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Chapter 1
Introduction

Affine Schubert calculus is a subject that lies at the crossroads of combinatorics,
geometry, and representation theory. Its modern development is motivated by two
seemingly unrelated directions. One is the introduction of k-Schur functions in
the study of Macdonald polynomial positivity, a mostly combinatorial branch of
symmetric function theory. The other direction is the study of the Schubert bases of
the (co)homology of the affine Grassmannian, an algebro-topological formulation
of a problem in enumerative geometry.

Classical Schubert calculus is a branch of enumerative algebraic geometry
concerned with problems of the form:

How many lines L in 3-space intersect four fixed lines L1; L2; L3; L4?

In general, lines are replaced by affine linear subspaces, and conditions on the
dimensions of intersections are imposed. When L1; L2; L3; L4 are in generic
position, the answer to the above problem is two; this is a pleasant surprise, since in
linear algebra one expects to find 0; 1, or1 solutions. Schubert [144] studied such
“Schubert problems” in the nineteenth century. At the turn of the twentieth century,
Hilbert posed as his 15th problem the rigorous foundation of Schubert’s enumerative
calculus. Subsequent developments in geometry and topology converted such Schu-
bert problems into problems of computation in the cohomology ring H �.Gr.k; n//

of the Grassmannian Gr.k; n/ of k-planes in n-space. The problems were reduced
to finding structure constants, now called Littlewood-Richardson coefficients [118],
of a certain “Schubert basis” for H �.Gr.k; n//.

The explicit realization of these computations using the theory of Schur functions
played an important role in transforming Schubert calculus into a contemporary
theory that stretches into many fields. The Schur functions s� form a basis for the
symmetric function space ƒ and at the turn of the century, it was discovered that they
match irreducible representations of the symmetric group. Later, a deep connection
between Schur functions and the geometry of Grassmannians was established when
it was shown that the Schubert structure constants exactly equal coefficients in the
product of Schur functions in ƒ. The rich combinatorial backbone of the theory

T. Lam et al., k-Schur Functions and Affine Schubert Calculus, Fields Institute
Monographs 33, DOI 10.1007/978-1-4939-0682-6__1,
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2 1 Introduction

of Schur functions, including the Robinson–Schensted algorithm, jeu-de-taquin,
the plactic monoid (see for example [139]), crystal bases [127], and puzzles [74],
now underlies Schubert calculus and in particular produces a direct formula for
the Littlewood–Richardson coefficients. The influence of Schur functions on the
geometry of Grassmannians provoked the broadening of Schubert calculus to other
studies ranging from representation theory to physics.

A trend in Schubert calculus is to generalize the classical setup in two basic
directions: (1) to vary the underlying geometric object being considered by replacing
the Grassmannian by the flag variety, or more generally by a partial flag variety of a
Kac–Moody group, and (2) to vary the algebraic structure considered by replacing
cohomology by equivariant cohomology, K-theory, quantum cohomology, or other
algebraic invariants. Our interest is in the case when the Grassmannian is replaced
by infinite-dimensional spaces GrG known as affine Grassmannians.

Investigations of the quantum cohomology rings of flag varieties led Peter-
son [130] to begin a systematic study in this direction for any complex simple
simply-connected algebraic group G. Applying work of Kostant and Kumar [75]
on the topology of Kac-Moody flag varieties, Peterson showed that the equivariant
homology HT .GrG/ is isomorphic to a subalgebra of Kostant and Kumar’s nilHecke
ring. Moreover, he proved that the Littlewood–Richardson coefficients of HT .GrG/

could be identified with the 3-point Gromov–Witten invariants of the flag variety
of G. A classical result of Quillen [135] establishes that the affine Grassmannian
GrG is itself homotopy-equivalent to the group �K of based loops into the maximal
compact subgroup K � G. This places GrG in a unique position amongst the
homogeneous spaces of all Kac–Moody groups. It endows HT .GrG/ with the
structure of a Hopf algebra, and is also partly responsible for the important position
that the affine Grassmannian has in geometric representation theory.

