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Preface

The Pan American Advanced Studies Institute (PASI), Topics in Percolative and
Disordered Systems, took place in January 2012 in Santiago de Chile and Buenos
Aires. It brought together mathematicians, physicists and advanced students from
Latin America, North America and beyond for an intense 2-week period focused on
current research problems in some of the mainstream areas of Probability Theory
and Statistical Physics, such as the stochastic Ising model, random walks in random
media, the KPZ universality class and interacting particle systems. This volume con-
tains a selection of five peer-reviewed articles that are representative of the topics
discussed in the PASI. Two survey articles are presented—one concerns the KPZ uni-
versality class (Quastel and Remenik) and the other treats random walks in random
media (Drewitz and Ramírez). Other articles present new results about the scal-
ing limit of the stochastic Ising model (Lacoin) and about its coarsening behaviour
(Damron, Kogan, Newman and Sidoravicius) and a review of exact computational
methods to compute the current of particles through a given site in the asymmetric
simple exclusion process (Corwin).
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Two Ways to Solve ASEP

Ivan Corwin

Abstract The purpose of this chapter is to describe two approaches to compute exact
formulas (which are amenable to asymptotic analysis) for the probability distribution
of the current of particles past a given site in the asymmetric simple exclusion process
(ASEP) with step initial data. The first approach is via a variant of the coordinate
Bethe Ansatz and was developed in work of Tracy and Widom in 2008–2009, while
the second approach is via a rigorous version of the replica trick and was developed
in work of Borodin, Sasamoto and the author in 2012.

1 Introduction

Exact formulas in probabilistic systems are exceedingly important, and when a new
one is discovered, it is worth paying attention. This is a lesson that I first learned
in relation to the work of Tracy and Widom on the asymmetric simple exclusion
process (ASEP) and through my subsequent work on the Kardar–Parisi–Zhang (KPZ)
equation. New formulas can enable asymptotic analysis and uncover novel (and
universal) limit laws. Comparing new formulas to those already known can help lead
to the realization that certain structures or connections exist between disparate areas
of study (or at least can suggest such a possibility and provide a guidepost).

The purpose of this chapter is to describe the synthesis of exact formulas forASEP.
There are presently two approaches to compute the current distribution for ASEP on
Z with step initial condition. The first (called here the coordinate approach) is due
to Tracy and Widom [26–28] in a series of three papers from 2008–2009, while the
second (called here the duality approach) is due to Borodin, Sasamoto and the author
[5] in 2012.

The duality approach is parallel to an approach (also developed in [5]) to study
current distribution for another particle system, called q-TASEP. Via a limit transi-
tion, the duality approach becomes the replica trick for directed polymers. In fact,
ASEP and q-TASEP should be considered as integrable discrete regularizations of the
directed polymer model in which the replica trick (famous for being non-rigorous)
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2 I. Corwin

becomes mathematically rigorous. Underlying the solvability of q-TASEP and di-
rected polymers is an integrable structure recently discovered by Borodin and the
author [4] called Macdonald processes (which in turn is based on the integrable sys-
tem surrounding Macdonald symmetric polynomials). It is not presently understood
where ASEP could fit into this structure, but the fact that the duality approach applies
in parallel for ASEP and q-TASEP compels one to look for a higher structure which
encompasses both.

2 Current Distribution for ASEP

ASEP is an interacting particle system introduced by Spitzer [24] in 1970 (though
arising earlier in biology in the work of MacDonald, Gibbs and Pipkin [18] in 1968).
Since then, it has become a central object of study in interacting particle systems and
non-equilibrium statistical mechanics. Each site of the lattice Z may be inhabited by
at most one particle. Each particle attempts to jump left at rate q and right at rate
p (p + q = 1), except that jumps which would violate the ‘one particle per site
rule’ are suppressed. We will assume q > p, and for later use call q − p = γ and
p/q = τ (note that γ > 0 and τ < 1).

There are two ways of constructing ASEP as a Markov process. The ‘occupation
process’ keeps track of whether each site in Z is occupied or unoccupied. The state
space is Y ={0, 1}Z and for a state η = {ηx}x∈Z ∈ Y , ηx = 1 if there is a particle at
x and 0 otherwise. This Markov process is denoted η(t).

The ‘coordinate process’keeps track of the location of each particle. Assume there
are only k particles in the system, then the state space Xk = {x1 < · · · < xk} ⊂ Z

k

and for a state �x = {x1 < . . . < xk} ∈ Xk , the value of xj is the location of particle
j . We call Xk a Weyl chamber. Because particles cannot hop over each other, the
ASEP dynamics preserve particle ordering. This Markov process is denoted �x(t).

