979 T. Wolff presented a new proof of the Corona Theorem, which followed
Hörmander’s approach with one critical difference. Wolff used a different condition
for the existence of a bounded solution of the @-equation @w D G, based on a
“second order” Green’s formula. That was crucial because, for the trivial non-
analytic solution gk D f k=

P
j jfj j2 of the Bezout equation

P
k fkgk � 1, the

right sides of the corresponding @-equations satisfied this condition.
In the remaining sections we discuss some of the major contributions of this

history in more detail.

3 The Corona Theorem On the Disc

Theorem 1 (Carleson, [19]). Suppose that f1; : : : ; fn 2 H1.D/ and there exists
a ı > 0 such that

1 � max
1�j�nf

ˇ
ˇfj .z/

ˇ
ˇg � ı > 0: (1)

Then there exists g1; : : : ; gn 2 H1.D/ such that

1 D f1.z/g1.z/C � � � C fn.z/gn.z/ 8z 2 D
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and

�
�gj

�
�
H1.D/

� C.ı; n/ 8j D 1; : : : ; n:

An obvious remark is that the condition on the functions fj is clearly necessary. In
[19] the assumption

Pn
kD1 jfk.z/j � ı > 0 was used, but if one is not after sharp

estimates, it does not matter what `p norm we use.

3.1 Carleson Embedding Theorem

One of Carleson’s powerful and influential ideas in this development is the notion
of Carleson measure, which was introduced earlier in [18] in connection with the
interpolation problem.

A nonnegative measure � on the unit disc D that satisfies

�.S/ � C � ` (2)

for any set S of the form

S D frei� W r � 1 � `; �0 � � � �0 C `g

is called a Carleson measure.

Theorem 2 (Carleson Embedding Theorem). For any p > 0 the estimate
(embedding)

Z

D

jf .z/jp d�.z/ � C1kf kHp 8f 2 Hp.D/ (3)

holds if and only if the measure � is Carleson (i.e., satisfies (2)).
Moreover, the best constant C1 is the same for all p > 0, and the best C1 is

equivalent to the best C in (2) in the sense of two-sided estimates:

A�1C � C1 � AC;

where A is an absolute constant.

The Carleson Embedding Theorem is now a staple of harmonic analysis, and
many different proofs exist in the literature. The fact that the best C1 is the same for
all p > 0 is an easy corollary of the Nevanlinna factorization of Hp functions.

Definition. The best constant C1 in (3) is called the Carleson norm of the measure
�. Note that sometimes the best constant C in (2) is used for the Carleson norm:
since C1 and C are equivalent. If one does not look for exact constants, it does not
matter what definition is used.
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3.2 Carleson’s Original Proof and Interpolation

As was acknowledged in [19], Carleson’s original strategy for attacking the Corona
Problem comes from D.J. Newman [47]. Newman had shown that the Corona
Theorem follows from a certain interpolation result, which Carleson then proved.
According to L. Ehrenpreis (see his recollection in the paper [86] dedicated to
D.J. Newman’s memory) Newman’s contribution to the Corona Theorem was more
significant than the credit he received.

The original Carleson proof worked as follows. First, using a standard normal
family argument one can assume without loss of generality that all the generators
fk are holomorphic in a slightly bigger disc. Then a pretty straightforward (although
not completely trivial) argument allows one to assume that one of the fks, say fn, is
a finite Blaschke product with simple zeroes. The next step reduced solution of the
Bezout equation with two generators to a solution of an interpolation problem.

Namely, if one wants to find g1 and g2 such that f1g1 Cf2g2 � 1, and one of the
generators, say f2, is a Blaschke product with simple zeroes then finding a bounded
solution of the interpolation problem

g1.�/ D 1=f1.�/; 8� 2 Z.f2/ (4)

(Z.f / denotes the zero set of f ) solves the Bezout equation: one just needs to define
g2 WD .1 � f1g1/=f2. Existence of a bounded solution of the above interpolation
problem follows from the following theorem, which is the technical crux of the
proof.