The aim of this book is to present ongoing work developing a theory of affine
Schubert calculus in the spirit of classical Schubert calculus; here the Grassmannian
is replaced by the affine Grassmannian. As with Schubert calculus, topics under the
umbrella of affine Schubert calculus are vast, but now it is the combinatorics of a
family of polynomials called k-Schur functions that underpins the theory.

The theory of k-Schur functions originated in the apparently unrelated study
of Macdonald polynomials. Macdonald polynomials are symmetric functions over
Q.q; t/ that possess remarkable properties; the proofs of which have inspired deep
work in many areas (e.g. double affine Hecke algebras [32], quantum relativistic
systems [138], Hilbert schemes of points in the plane [61]). Macdonald conjectured
in the late 1980s that the coefficients expressing Macdonald polynomials in terms of
the Schur basis lie in NŒq; t �. Since then, the Macdonald/Schur transition coefficients
have been intensely studied from a combinatorial, representation theoretic, and
algebro-geometric perspective.

In one such study [91], Lapointe, Lascoux, and Morse found computational
evidence for a family of new bases for subspaces ƒt

k in a filtration ƒt
1 � ƒt

2 �
� � � � ƒt1 of ƒ. Conjecturally, the star feature of each basis was the property
that Macdonald polynomials expand positively in terms of it, giving a remarkable
factorization for the Macdonald/Schur transition matrices over NŒq; t �. Pursuant
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investigations of these bases led to various conjecturally equivalent characteriza-
tions and the discovery that they refined the very aspects of Schur functions that
make them so fundamental and wide-reaching. As such, they are now generically
called k-Schur functions.

The role of k-Schur functions in affine Schubert calculus emerged over a number
of years. The springboard was a realization that the combinatorial backbone of
k-Schur theory lies in the setting of the type-A affine Weyl group. Generalizing
the classical theory of Schur functions, Pieri rules, Young’s lattice, the Cauchy
identity, tableaux, and Stanley symmetric functions were refined using k-Schur
functions [79, 92, 96]. These are naturally described in terms of posets of elements
in QAk . For example, the number of monomial terms in an entry of the Macdonald/k-
Schur matrix equals the number of reduced expressions for an element in QAk .

The combinatorial exploration fused into a geometric one when the k-Schur
functions were connected to the quantum cohomology of Grassmannians. Lapointe
and Morse [93] showed that each Gromov–Witten invariant for the quantum
cohomology of Grassmannians exactly equals a k-Schur coefficient in the product
of k-Schur functions in ƒ. A basis of dual (or affine) k-Schur functions was also
introduced in [93]. In response to questions about the geometric role for dual
k-Schur functions and the significance of the complete set of k-Schur coefficients,
Morse and Shimozono conjectured that the Schubert bases for cohomology and
homology of the affine Grassmannian Gr are given by the dual k-Schur functions
and the k-Schur functions, respectively. Lam proved the conjectures in [80]. Since
then, the synthesis of affine Schubert calculus and k-Schur function theory has
produced a subject involving prolific research in mathematics, computer science,
and physics.

This book arose from an NSF funded Focused Research Group entitled “Affine
Schubert Calculus: Combinatorial, geometric, physical, and computational aspects”,
which involved Thomas Lam, Luc Lapointe, Jennifer Morse, Anne Schilling, Mark
Shimozono, Nicolas M. Thiéry, and Mike Zabrocki as active participants among
others. Our exposition here grew out of several lecture series given at a summer
school on ‘Affine Schubert Calculus’ organized by Anne Schilling and Mike
Zabrocki and held in July 2010 at the Fields Institute in Toronto.