In this chapter, we will be concerned with the ‘step’ initial condition for ASEP in
which every positive integer site is initially occupied and every other site is initially
unoccupied. In terms of the occupation process, this corresponds to having ηx(0) =
1x>0 (here and throughout 1E is the indicator function for event E). Let Nx(η) =∑

y≤x ηy and note that N0(η(t)) records the number of particles of ASEP which, at
time t are to the left of, or at the origin—that is to say, it is the net current of particles
to pass the bond 0 and 1 in time t .

Theorem 1 For ASEP with step initial condition and q > p,

lim
t→∞P

(
N0(t/γ )− t/4

2−1/3t1/3
≥ −s

)

= FGUE(s),

where FGUE(s) is the GUE Tracy-Widom distribution.

Remark 1 The distribution function FGUE(s) can be defined via a Fredholm
determinant as

FGUE(s) = det (I −KAi)L2(s,∞)



Two Ways to Solve ASEP 3

where Airy kernel KAi acts on L2(s,∞) with integral kernel

KAi(x, y) =
∫ ∞

0
Ai(x + t)Ai(y + t)dt.

For q = 1 andp = 0, result was proved in 1999 by Johansson [13] and for general
q > p, it was proved by Tracy and Widom [26–28] in 2009, and then reproved via a
new formula by Borodin, Sasamoto and the author [5] in 2012. This result confirms
that for all q > p, ASEP is in the KPZ universality class [15] (see also the review
[6]).

In order to prove an asymptotic result (such as above), it is very useful to have
a pre-asymptotic (finite t) formula to analyze. If the formula does not increase in
complexity as t goes to infinity, there is hope to compute its asymptotics. Presently,
there are two approaches to computing manageable formulas for the distribution of
N0(t).

3 The Coordinate Approach

In [26], Tracy and Widom start by considering the ASEP coordinate process �x(t)
with only k particles. In 1997, Schütz [22] computed the transition probabilities
(i.e. Green’s function) for ASEP with k = 2 particles. The first step in [26] is a
generalization to arbitrary k. Let P�y(�x; t) represent the probability that in time t , a
particle configuration �y will transition to a second configuration �x. As long as p 	= 0,
it was proved in [26] that

P�y(�x; t) =
∑

σ∈Sk

∫

· · ·
∫

Aσ

k∏

i=1

ξ
xj−yσ (j )−1
σ (j ) eε(ξj )t dξj , (1)

where the contour of integration is a circle centered at zero with radius so small as
to not contain any poles of Aσ . Here, ε(ξ ) = pξ−1 + qξ − 1 and

Aσ =
∏{

Sαβ : {α,β}is an inversion in σ
}

, Sαβ = −p + qξαξβ − ξα

p + qξαξβ − ξβ
.

This result is proved by showing that that P�y(�x; t) solves the master equation for
k-particle ASEP

d

dt
u(�x; t) = ((Lk)∗u)(�x; t), u(�x; 0) = 1�x=�y.

Here (Lk)∗ is the adjoint of the generator of the k-particle ASEP coordinate process
(this just means that the role of p and q are switched in going between Lk and (Lk)∗).
For k = 1, L1 and (L1)∗ act on function f : Z → R as
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(L1 f )(x) = q [f (x − 1)− f (x)]+ p [f (x + 1)− f (x)] ,
(
(L1)∗f

)
(x) = p [f (x − 1)− f (x)]+ q [f (x + 1)− f (x)] .

For k > 1, the generator Lk and its adjoint depend on the location of �x in the Weyl
chamber, reflecting the fact that certain particle jumps are not allowed near the
boundary of the Weyl chamber.

Quoting a footnote in [26]:

The idea in Bethe Ansatz (see, e.g. [16, 25, 30]), applied to 1-D k-particle quantum me-
chanical problems, is to represent the wave function as a linear combination of free particle
eigenstates and to incorporate the effect of the potential as a set of k − 1 boundary con-
ditions. The remarkable feature of models amendable to Bethe Ansatz is that the boundary
conditions for k ≥ 3 introduce no more new conditions . . . The application of Bethe Ansatz
to the evolution equation (master equation) describing ASEP begins with Gwa and Spohn
[9] with subsequential developments by Schütz [22].

To see this in practice, assume that one wants to solve

d

dt
u(�x; t) = ((Lk)∗u

)
(�x; t), u(�x; 0) = u0(�x)

for �x in the Weyl chamber Xk .