Theorem 3. Let A be finite Blaschke product with simple zeroes. Assume that ı <
1=2 and that F is a holomorphic function in fz 2 D W jA.z/j < ıg bounded by 1.
Then the interpolation problem

g.�/ D F.�/ ; 8� 2 Z.A/ ; (5)

has a solution g 2 H1 with kf k1 � C.ı/ < 1.

To see how the solution of the interpolation problem follows from the above
theorem, note that the condition (1) implies that jf2.z/j � ı

2
whenever jf1.z/j < ı

2
.

Therefore, applying Theorem 3 with 1=f2 on fz 2 D W jf1.z/j < ı
2
g being the

(rescaled) function F , we get that (4) has a solution g1 2 H1, kg1k1 � 1
ı
C.ı/

To prove the case of n generators, the following clever induction trick was used.
Assuming that the theorem holds for n� 1 generators, one can show that there exist
bounded analytic functions p1; : : : ; pn�1 defined on ˝ WD fz 2 D W jfn.z/j < ı

2
g

such that

n�1X

kD1
fk.z/pk.z/ � 1; 8z 2 ˝: (6)
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Indeed,

max
kD1;:::;n�1 jfk.z/j � ı

2
8z 2 ˝:

By the maximum principle, connected components of ˝ are simply connected (and
so conformally equivalent to D), therefore by the induction hypothesis the Bezout
equation (6) has a bounded solution in each connected component of ˝.

Finding bounded solutions (in all of D) of the interpolation problems

gk.�/ D pk.�/; 8� 2 Z.fn/

and defining gn WD .1 �Pn�1
kD1 fkgk/=fn (recall that fn is a finite Blaschke product

with simple zeroes), we get a bounded solution of the Bezout equation.
The main technical part of the Carleson proof is the proof of Theorem 3. To prove

this theorem, Carleson constructed what was later named the Carleson contour.
Namely, he proved that, for ı < 1=2, there exists ".ı/, 0 < ".ı/ � ı such that, for
any A 2 H1 and for any ı, 0 < ı < 1=2, there exists a domain ˝ D ˝A;ı such
that

1. fz 2 D W jA.z/j < ".ı/g 	 ˝ 	 fz 2 D W jA.z/j < ıg;
2. the arclength on @˝ is a Carleson measure (with the norm depending only on ı).

The boundary @˝ is now known as the Carleson contour.

Remark. In Carleson’s paper ".ı/ D ı� and the Carleson norm of the contour was
estimated by Cı��1 . In [16] J. Bourgain constructed a Carleson contour (for an inner
function) with the Carleson norm not depending on ı.

The construction of the Carleson contour was rather technical and was based
on the stopping moment technique—which was “stolen” from probability. The
stopping moment technique is now a commonplace in harmonic analysis, and now
people often refer to a decomposition obtained using stopping moment technique
(similar to that used by Carleson, but often significantly more involved) as the
“Corona decomposition.”

After the Carleson contour is constructed the proof of Theorem 3 is fairly
straightforward. Namely, any solution g of the interpolation problem (5) can be
represented as

g D g0 C Ah; h 2 H1;

where g0 is one of the solutions (the Lagrange interpolating polynomial, for
example). By the Hahn–Banach Theorem, the smallest norm kgk1 D kg=Ak1
is the norm of the linear functional on H1

f 7!
Z

T

fg

B

d z

2�
D
Z

T

fg0

B

d z

2�
D
Z

@˝

fg0

B

d z

2�
D
Z

@˝

fF

B

d z

2�
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(all the equalities above can be verified by the Residue Theorem). Since the
arclength on @˝ is a Carleson measure, the last integral can be estimated using
the Carleson Embedding Theorem for H1.