We give the story in three parts, through varying lenses. Chapter 2 presents the
origins and early work on k-Schur functions, emphasizing the symmetric function
setting and the combinatorics therein. The computational aspects are highlighted
and illustrated with examples in SAGE [140, 151]. More information about the
open-source computer algebra system SAGE is given in Appendix. Chapter 3 is
Thomas Lam’s synopsis of his summer school lectures entitled “affine Stanley
symmetric functions”. This chapter explains the combinatorial connections between
Stanley symmetric functions and k-Schur functions via the algebraic constructions
of nilCoxeter and nilHecke rings. Some of the latter constructions are presented for
arbitrary root systems. Chapter 4 is Mark Shimozono’s synopsis of his lectures on
“generalizations to other affine group types”. This chapter presents the nilHecke
ring in the very general Kac-Moody setting and develops some of the geometric
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connections. The general construction is then applied to the situation of the
affine Grassmannian. Each chapter is self-contained and can in principle be read
independently of the others.

Let us outline the contents of this book. As discussed, the origin of k-Schur
functions was in a study of Macdonald polyomials where they are characterized as
symmetric functions that depend on one additional parameter t . However, the bulk
of our presentation lies in the t D 1 setting. Although the general case is needed for
implications in representation and Macdonald theory, the proven combinatorial and
geometric properties largely center around this special case of k-Schur functions.

Extensive computer experimentation led to many conjectured properties of the
k-Schur functions. Most notable is the k-Pieri rule for k-Schur functions, allowing
one to express the product of a k-Schur function with a homogeneous symmetric
function in terms of k-Schur functions. Chapter 2 starts by laying the combinatorial
foundation needed to describe the k-Pieri rule including partitions, cores, and the
affine Weyl group of type-A. Then, for fixed k and for t D 1, the k-Schur functions
are presented as the family of symmetric functions which satisfy this Pieri rule.
These functions form a basis of a subalgebra of the ring of symmetric functions.
The dual basis lies in a Hopf-dual algebra which may be realized as a quotient
of the ring of symmetric functions. Chapter 2 studies the k-Schur functions and
their duals as symmetric functions, including a detailed summary of the weak and
strong tableaux for which the k-Schur functions and their duals are the generating
functions. Section 6 of this chapter includes an account of the affine insertion
algorithm of [81], which explains how the generating functions for strong tableaux
(k-Schur functions) are known to be dual to the generating function for weak
tableaux (dual k-Schur functions).

For arbitrary t , the k-Schur functions span a subspace of the ring of symmetric
functions which is closed under the coproduct operation. It was in this setting that
the k-Schur functions originally arose. They were first defined as a sum of the
usual Schur functions over a combinatorially defined collection of tableaux known
as a k-atom. Lapointe, Lascoux, and Morse [91] conjectured that the Macdonald
symmetric functions expand positively in terms of k-Schur functions. An obvious
difficulty with this approach is a missing algebraic connection that could be used
to connect Macdonald symmetric functions with the combinatorics of k-atoms.
A second definition of the k-Schur functions was given in terms of symmetric
function operators and followed in subsequent research [94, 95]. Chapter 2, Sect. 3
discusses these definitions as well as several others that are conjecturally equivalent.
Section 4 is used to give a list of mostly conjectural properties of k-Schur functions
and an account of what is known (to date) about the status of these conjectures.

Throughout Chap. 2 we have included examples of computations with SAGE in
order to demonstrate examples of the formulas, but also to show how to use the
functions that have been written by developers and incorporated into SAGE. These
examples will hopefully both inspire and encourage exploration so that readers
can generate further data and make new conjectures about k-Schur functions and
their duals. We recommend to the reader to work with an up to date copy of SAGE

(at least version 5.13 or later) to ensure that all features used in this book have been
incorporated.
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Chapter 3 then goes into more depth about k-Schur functions in the setting of
the nil-Coxeter algebra. In the early 1980s, Stanley [150] became interested in the
enumeration of the reduced words in the symmetric group. This led him to define
a family of symmetric functions fFw j w 2 Sng now known as Stanley symmetric
functions. In [79], Lam showed that the dual k-Schur functions were a special case
of the affine Stanley symmetric functions QFw, analogues of Stanley’s symmetric
functions for the affine symmetric group.