Proposition 1 1 If v : Z
k × R+ → R solves the ‘free evolution equation with

boundary condition’:

(1) For all �x ∈ Z
k

d

dt
v(�x; t) =

k∑

j=1

(
[L1]∗jv

)
(�x; t);

(2) For all �x ∈ Z
k such that xj+1 = xj + 1 for some 1 ≤ j ≤ k − 1,

pv(x1, . . . , xj , xj+1 − 1, . . . , xk; t)+ qv(x1, . . . , xj + 1, xj+1, . . . , xk; t)

−v(�x; t) = 0;

(3) For all �x ∈ Xk , v(�x; 0) = u0(�x);

Then, for all t ≥ 0 and �x ∈ Xk , u(�x; t) = v(�x; t).
In (1) above, [L1]∗j means to apply (L1)∗ in the xj variable. In fact, some growth

conditions must be imposed to ensure that u and v match (see Propositions 4.9 and
4.10 of [5]) but we will not dwell on this presently.

This reformulation of the master equation involves only k−1 boundary conditions
and is amendable to BetheAnsatz—hence one is led to postulate Eq. (1). It remains to
check the Ansatz (i.e. P�y(�x; t) solves the reformulated equation). The Aσ is just right
to enforce the boundary condition. The only challenge (which requires an involved
residue calculation) is to check the initial data, since there are a total of k! integrals.

The transition probabilities for k-particle ASEP is only the first step towards
Theorem 1. The next step is to integrate out the locations of all but one particle,
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so as to compute the transition probability for a given particle xm. The formula for
the location of the mth particle at time t involves a summation (indexed by certain
subsets of {1, . . . , k}) of contour integrals. These formulae are a result of significant
residue calculations and combinatorics.

At this point we are only considering k particles, whereas for the asymptotic
problem, we want to consider step initial conditions. This is achieved by taking
yj = j for 1 ≤ j ≤ k and taking k to infinity. After further manipulations, the mth

particle location distribution formula has a clear limit as k goes to infinity. This is the
first formula for step initial condition and it is given by an infinite series of contour
integrals.

In [27], this infinite series is recognized as equal to a transform of a Fredholm
determinant. By the simple relationship between the location of the mth particle of
ASEP and N0(t) (defined earlier), this shows that

P(N0(t) = m) = −τm

2π i

∫
det (I − ζK1)

(ζ ; τ )m+1
dζ , (2)

where the integral in ζ is over a contour enclosing ζ = q−k for 0 ≤ k ≤ m − 1
and (a; τ )n = (1− a)(1− τa) · · · (1− τn−1a

)
. Here, det (I − ζK1) is the Fredholm

determinant with the kernel of K : L2(CR) → L2(CR) given by

K1(ξ , ξ ′) = q
eε(ξ )t

p + qξξ ′ − ξ
,

and the contour CR a sufficiently large circle centered at zero.
There remains, however, a significant challenge to proving Theorem 1 from the

above formula. As m increases, the kernel K1 has no clear limit, and the denominator
term (ζ ; τ )m+1, behaves widely as ζ varies on its contour of integration. Much of [28]
is devoted to reworking the above formula into one for which asymptotics can be
performed. This is done through significant functional analysis. The final formula,
from which Theorem 1 is proved by asymptotics is (leaving off the contours of
integration),

P(N0(t) ≥ m) =
∫

dμ

μ
(μ; τ )∞ det (I + μJ ), (3)

where the kernel of J is given by

J (η, η′) =
∫

exp
{
�t ,m,x(ζ )−�t ,m,x(η′)

} f (μ, ζ/η′)
η′(ζ − η)

dζ ,

f (μ, z) =
∞∑

k=−∞

τ k

1− τ kμ
zk ,

�t ,m,x(ζ ) = t ,m,x(ζ )−t ,m,x(ξ ),

t ,m,x(ζ ) = −x log (1− ζ )+ tζ

1− ζ
+m log ζ.
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4 The Duality Approach

Duality is a powerful tool in the study of Markov processes. It reveals hidden struc-
tures and symmetries of the process, as well as leads to non-trivial systems of ODEs
(ordinary differential equation), which expectations of certain observables satisfy. In
1997, Schütz [23] observed that ASEP is self-dual (in a sense which will be made
clear below). The fact that duality gives a useful tool for computing the moments
of ASEP was first noted by Imamura and Sasamoto [12] in 2011. In 2012, Borodin,
Sasamoto and the author [5] used this observation about duality, along with anAnsatz
for solving the duality ODEs (which was inspired by the work of Borodin and the
author on Macdonald processes [4]) to derive two different formulae for the proba-
bility distribution of N0(t). The first was new and readily amendable to asymptotic
analysis necessary to prove Theorem 1, while the second was equivalent to Tracy
and Widom’s formula (2).

