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Preface

Data envelopment analysis (DEA) is a linear programming based approach for

measuring relative efficiencies or performances of peer decision making units

(DMUs). The performance or efficiency of a DMU is expressed in terms of a set

of measures which are classified or coined as DEA inputs and outputs. In conven-

tional DEA, each DMU is treated as a black-box and its internal structures and

operations are ignored.

With the publication of the 2nd edition of Handbook on Data Envelopment
Analysis (eds, Cooper et al. 2011), DEA models for treating DMUs that have

internal or network structures have been identified as being on the research frontier

(see, for example, Cook and Seiford 2009, and Liu et al. 2013). In fact, there already

exists a significant amount of research on both the theory and applications of the

network DEA approach. A significant number of researchers and scholars have

started to look into the internal structures of DMUs.

Färe and Grosskopf (1996) are the first to propose DEA models when inputs and

outputs of DMUs form a network structure. Castelli et al. (2004) study several types

of DMU internal structures and develop DEA-type models to measure the overall

and component efficiencies. In a different line of research, Kao and Hwang (2008)

and Liang et al. (2008) model a specific type of internal structure where DMUs are

composed of a two-stage process, namely the output measures from the first stage

become input measures to the second stage. Tone and Tsutsui (2009) develop

slacks-based network DEA model. There are other variations or extensions to the

above earlier work on network DEA models, depending on the particular DMU

network structures. Some are based upon the DEA envelopment form and some on

the DEA multiplier form.

The current handbook serves as a complement to the Handbook on Data
Envelopment Analysis (eds, Cooper et al. 2011) in an effort to extend the frontier

of DEA research. It provides a comprehensive source for the state-of-the art DEA

modeling on internal structures and network DEA.
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Chapter 1 by Cook and Zhu provides a survey on two-stage network performance

decomposition and modeling techniques. Chapter 2 by Chen et al. discusses the

pitfalls in network DEAmodeling. The authors point out that caution should be paid

when models are developed based upon the envelopment or multiplier forms,

because the usual duality (or equivalence) between the DEA envelopment and

multiplier linear models is no longer true. Chapter 3 by Kao discusses efficiency

decompositions in network DEA under three types of structures, namely series,

parallel, and dynamic.

Chapter 4 by Chen, Cook and Zhu studies the determination of the network DEA

frontier. In Chap. 5 the same authors then discuss additive efficiency decomposition

in network DEA. Kao and Hwang present an approach in scale efficiency measure-

ment in two-stage networks in Chap. 6. Sahoo, Zhu and Tone further discuss the

scale efficiency decomposition in two stage networks in Chap. 7.

Chapter 8 by Du et al. offers a bargaining game approach to modeling two-stage

networks. Chen et al. in Chap. 9 study shared resources and efficiency decompo-

sition in two-stage networks. Chapter 10 by Chen introduces an approach to

computing the technical efficiency scores for a dynamic production network and

its sub-processes.

In Chap. 11 Tone and Tsutsui present a slacks-based network DEA. Chapter 12

by Li et al. discusses a DEA modeling technique for a two-stage network process

where the inputs of the second stage include both the outputs from the first stage and

additional inputs to the second stage.

Chapter 13 by Golany, Hackman and Passy presents an efficiency measurement

methodology for multi-stage production systems. Färe, Grosskopf, andWhittaker in

Chap. 14 discuss network DEA models, both static and dynamic. The discussion

also explores various useful objective functions that can be applied to the models to

find the optimal allocation of resources for processes within the black box that are

normally invisible to DEA. Chapter 15 by Castelli and Pesenti provides a compre-

hensive review of various types of network DEA modeling techniques.

In Chap. 16, Cook et al. present shared resources models for deriving aggregate

measures of bank-branch performance, with accompanying component measures

that make up that aggregate value.

In Chap. 17, Cook et al. examine a set of manufacturing plants operating under

a single umbrella, with the objective being to use the component or function

measures to decide what might be considered as each plant’s core business.

Chapter 18 by Cook et al. considers problem settings where there may be

clusters or groups of DMUs that form a hierarchy. The specific case of a set of

electric power plants is examined in this context.
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Chapter 19 by Fukuyama and Weber models bad outputs in two-stage network

DEA. Chapter 20 by Lewis presents an application of network DEA to performance

measurement of Major League Baseball (MLB) teams. Lu et al. in Chap. 21 present

an application of a two-stage network DEA model for examining the performance

of 30 U.S. airline companies. Chapter 22 by Triantis presents two distinct network

efficiency models that are applied to engineering systems.