In earlier work of Fomin and Stanley [48], it was shown that some of the main
properties of Stanley symmetric functions could be obtained systematically from
the nilCoxeter algebra of the symmetric group. This algebra is the associated graded
algebra of the group algebra CŒSn� with respect to the length filtration. The affine
nilCoxeter algebra played the same role for affine symmetric functions, and this
provided an algebraic tool to study k-Schur functions and their duals. This interplay
between algebra, combinatorics and symmetric functions is the main theme of
Chap. 3. The connection to the nilHecke ring of Kostant and Kumar [75] is also
explained and parts of the theory is carried out in the case of an arbitrary Weyl
group.

Chapter 4 puts the preceding chapters in a more geometric context, and begins
with a careful development of Kostant and Kumar’s nilHecke ring A [75]. The
nilHecke ring can roughly be described as the smash product of the nilCoxeter
algebra and a polynomial ring and it was introduced to study the torus equivariant
cohomology of Kac–Moody partial flag varieties. This ring acts as divided differ-
ence operators on the equivariant cohomology.

Peterson [130] studied the equivariant homology HT .GrG/ of the affine Grass-
mannian GrG of the complex simple simply-connected algebraic group G as a Hopf
algebra with the following idea: applying the homotopy equivalences Gr ' �K

and Flaf ' LK=TR the natural inclusion �K ,! LK=TR gives rise to an action
of HT .GrG/ on HT .Flaf/. (Here Flaf denotes the affine flag variety of G.) This
action can be described in terms of divided difference operators, giving an injection
j W HT .GrG/ ! A. Peterson’s work is given a thorough treatment in Chap. 4,
Sect. 4.

Using the natural relation between the nilCoxeter algebra and the nilHecke
ring, in [79] Lam confirmed a conjecture of Morse and Shimozono identifying
polynomial representatives for the Schubert classes of the affine Grassmannian as
the k-Schur functions in homology and the dual k-Schur functions in cohomology.
The algebraic part of this result is established in Chap. 3, Theorems 8.9 and 8.11.

We now discuss various generalizations of (dual) k-Schur functions, which
are symmetric-function versions of the Schubert bases of the dual Hopf algebras
of the homology H�.GrSLn/ and cohomology H �.GrSLn/ of the type A affine
Grassmannian GrSLn . For the affine Grassmannians GrG for G of classical type,
analogous symmetric functions have been defined [85, 131]. However, only for the
analogues of dual k-Schur functions, is an explicit monomial expansion known. The
classical type analogues of k-Schur functions are only defined by duality and little
is known about their combinatorics.
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There is an equivariant or “double” analogue of k-Schur functions, called k-
double Schur functions [89], which are to k-Schur functions what double Schubert
polynomials are to Schubert polynomials. These are symmetric functions for
the Schubert bases of the equivariant homology HT .GrSLn/ and H T .GrSLn/ for
the “small torus” T , a maximal torus in G (as opposed to the maximal torus in the
affine Kac-Moody group). The k-Schur functions are recovered from their double
analogues by setting some variables to zero. Aside from setting up the correct
symmetric function rings and bases, the only combinatorial result in this context
is a Pieri rule for HT .GrSLn/.

Essentially all of the general theory presented here has an analogue in K-theory,
which carries more information than (co)homology. Passing from the k-Schur
function to its K-theoretic analogue, is like passing from a Schubert polynomial
to a Grothendieck polynomial. For the affine Grassmannian, as in (co)homology
one again has a pair of dual Hopf algebras, but one obtains two pairs of dual
bases; both algebras have a structure sheaf basis and an ideal sheaf basis. Kostant
and Kumar developed the torus-equivariant K-theory of Kac-Moody homogeneous
spaces [76] and Peterson’s theory can be carried out in K-theory as well [84]. In
particular Peterson’s j -basis (see Chap. 4, Sect. 4.5), which is defined algebraically
using a leading term condition for an expansion in the divided difference basis,
has an analogue (called the k-basis in [84]) that corresponds to ideal sheaves of
Schubert varieties in the affine Grassmannian. Peterson’s “quantum equals affine”
theorem [90,130] (see Chap. 4, Sect. 4.7) has an analogue in K-theory: the structure
sheaves of opposite Schubert varieties in the quantum K-theory QKT .G=B/ of
finite-dimensional flag varieties G=B , appear to multiply in the same way as the
structure sheaves of the Schubert varieties in the K-homology KT .GrG/ of the
affine Grassmannian [83]. To establish this connection one must prove a conjectural
Chevalley formula of Lenart and Postnikov [114, Conjecture 17.1] for quantum K-
theory.