To define the general concept of duality, consider two Markov processes, η(t)
with state space Y and �x(t) with state space X (for the moment, we think of these
as arbitrary, though after the definition of duality, we will take these as before). Let
E

η and E
�x represent the expectation of these two processes (respectively) started

from η(0) = η and �x(0) = �x. Then, η(t) and �x(t) are dual with respect to a function
H : Y ×X→ R, if for all η ∈ Y , �x ∈ X and t ≥ 0,

E
η
[
H (η(t), �x)

] = E
�x [H (η, �x(t))

]
.

One immediate consequence of duality is that if we define uη(�x; t) to be the
expectations written above, then

d

dt
uη(�x; t) = Luη(�x; t),

where L is the generator of �x(t) and where the initial data is given by uη(�x; 0) =
H (η, �x).

Schütz [23] observed that if η(t) is the ASEP occupation process and �x(t) is the
k-particleASEP coordinate process withp and q switched from the earlier definition,
then these two Markov processes are dual with respect to

H (η, �x) =
k∏

j=1

τ
Nxj−1(η)

ηxj .

The generator of the p, q reversed particle process �x(t) is equal to (Lk)∗, as discussed
earlier. Schütz demonstrated this duality in terms of a spin-chain encoding of ASEP
by using a commutation relation along with the Uq[SU (2)] symmetry of the chain.
A direct proof can also be given in terms of the language of Markov processes [5].
When p = q, τ = 1 and this duality reduces to the classical duality of correlation
functions for the symmetric simple exclusion process (see [17] Chap. 8, Theorem 1).

As before, we focus on step initial condition, so that ηx = 1x≥1. Duality implies
that ustep(�x; t) := E

η
[
H (η(t), �x)

]
solves

d

dt
ustep(�x; t) = Lkustep(�x; t), ustep(�x; 0) = 1x1≥1

k∏

i=1

τ xi−1. (4)
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The above system is solved by

ustep(�x; t) = τ k(k−1)/2

(2π i)k

∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB
zA − τ zB

k∏

j=1

hxj ,t (zj )dzj , (5)

where

hx,t (z) = eε
′(z)t

(
1+ z

1+ z/τ

)x−1 1

τ + z
, ε′(z) = − z(p − q)2

(1+ z)(p + qz)
,

and where the contour of integration for each zj is a circle around −τ , so small as
to not contain− 1. In order to see this, we use the reformulation of the system (4) in
terms of the free evolution equation with boundary condition withASEP given earlier
in Proposition 3.1. Condition (1) is trivially checked since for each z, d

dt
hx,t (z) =

L1hx,t (z). Condition (3) is checked via a simple residue calculation. Condition (2)
reveals the purpose of the zA−zB

zA−τ zB
factor. Applying the boundary condition to the

integrand above brings out a factor of zj − τ zj . This cancels the corresponding
term in the denominator and the resulting integral is simultaneous symmetry and
antisymmetry in zj and zj+1. Hence, the integral must equal zero, which is the
desired boundary condition (2).

The inspiration for this simple solution to the system of ODEs came from anal-
ogous formulas which solve free evolution equations with boundary condition for
various versions of the delta Bose gas (see Sect. 5 for a brief discussion). For the delta
Bose gas and certain integrable discrete regularizations, the formulas arose directly
from the structure of Macdonald processes [4]. ASEP does not fit into that structure,
but the existence of similar formulas suggests the possibility of a yet higher structure.

A change of variables reveals some similarities to the integrand in (1). Letting

ξj = 1+ zj
1+ zj /τ

(6)

we have

zA − zB
zA − τ zB

= q
ξA − ξB

p + qξAξB − ξB
, hxj ,t (zj )dzj = eε(ξj )t ξ

xj−1
j

dξj

τ − ξj
.

The system (4) could also be solved via Tracy and Widom’s formula (see formula
1 earlier) for the Green’s function for (Lk)∗ (as suggested in [12]) but the resulting
formula would involve the sum of k! k-fold contour integrals. Symmetrizing (5) via
combinatorial identities, and making the above change of variables, one does recover
that formula. The reversal of this procedure is a rather unnatural anti-symmetrization,
which explains why (5) was not previously known.

A suitable summation of H (η, �x) over �x gives τ kNx (η). Using this, and formula
(5), [5] proves that for ASEP with step initial condition,

E
[
τ kN0(t)

] = τ k(k−1)/2

(2π i)k

∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB
zA − τ zB

k∏

j=1

eε
′(zj )t dzj

zj
, (7)
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where N0(t) = N0(η(t)) and where the contour of integration for zj includes 0,−τ

but not−1 or τ times the contours for zj+1 through zk . This is to say, that the contours
of integration respect a certain nesting structure.