Toronto, ON, Canada Wade D. Cook

Worcester, MA, USA Joe Zhu
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Chapter 1

DEA for Two-Stage Networks: Efficiency

Decompositions and Modeling Techniques

Wade D. Cook and Joe Zhu

Abstract Data envelopment analysis (DEA) is a method for identifying best

practices among peer decision making units (DMUs). An important area of devel-

opment in recent years has been that devoted to applications wherein DMUs

represent network processes. One particular subset of such processes is those in

which all the outputs from the first stage become inputs to the second stage. We call

these types of DMU structures “two-stage networks”. Existing approaches in

modeling efficiency of two-stage networks can be categorized as using either

Stackelberg (leader-follower), or cooperative game concepts. There are two types

of efficiency decomposition; multiplicative and additive. In multiplicative effi-

ciency decomposition, the overall efficiency is defined as a product of the two

individual stages’ efficiency scores, whereas in additive efficiency decomposition,

the overall efficiency is defined as a weighted average of the two individual stages’

efficiency scores. We discuss modeling techniques used for solving two-stage

network DEA models in linear programs.

Keywords Data envelopment analysis (DEA) • Efficiency • Decomposition

• Game • Intermediate measure • Network • Cooperative • Two-stage

1.1 Introduction

Data envelopment analysis (DEA), introduced by Charnes et al. (1978), is an

approach for identifying best practices among peer decision making units (DMUs)

in the presence of multiple inputs and outputs. In many cases DMUs may consist of

W.D. Cook (*)
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two-stage network structures with intermediate measures. In other words, DMUs

under evaluation share a common feature found in many two-stage network struc-

tures, namely that outputs from the first stage become the inputs to the second stage.

We refer to these as intermediate measures. For example, Seiford and Zhu (1999)

use a two-stage network structure to measure the profitability and marketability of

US commercial banks. In their study, profitability is measured relative to labor and

assets as inputs, and the outputs are profits and revenues. In the second stage, for

marketability, the profits and revenue are then used as inputs, while market value,

returns and earnings per share constitute the outputs. Zhu (2000) applies the same

two-stage network structure to the Fortune Global 500 companies.

Seiford and Zhu (1999) use the standard DEA approach which does not address

potential conflicts between the two stages arising from the intermediate measures.

Namely, the second stage may have to reduce its inputs (intermediate measures) in

order to achieve an ‘efficient’ status. Such an action would, however, imply a

reduction in the first stage outputs, thereby reducing the efficiency of that stage.

Note that these types of DMUs have not only inputs and outputs, but also

intermediate measures that flow from one stage to the other. Each stage may also

have its own inputs and outputs. Recently, a number of studies have focused on

DMUs that appear as two-stage processes. Kao and Hwang (2008) describe a

two-stage process where 24 non-life insurance companies use operating and insur-

ance expenses to generate premiums in the first stage, and then underwriting and

investment profits in the second stage. Other examples include the impact of

information technology use on bank branch performance (Chen and Zhu 2004),

two stage Major League Baseball performance (Sexton and Lewis 2003), health

care applications (Chilingerian and Sherman 2004), and many others.

Kao and Hwang (2008) define the overall efficiency of the DMU as the product of

the efficiencies of the two stages. Such multiplicative efficiency decomposition is

also studied in Liang et al. (2008), where three DEA models/efficiency decomposi-

tions are developed using game theory concepts. More recently, Chen et al. (2009b)

present a methodology for representing overall radial efficiency of a DMU as an

additive weighted average of the radial efficiencies of the individual stages or

components that make up the DMU. Cook et al. (2010) extend the additive decom-

position approach of Chen et al. (2009b) into more general network structures.

In a review study done by Cook et al. (2010), the authors classify various existing

DEA models for measuring efficiency in the aforementioned two-stage network

structures or processes. The models fall into four categories: standard DEA approach;

efficiency decomposition approach; network DEA approach; and game theoretic

approach. Except for the standard DEA approach, all other approaches attempt to

correct for the above-referenced conflict issue existing between the two stages.

The rest of the chapter is organized as follows. Section 1.2 presents the generic

two-stage process and a general literature review and classification of papers

dealing with DMUs having such processes.

2 W.D. Cook and J. Zhu



In Sects. 1.3 and 1.4, we discuss the efficiency decomposition methodology and

game-theoretic approaches. We begin with the work by Liang et al. (2006) where

DEA models are developed to measure the performance of supply chains with two

members. In their study, because some of the inputs to the second stage are not from

the first stage, one of the DEA models is non-linear. However, if we apply their

approach to our two-stage processes, and use the overall efficiency definition from

Kao and Hwang (2008), we can obtain linear DEA models as in Liang et al. (2008).