Acknowledgements This material is based upon work supported by the National Science
Foundation under Grant No. DMS-0652641. “Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.” We are grateful to the Fields Institute in Toronto for
helping organize and support the summer school and workshop on “Affine Schubert calculus”.

We would like to thank Tom Denton and Karola Mészáros for helpful comments and additions
on Chap. 2, and Jason Bandlow, Chris Berg, Nicolas M. Thiéry as well as many other SAGE

developers for their help with the SAGE implementations.

Appendix: SAGE

SAGE [151] is a completely open source general purpose mathematical software
system, which appeared under the leadership of William Stein (University of
Washington) and has developed explosively within the last 5 years. It is similar
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to MAPLE, MUPAD, MATHEMATICA, MAGMA, and up to some point MATLAB,
and is based on the popular Python programming language. SAGE has gained strong
momentum in the mathematics community far beyond its initial focus in number
theory, in particular in the field of combinatorics, see [140].

Tutorials and instructions on how to install SAGE can be found at the main SAGE

website http://www.sagemath.org/. For example, for the basic SAGE syntax and
programming tricks see http://www.sagemath.org/doc/tutorial/programming.html.

Many aspects related to k-Schur functions and symmetric functions in general
have been implemented in SAGE and in fact are still being developed as an on-going
project. Throughout the text we provide many examples on how to use SAGE to do
calculations related to k-Schur functions. Further information about the latest code
and developments can be obtained from the SAGE-COMBINAT website [140]. We
suggest that the interested reader uses SAGE version 5.13 or later to ensure that all
features used in this book have been incorporated.

http://www.sagemath.org/
http://www.sagemath.org/doc/tutorial/programming.html
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The purpose of this chapter is to outline some of the results and open problems
related to k-Schur functions, mostly in the setting of symmetric function theory.
This chapter roughly follows the outline of several talks given by Luc Lapointe and
Jennifer Morse at a conference titled “Affine Schubert Calculus” held in July of
2010 at the Fields Institute in Toronto.4

In addition it presents many examples based on code written in SAGE [140, 151]
by Jason Bandlow, Nicolas M. Thiéry, the last two authors, and many other SAGE

developers. The following presentation is intended to give both an idea of the origins
of the k-Schur functions as well as the current ideas and computational tools which
have been most productive for demonstrating their properties.

We will present almost no proofs in this chapter, but rather refer to the original
articles for detailed arguments. Instead the concepts are illustrated with many SAGE

examples to highlight how to discover and experiment with many of the still open
conjectures related to k-Schur functions. The purpose behind most of the SAGE

examples is to demonstrate the formulas with examples and to give the commands
that would allow a first time user of SAGE to be able to use the functions to generate
data that they might need for their own research.
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Section 1 reviews much of the combinatorial background of k-Schur theory
including partitions, cores, (partial) orders on the affine symmetric group, and some
symmetric function theory. This section also sets up the combinatorial backdrop
needed to give the Pieri rules for k-Schur functions and their duals. In Sect. 2, we
define a parameterless (t D 1) family of k-Schur functions using an analogue of the
Pieri rule for Schur functions [96]. This definition is used to relate k-Schur functions
to the geometry and to Stanley symmetric functions discussed in Chap. 3. We also
give the dual Pieri rule [81] which gives rise to a monomial expansion of the k-Schur
functions. The Pieri and dual Pieri rule motivate the definition of weak and strong
order tableaux.