3.3 Hörmander’s Construction

Suppose we constructed some functions 'k , that are bounded in the unit disc D and
also solve the Bezout equation

X

k

'kfk � 1:

These functions are in general not analytic, and so to make them analytic we must
“correct” them. To do this we define

gj .z/ D 'j .z/C
nX

kD1
aj;k.z/fk.z/

where the functions aj;k.z/ D �ak;j .z/ are to be determined. The above alternating
condition implies that

nX

jD1
fj .z/gj .z/ D

nX

jD1
fj .z/'j .z/C

nX

jD1

nX

kD1
aj;k.z/fj .z/fk.z/ D 1;

so the functions gk defined as above always solve the Bezout equation.
To have the alternating condition aj;k D �ak;j we set aj;k D bj;k.z/�bk;j .z/ for

some yet to be determined functions. If we chose the functions bj;k , to be solutions
to the following @ problem:

@bj;k D 'j @'k WD Gj;k; (7)

then

@gj D @'j C
nX

kD1
fk@aj;k

D @'j C
nX

kD1
fk

�
@bj;k � @bk;j

�

D @'j C
nX

kD1
fk

�
'j @'k � 'k@'j

�
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D @'j C 'j @

 
nX

kD1
fk'k

!

� @'j
nX

kD1
fk'k

D @'j C 'j @1 � @'j 1 D 0;

so the functions gj are analytic.
Thus, finding an H1 solution of the Bezout equation

P
k fkgk � 1 is reduced

to finding a bounded solution of the @-equation (7). Note that, since at the end we
are getting analytic functions gk , it is sufficient to prove that the solutions bj;k are
bounded on the circle T.2

Hörmander used the fact that the equation

@w D �

has a bounded on T solution whenever the variation j�j is a Carleson measure; this
fact can be easily obtained by a duality argument and using the Carleson Embedding
Theorem. Note that, if the right side is a function G, then we just require that the
measure GdA.z/ is a Carleson measure.

For the bounded solutions 'k Hörmander chose

'k WD 1 � 1˝k
fk

 
nX

kD1
.1 � 1˝k /

!�1
;

where @˝k is the Carleson contour for fk with ı=n for ı.
The derivative @'k in the definition of Gk can understood in the sense of

distributions. If one wants to avoid the technical difficulties of working with
distributions, one can consider smoothing out the characteristic functions 1˝k .
Hörmander in [36] only sketched the proof, but did not give any details. A reader
interested in all the details should look at J. Garnett’s monograph [30, Ch. VIII,
Sect 5] where Hörmander’s construction was “smoothed out.”

It should be mentioned that Hörmander’s approach to the corona problem, and
perhaps Tom Wolff’s solution (discussed below) inspired Peter Jones [67] to come
up with an interesting new way to attack the problem. Jones constructs, on the upper
halfplane, a nonlinear solution to the @ problem and uses that together with the
Koszul complex to effect a corona solution.

2Of course there are some technical details about interpreting the boundary values of the function
bj;k , but one can avoid such difficulties by first assuming that the corona data is analytic in a bigger
disc and then using a standard normal family argument.
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3.4 Wolff’s Solution

T. Wolff’s solution followed Hörmander’s construction with the (simplest possible)
bounded non-analytic solutions 'k given by

'k WD f kPn
jD1 jfj j2 : (8)

To prove the existence of bounded solutions of the @-equations (7) on T, he
introduced the following theorem.

Theorem 4 (Wolff, [7, 30, 40, 42, 48]). Suppose that G.z/ is bounded and smooth
on the closed disc D. Further assume that the measures

jGj2 log
1

jzjdA.z/ and j@Gj log
1

jzjdA.z/

are Carleson measures with Carleson norms B1 and B2 respectively. Then the
equation

@b D G

has a solution b 2 C1.D/ \ C.D/ and, moreover,

kbkL1.T/ � C1
p
B1 C C2B2

where C1 and C2 are absolute constants.

The proof of this theorem is a clever application of Green’s Theorem together
with the Carleson Embedding Theorem.