At this point, the utility of having a single k-fold nested contour integral formula
for the moments of τN0(t) becomes clear. There are two ways to deform the contours
of integration in (7) so that all coincide with each other. The first involves expanding
them all to be a circle containing −τ and 0, but not −1. There are many poles
encountered in the course of this deformation and the residues can be indexed by a
partition. This leads to

E
[
τ kN0(t)

] = kτ !
∑

λ�k
λ=1m1 2m2 ···

1

m1!m2! · · ·
(1− τ )k

(2πι)�(λ)

∫

· · ·
∫

det

[ −1

wiτ λi − wj

]�(λ)

i,j=1

×
�(λ)∏

j=1

et
∑λj−1

i=0 ε′(τ iwj )dwj , (8)

where kτ != (τ ; τ )k(1−τ )−k is the τ -deformed factorial, andλ = (λ1 ≥ λ2 ≥ · · · ≥ 0)
is a partition of k (i.e.

∑
λi = k) with �(λ) nonzero parts, and multiplicity mj of the

value j . The structure of these residues is very similar to the string states indexing
the eigenfunctions of the attractive delta Bose gas (see Sect. 5).

The final step in the duality approach is to use these moment formulas to recover
the distribution of N0(t). This is done via the τ -deformed Laplace transform Hahn
[10] introduced in 1949. The left-hand side of the below equation is the transform
of τN0(t) with spectral variable ζ .

E

[
1

(ζ τN0(t); τ )∞

]

=
∞∑

k=0

ζ k
E
[
τ kN0(t)

]

(τ ; τ )k
. (9)

The right-hand side above comes from the left-hand side by expanding the τ -
deformed exponential inside the expectation (using the τ -deformed Binomial
theorem) and then interchanging the summation over k with the expectation. This in-
terchange of summation and integration is justified here for ζ small enough because
|τ kN0(t)| ≤ 1 deterministically (in contrast to (15) Sect. 5).

Substituting (8) into the series on the right-hand side of (9), one recognizes
a Fredholm determinant. The kernel of the determinant can be rewritten using a
Mellin-Barnes integral representation and the result is (leaving off the contours of
integration):

E

[
1

(ζ τN0(t); τ )∞

]

= det
(
I +Kζ

)
, (10)

where the kernel of Kζ is

Kζ (w, w′) = 1

2π i

∫
π

sin (−πs)
(−s)ζ

g(w)

g(τ sw)

ds

w′ − τ sw
, g(w) = eγ t

τ
τ+w .
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The τ -Laplace transform can easily be inverted to give the distribution of N0(t) and
asymptotics of the above formula are readily performed (see Sect. 9 of [5]) resulting
in Theorem 1.

There is a second choice for how to deform the nested contours in (8) to all
coincide. The terminal contour of this deformation is a small circle around −τ , and
again there are certain poles encountered during the deformation. The combinatorics
of the residues here is simpler than in the first case, and one finds the following
Fredholm determinant formula,

E

[
1

(
ζ τN0(t); τ

)
∞

]

= det (I − ζK2)

(ζ ; τ )∞
(11)

where the kernel of K2 is

K2(w, w′) = eε
′(w)t

τw− w′
.

Performing the change of variables (6) and inverting this τ -Laplace transform, one
recovers Tracy andWidom’s formula (2). As in Tracy andWidom’s work, this formula
is not yet suitable for asymptotics and must be manipulated significantly to get to
the form of (3).

5 Duality Approach as a Rigorous Replica Trick

Besides the Schütz duality, Borodin, Sasamoto and the author discovered that ASEP
is also self-dual with respect to

H (η, �x) =
k∏

j=1

τ
Nxj

(η),

for k = 1. This shows that E
[
τNx (η(t))

]
solves the heat equation with generator

L1. In fact, this is essentially Gärtner’s 1988 observation [8] that τNx (η(t)) solves a
certain discrete multiplicative stochastic heat equation. A multiplicative stochastic
heat equation has a Feynman-Kac representation which shows that the solution can
be interpreted as a partition function for a directed polymer in a disorder given by
the noise of the stochastic heat equation.

In 1997, Bertini and Giacomin [2] showed that under a certain ‘weakly asym-
metric’ scaling, τNx (η(t)) converges to the solution to the continuum multiplicative
stochastic heat equation (SHE) with space–time white noise ξ (x, t):

d

dt
Z(x, t) = 1

2

d2

dx2
Z(x, t)+ Z(x, t) ξ (x, t).

This convergence result did not include when η(0) is step initial condition and was
extended to that case by Amir, Quastel and the author [1]. The corresponding initial