In Sect. 3, we present four conjecturally equivalent definitions of the k-Schur
functions for generic t . Some are known to be equivalent when t D 1. The first
definition of k-Schur functions appeared in a paper by Lapointe, Lascoux and
Morse [91] and is purely combinatorial in nature; defined as a sum over certain
classes of tableaux called atoms. Lapointe and Morse [94] followed this paper by
defining symmetric functions which were defined by algebraic operations instead of
a sum over combinatorial objects. The last two definitions of the k-Schur functions
with a generic parameter t are defined along lines similar to the parameterless
k-Schur functions, but now a t -statistic is introduced on weak (resp. strong) order
tableaux.

In Sect. 4 we present many of the properties of k-Schur functions and outline
what is known about which property for each of the definitions. This is followed
by Sect. 5 which contains further research directions and many conjectures that
remain to be resolved (and hence the content is likely to change in the future)!
Section 6 explains the duality between strong and weak order in terms of a
k-analogue of the Robinson–Schensted–Knuth algorithm, which gives rise to an
affine insertion algorithm. We present part of this algorithm by giving a bijection
between permutations and pairs of tableaux. Finally in Sect. 7 some details about
the branching from k to .k C 1/-Schur functions are given.

1 Background and Notation

1.1 Partitions and Cores

A partition � D .�1; �2; : : : ; �`.�// of m is a sequence of weakly decreasing positive
integers which sum to m D �1 C �2 C � � � C �`.�/. The value of m is called the size
of the partition and this will be denoted by j�j. The entries of the partition are called
the parts and the number of parts of the partition is denoted by `.�/. As a general
convention, if i > `.�/ then �i D 0 and the definition of symmetric functions
(which turn out to be indexed by partitions) given later in this section respects this
convention. The statistic n.�/ DP`.�/

iD1.i �1/�i on partitions has a value between 0

and m.m�1/=2 for partitions of m and this will arise in the definitions of symmetric
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functions. A partition � is called k-bounded if �1 � k. The notation � ` m indicates
that � is a partition of m and generally we reserve the symbols �, �, � to denote
partitions.

A partition will be identified with its Young (or Ferrers) diagram. This is a
diagram consisting of square cells arranged in left justified rows stacked on top
of each other with the largest row with �1 cells on the bottom. (This convention
is also called the French notation; when stacking the rows with the largest row
at the top is called the English convention). Alternatively, a Young diagram is a
collection of cells in the first quadrant of the .x; y/-plane with dg.�/ D f.i; j / W
1 � i � `.�/ and 1 � j � �ig represented as boxes in the Cartesian plane so that
the upper right hand corner of a cell has coordinate which is in this collection. For
consistency with other references we have chosen that the first coordinate represents
the row and the second coordinate represents the column (each beginning at 1 for
the first row and column). For an example the Young diagram for the partition
� D .4; 3; 3; 3; 2; 2; 1/ is drawn in Example 1.1.

There is a partial order on partitions that arises naturally in symmetric functions
when ordering basis elements. For two partitions �; � such that j�j D j�j, we say
that � � � if

Pr
iD1 �i � Pr

iD1 �i for all r � 1. This is usually referred to as the
dominance order on partitions.

The conjugate of a partition � is the sequence �0 D .�0
1; �0

2; : : : ; �0
�1

/ where
�0

r D #fi W �i � rg. Alternatively, this can be seen on Young diagrams by reflecting
the diagram in the x D y line of the coordinate plane so that dg.�0/ D f.j; i/ W
.i; j / 2 dg.�/g. For example in Example 1.1 below, �0 D .7; 6; 4; 1/ for the partition
� D .4; 3; 3; 3; 2; 2; 1/.

For many uses we will need to refer to the number of parts of a partition of a
given size i and this will be denoted by mi .�/ D #fj W �j D ig. The quantity

z� D
Y

i�1

mi .�/Š imi .�/ (1.1)

is the size of the stabilizer of a permutation � 2 Sm, the symmetric group on m D
j�j letters, whose cycle type is � under the conjugation action of Sm. That is, if �

has cycle type �, then z� D #f� 2 Sm W ����1 D �g. Since we know that all
permutations with the same cycle type are conjugate, the number of permutations
with cycle type � is equal to mŠ=z�.