If one does not care about sharp estimates, the Corona Theorem follows from
Theorem 4 almost immediately. Namely, it is an easy exercise to show that, if f 2
H1, then the measure jf 0.z/j2 ln 1

jzjdA.z/ is Carleson with the Carleson norm at
most Ckf k1. Then the Corona Theorem follows immediately if one notes that, for
G D Gj;k D 'j @'k with 'k defined by (8), we have

jGj2; j@Gj � C

nX

lD1
jfl j2 :

To get sharper estimates, the following lemma attributed to A. Uchiyama can
be used.
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Lemma 1 (Uchiyama’s lemma). Let u, 0 � u � 1, be a subharmonic function.
Then the measure �u.z/ ln 1

jzjdxdy is a Carleson measure with Carleson norm at
most 2�e, meaning that

Z

D

jf .z/j2�u.z/ ln
1

jzjdxdy � 2�ekf k2
H2 8f 2 H2:

The proof of the lemma is, again, a clever application of Green’s formula. It can be
found, for example, in the monograph [48, Lemma 6 in Appendix 3].

3.5 Estimates and Corona Theorems with infinitely
many generators

In 1980 M. Rosenblum [55] and V. Tolokonnikov [64], using a modification of
T. Wolff’s proof, independently proved that with correct normalization the Corona
Theorem holds for infinitely many generators fk .

Theorem 5 (M. Rosenblum [55], V. Tolokonnikov [64]). Let fk 2 H1, k 2 N

satisfy

1 �
 1X

kD1
jfk.z/j2

!1=2

� ı > 0 8z 2 D: (9)

Then there exist functions gk 2 H1, such that
P

k fkgk � 1 and such that

 1X

kD1
jgk.z/j2

!1=2

� C.ı/

In both [55] and [64], C.ı/ D Cı�4.
Later A. Uchiyama, in an unpublished but extremely influential preprint [81],

proved the above theorem with C.ı/ D Cı�2 ln ı�1 for small ı, which remains the
best known to date (even in the case of 2 generators). For the proof of this result
the reader could look at [48, Appendix 3]. The main idea is to use Wolff’s method,
estimating aj;k D bj �bk not separately, but estimating instead the Hilbert–Schmidt
norm of the matrix .aj;k/1j;kD1. To do that one treats the system of @-equations as
a vector-valued equation and uses Lemma 1 with appropriately chosen functions u.
As in the proof of Theorem 4 the norm of the solution is estimated by duality.
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In [81] A. Uchiyama also proved that the Corona Theorem with the `1
normalization of the corona data as in (1) also holds with infinitely many generators.
Namely, he proved that if the functions fk 2 H1 satisfy the condition

1 � max
kD1;:::;n jfk.z/j � ı > 0 8z 2 D;

then there exist gk 2 H1 such that
P1

kD1 fkgg � 1 and

1X

kD1
jgk.z/j � C.ı/ 8z 2 D:

To prove his result he used a modification of the Carleson–Hörmander construction
with Carleson contours.

Note that, using the above result and Theorem 5 it is easy to show, see [39], that
for any p � 2 and for any sequence of functions fk 2 H1 satisfying

1 �
 1X

kD1
jfk.z/jp

!1=p

� ı > 0 8z 2 D;

there exist gk 2 H1 such that
P

k fkgk � 1 and

 1X

kD1
jgk.z/jp0

!1=p0

� C.ı/;

where 1=p C 1=p0 D 1.
Uchiyama’s estimate C.ı/ D Cı�2 ln.1=ı/ in Theorem 5 is close to optimal,

if not optimal. Namely, V. Tolokonnikov [65] has shown that the estimate cannot
be better than Cı�2, even in the case of two generators. This result was later
improved by S. Treil [69], who had shown that the estimate cannot be better than
Cı�2 ln ln.1=ı/. This looks like a silly “improvement,” but it allowed the author to
solve T. Wolff’s problem [34, Problem 11.10] about ideals of H1; for more details
see Section 7 below.