Each cell in a partition � has a hook length which consists of the number of cells
in the column above and in the row to the right (including the cell itself). Namely, for
a cell .i; j / 2 dg.�/, the hook length of the cell is hook�.i; j / D �iC�0

j �i�jC1.
In Example 1.1 below hook.4;3;3;3;2;2;1/.3; 2/ D 5 D �3 C �0

2 � 3 � 2C 1.
For a partition � with �1 � k, define the k-split of � as a sequence of partitions

(which will be denoted by �!k) recursively. If �1C `.�/�1 � k, then �!k D .�/.
Otherwise,

�!k D ..�1; �2; : : : ; �k��1C1/; .�k��1C2; �k��1C3; : : : ; �`.�//
!k/ : (1.2)
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In other words, the k-split of a partition is found by successively splitting off parts of
the partition with hook k, starting with the first part, until that is no longer possible.

Example 1.1. The Young diagram for the partition � D .4; 3; 3; 3; 2; 2; 1/ is the
diagram on the left and its conjugate partition �0 D .7; 6; 4; 1/ is the diagram in the
center.

The diagram on the right is the Young diagram for the partition �D.4; 3; 3; 3; 2; 2; 1/

with the cells that are in the hook of the cell .3; 2/ shaded in. In this case
hook�.3; 2/ D 5. The 4-split of � is �!4 D ..4/; .3; 3/; .3; 2/; .2; 1// and the 5-split
is �!5 D ..4; 3/; .3; 3; 2/; .2; 1//.

We will use the realization of the Young diagram as the set of cells in our notation
and define � � � if dg.�/ � dg.�/. This forms a lattice, also known as the Young
lattice, on set of partitions and the cover relation is given by � ! � if � � � and
j�jC1 D j�j. The lattice is graded by the size of the partition and the first six levels
of the infinite Hasse diagram are shown in Fig. 2.1.

There are several special types of containments of partitions that will arise in this
discussion. If � � �, then �=� is called a skew partition and it will represent the
cells which are in dg.�/=dg.�/, with the = here representing the difference of sets.

Fig. 2.1 The Young lattice of partitions (up to those of size 5) ordered by inclusion
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We call �=� connected if for any two cells there is a sequence of cells in �=�

from one to the other where consecutive cells share an edge. We say that �=� is a
horizontal (vertical) strip if there is at most one cell in each column (row) of �=�.
The skew partition �=� is called a ribbon if it does not contain any 2 � 2 subset
of cells.

Sage Example 1.2. We now demonstrate how to access partitions and their prop-
erties in the open source computer algebra system SAGE (see section “Appendix:
SAGE” in Chap. 1). We begin by listing all partitions of 4:

sage: P = Partitions(4); P
Partitions of the integer 4
sage: P.list()
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

SAGE has list comprehension so that the last line could have also been written as

sage: [p for p in P]
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

We can check how two partitions � and � relate in the dominance order

sage: la=Partition([2,2]); mu=Partition([3,1])
sage: mu.dominates(la)
True

and draw the entire Hasse diagram

sage: ord = lambda x,y: y.dominates(x)
sage: P = Poset([Partitions(6), ord], facade=True)
sage: H = P.hasse_diagram()
sage: view(H) #optional

which outputs the graph. The view(H) command may not work properly unless
dot2tex and Graphviz are installed on your version of Sage. Here we used the python
syntax for a function, which is lambda x : f(x) for a function that maps x to
f .x/. We can also compute the conjugate of a partition, its k-split

sage: la=Partition([4,3,3,3,2,2,1])
sage: la.conjugate()
[7, 6, 4, 1]
sage: la.k_split(4)
[[4], [3, 3], [3, 2], [2, 1]]

and create skew partitions

sage: p = SkewPartition([[2,1],[1]])
sage: p.is_connected()
False
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1.2 Bounded Partitions, Cores, and Affine Grassmannian
Elements

We will see that k-Schur functions are symmetric functions indexed by k-bounded
partitions and consequently, the underlying combinatorial framework we need often
comes out of a refinement of classical ideas in the theory of partitions. As it happens,
the set of k-bounded partitions is in bijection with several different sets of natural
combinatorial objects and often the k-Schur function setting is better expressed in
those terms. To this end, we begin with a discussion of several other examples of
possible indexing sets.