3.6 Matrix and Operator Corona Theorems

The Corona Problem admits the following interpretation/generalization. Let F be
a bounded n 
 m matrix, n > m with H1 entries, which has a bounded left
inverse. The question is whether F has a bounded and analytic left inverse? The
left invertibility (in H1) of bounded analytic matrix- or operator-valued functions,
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play an important role in operator theory (such as the angles between invariant
subspaces, unconditionally convergent spectral decompositions, computation of
spectrum, etc.).

The condition that F has a bounded left inverse means that

F �.z/F.z/ � ı2I > 0; 8z 2 D: (C)

In the case when F is a column (m D 1), this is exactly the assumption (9) of
Theorem 5. Using a simple linear algebra argument. P. Fuhrmann [27] deduced
the positive answer to the above question (for the case of finite matrices) from
the Corona Theorem. The generalization of this problem is the so-called Operator
Corona Problem, dealing with the space H1

E�!E.D/ of bounded analytic functions
on D whose values are bounded operators acting between separable Hilbert spaces
E� and E.

The question is that, given F 2 H1
E�!E.D/ satisfying (C), does there exist G 2

H1
E�!E.D/ such that GF � I ? This problem was posed by Sz.-Nagy in in 1978,

[62], in connection with problems in operator theory (see also [33, Problem S4.11]
for this problem and some comments).

Fuhrmann’s result gives the positive answer in the case dimE�; dimE < 1.
Theorem 5 says that it is also true if dimE� D 1, dimE D 1. Using Theorem 5
and a modification of Fuhrmann’s proof, V. Vasyunin was able to extend this result
to the case dimE� < 1, dimE D 1; see also a paper [78] by T. Trent, where
better estimates were obtained.

In the general situation dimE� D dimE D 1, the condition (C) does not imply
the existence of a left inverse in H1: a corresponding counterexample, showing
that the estimates on the norm of the left inverse G blow up as dimE� ! 1,
was constructed by S. Treil see [71] or [70]. Later in [68] he presented a different
counterexample, giving better lower bounds for the norm of the solution. Note that
the lower bounds in [68], obtained for the case dimE� D n, dimE D nC 1 were
very close to the upper bounds obtained by T. Trent in [78] for the general case
dimE� D n, dimE > n.

While, as we discussed above, the Corona Theorem (i.e., the fact that the
condition (C) implies the existence of a bounded analytic left inverse) fails in
the general (infinite dimensional) case, it still holds in some particular cases.
For example, the Operator Corona Theorem holds if the range F.D/ is relatively
compact. Some particular results in this direction were obtained by P. Vitse [83,84];
in full generality it was proved recently by A. Brudnyi [17], using tools of complex
geometry.

Another partial result belongs to S. Treil [66], who proved in particular that the
Operator Corona Theorem holds for functions F which are “small” perturbation
of left invertible H1 functions. For example, it holds if F D F0 C F1, where
F0; F1 2 H1

E�!E.D/, F0 is left invertible in H1, and the Hilbert–Schmidt norm of
F.z/, z 2 D is uniformly bounded (by an arbitrary large constant).
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We can also mention a result of S. Treil and B. Wick [72], who introduced a
curvature condition which together with (C), guarantees the existence of an H1
left inverse. Namely, let ˘.z/ be the orthogonal projection onto RanF.z/. It was
proved in [72] that if k@˘.z/k � C=.1 � jzj/ and the measure

k@˘.z/k2 log
1

jzjdA.z/

is Carleson, then condition (C) implies the left invertibility in H1.
In the case dimE� < 1, the above curvature conditions easily follow from (C)

(in fact they are equivalent to (C) under an extra assumption that the function F is
co-outer). In the case codim RanF.z/ < 1, the curvature conditions follow from
the left invertibility (in H1) of F , so [72] solves the Operator Corona Problem in
the case of finite codimension.

The proofs in [72] used the following surprising lemma discovered by N. Nikol-
ski, which connects the solvability of the Corona Problem (in a general complex
manifold ˝) with the geometry of the family of subspaces RanF.z/, z 2 ˝.

Lemma 2 (Nikolski’s Lemma). F Let F 2 H1
E�!E.˝/ satisfy

F �.z/F.z/ � ı2I; 8z 2 ˝:

Then F is left invertible inH1
E�!E.˝/ (i.e., there exists G 2 H1

E!E�

.˝/ such that
GF � I ) if and only if there exists a function P 2 H1

E!E.˝/ whose values are
projections (not necessarily orthogonal) onto F.z/E for all z 2 ˝.

Moreover, if such an analytic projection P exists, then one can find a left inverse
G 2 H1

E!E�

.˝/ satisfying kGk1 � ı�1kPk1.

4 Other Domains

The situation with the Corona Theorem on domains other than the unit disc can be
summarized as follows:

There is no domain in the complex plane for which the H1 Corona Theorem is known to
fail. There is no domain in C

n, n > 1, for which the H1 Corona Theorem is known to
hold.

4.1 Several Complex Variables

In several variables it is trivial to construct a counterexample to the Corona
Theorem, because of the phenomena of forced analytic continuation. Of course,
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such a trivial “counterexample” would be cheating; the natural question to ask is
whether the Corona Theorem holds for domains of holomorphy.3

In 1973, Nessim Sibony [59] produced a startling result in the context of several
complex variables. He gave an elementary construction to produce a domain of
holomorphyU in C

2 with the property that any bounded holomorphic function f on
U analytically continues to a strictly larger open domain OU . Here OU does not depend
on f . The domain U does not have smooth boundary. Sibony’s ideas were later
developed and generalized by Berg [15], Jarnicki and Pflug [37], and Krantz [41]. In
the paper [60], Sibony modified his construction so as to produce a counterexample
to the corona in C

3 with smooth boundary. It is notable that this domain is strongly
pseudoconvex except at one boundary point. In the paper [26], Fornæss and Sibony
produce an example in C

2.
However, if one requires ˝ to be a strictly pseudoconvex domain, no counterex-

amples are known; no positive results are known either, so the question of whether
the H1 Corona Theorem holds for such domains remains wide open. Nothing is
known even in the simplest case when ˝ is the unit ball Bn in C

n. One might
think that the product structure of the polydisc D

n could provide us with a better
understanding of the Corona Problem there, but again, nothing is known in this
case.

As indicated before, N. Varopoulos [82] crushed the hopes of easily transferring
the techniques for the disc to the case of several complex variables by showing that
in the unit ball in C

2 the condition that the measure � is Carleson does not imply
existence of a bounded solution of the @-equation @u D �. In the positive direction,
however, he was able to get BMO solutions of the Bezout equation f1g1Cf2g2 � 1

with 2 generators in bounded pseudoconvex domains in C
n (assuming, of course,

that the Corona data satisfy the Corona condition jf1j C jf2j � ı > 0). Recently,
Costea, Sawyer, and Wick [24] have extended this result to the case of k generators,
or even infinitely many generators (but only in the ball in C

n).
Other positive results in several variables include the solution of the so-calledHp

Corona Problems, see Section 5 below.

4.2 Planar domains and Riemann surfaces

For planar domains the situation is in a sense opposite to the one in the case of
several variables: there are some positive results, but no counterexamples.

Of course, the Riemann Mapping Theorem implies that the Corona Theorem
holds for any simply connected domain. As we mentioned above, Edgar Lee Stout
[61] and Norman Alling [3] proved in the mid-1960s that the Corona Theorem
remains true on a finitely-connected Riemann surface (so in particular for finitely

3That is, a domain supports a (unbounded) holomorphic function that cannot be analytically
continued to any larger domain.