As with the k-bounded partitions, we are interested in another special subset
of partitions. In particular, an r-core is a shape where none of its cells have a
hook-length equal to r . We denote the set of all r-cores by Cr . When we consider
a partition as a core, the notion of size differs from the usual notion (where size
counts the number of cells in the shape). In contrast, the relevant notion of size on a
.k C 1/-core is to count only the number of cells which have a hook-length smaller
than k C 1. We call this the length of the core. For a .k C 1/-core 	, its length will
be denoted by j	jkC1 or simply j	j if it is clear from the context that 	 is viewed
as a .k C 1/-core. As k ! 1, this becomes the usual size of the partition. Later
in this section, we will see that the length is related to the length of elements in the
affine symmetric group. Now, we give the connection between cores and bounded
partitions.

Proposition 1.3 ([96, Theorem 7]). There is a bijection between the set of .kC1/-
cores 	 with j	jkC1 D m and partitions � ` m with �1 � k.

The bijection from .k C 1/-cores to k-bounded partitions is

p W 	 7! � ;

defined by setting

�i D #f.i; j / 2 	 W hook	.i; j / � kg : (1.3)

Example 1.4. The partition .12; 8; 5; 5; 2; 2; 1/ on the left is a 5-core since there are
no cells in its Ferrers diagram with hook-length equal to 5. Equation (1.3) tells us
how to applying p to this core to obtain a 4-bounded partition; delete each cell in the
diagram for the 5-core whose hook-length exceeds 5 and then slide all remaining
cells to the left.

The first part of the resulting partition is at most 4:
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The other direction of the bijection is also not difficult. Consider a k-bounded
partition and work from the smallest part of the partition to the largest and slide the
cells to the right until it is a .k C 1/-core. Here is a description of the procedure
which can be followed with Example 1.5. Start with the top row �`.�/ of the k-
bounded partition � and successively move down a row. For a given row, calculate
the hook lengths of its cells; if there is a cell with hook length greater than k, slide
this row to the right until all cells have hook length less than or equal to k. Continue
this process until all rows have been adjusted. The end result will be a .k C 1/-
core which we shall denote by ck.�/ or just c.�/ if k is clear from the context.

Example 1.5. The partition .4; 3; 3; 3; 2; 2; 1/ is a 4-bounded partition. Here we
draw the successive slides of the rows until we reach a 5-core:

! ! !

Sage Example 1.6. Here is the way to compute the map c in SAGE:

sage: la = Partition([4,3,3,3,2,2,1])
sage: kappa = la.k_skew(4); kappa
[12, 8, 5, 5, 2, 2, 1] / [8, 5, 2, 2]

For the inverse p we write

sage: kappa.row_lengths()
[4, 3, 3, 3, 2, 2, 1]

If one is only handed the 5-core .12; 8; 5; 5; 2; 2; 1/ instead of the skew partition,
one can do the following:

sage: tau = Core([12,8,5,5,2,2,1],5)
sage: mu = tau.to_bounded_partition(); mu
[4, 3, 3, 3, 2, 2, 1]
sage: mu.to_core(4)
[12, 8, 5, 5, 2, 2, 1]

All 3-cores of length 6 can be listed as:

sage: Cores(3,6).list()
[[6, 4, 2], [5, 3, 1, 1], [4, 2, 2, 1, 1], [3, 3, 2, 2, 1, 1]]

We now turn our attention to the third set of objects that is in bijection with the set
of k-bounded partitions (and the set of .k C 1/-cores). These come out of studying
the type A affine Weyl group and its realization as the affine symmetric group QSn

given by generators fs0; s1; : : : ; sn�1g satisfying the relations