This establishes the relationships among the works of Liang et al. (2006), Castelli

et al. (2004), Kao and Hwang (2008) and Liang et al. (2008). These approaches are

then re-categorized as (1.1) the centralized models of Kao and Hwang (2008) and

Liang et al. (2008), and (1.2) the non-cooperative (or leader-follower) model. It is

shown how to test for uniqueness of the efficiency decomposition.

We then proceed to the network DEA approach in Sect. 1.5. We show that the

Kao and Hwang (2008) model and the centralized model of Liang et al. (2008) are

equivalent to the network DEA approach of Färe and Grosskopf (1996). Note the

fact that, as demonstrated in Chen et al. (2009a), Chen and Zhu’s (2004)model under

the CRS assumption is equivalent to the Kao and Hwang (2008) model. As a result,

we establish the equivalence among these models in dealing with two-stage pro-

cesses. We discuss as well the determination of the efficient frontier of the two-stage

process. Since it is possible that no single DMU is efficient, the standard DEA

projections can no longer be used to generate the frontier. See Chen et al. (2010a,

2013) on issues related to DEA frontier identification under network DEA models.

Section 1.6 presents a technique for solving non-linear network DEA models via

linear programming problems. Such a technique is often used in additive efficiency

decompositions (see, e.g., Liang et al. 2006, 2011, 2013). Section 1.7 discusses a

two-stage network structure where outputs from the second stage can be fed back as

inputs to the first stage (Liang et al. 2011). Conclusions appear in Sect. 1.8.

1.2 Classification of Network DEA Modeling

Consider a generic two-stage network structure or process as shown in Fig. 1.1. Using

the notation of Chen and Zhu (2004), we assume each DMUj ( j ¼ 1, 2, . . ., n) has
m inputs xij, (i ¼ 1, 2, . . ., m) to the first stage, and D outputs zdj, (d ¼ 1, 2, . . ., D)

xij,i = 1,2,...,m zdj,d = 1,2,...,D yrj,r = 1,2,...,s

Stage 1 Stage 2 

DMUj, j = 1,2,...,n

Fig. 1.1 Two-stage process

1 DEA for Two-Stage Networks: Efficiency Decompositions and Modeling Techniques 3



from that stage. These D outputs then become the inputs to the second stage and

will be referred to as intermediate measures. The outputs from the second stage are

yrj, (r ¼ 1, 2, . . ., s).

We denote the efficiency for the first stage as e1j and second stage as e
2
j , for each

DMUj. Using the Constant Returns to Scale (CRS) DEA model of Charnes

et al. (1978), we define

e1j ¼

XD
d¼1

wdzdj

Xm
i¼1

vixij

and e2j ¼

Xs
r¼1

uryrj

XD
d¼1

ewdzdj

ð1:1Þ

where vi, wd, ewd , and ur are unknown non-negative weights. Note that wd can be

equal to ewd .

There are four types of papers that use various approaches to the modeling of

efficiency of DMUs with two-stage processes. Some approaches are equivalent.

1.2.1 Standard DEA Methodology

The first type simply uses the standard DEA model. i.e. two separate DEA runs

are applied to the two stages to calculate e1j and e2j , respectively. For example,

Chilingerian and Sherman (2004) describe a two-stage process in measuring

physician care. Their first stage is a manager-controlled process with inputs

including registered nurses, medical supplies, and capital and fixed costs. These

inputs generate the outputs or intermediate measures (inputs to the second

stage), including patient days, quality of treatment, drugs dispensed, among

others. The outputs of the second (physician controlled) stage include research

grants, quality of patients, and quantity of individuals trained, by specialty.

Other examples include Fortune 500 companies performance (Seiford and Zhu

1999; Zhu 2000). Similar to Seiford and Zhu (1999), Sexton and Lewis (2003)

also use the standard DEA approach where in one of their standard DEA

models, projected (efficient) intermediate measures are used in the second

stage efficiency calculation.

However, as discussed earlier, such an approach does not treat zdj in a coordi-

nated manner. For example, suppose the first stage is DEA efficient and the second

stage is not. When the second stage improves its performance, by reducing the

inputs zdj via an input-oriented DEA model, the reduced zdj may render the first

stage inefficient.

4 W.D. Cook and J. Zhu



1.2.2 Efficiency Decomposition Methodology

It is useful to point out that given individual efficiency measures e1j and e2j , for

stages 1 and 2, respectively, it is reasonable to define the efficiency of the overall

two-stage process either as 1
2

e1j þ e2j

� �
or e1j � e2j . If the input-oriented DEA model

is used, then we should as well require that e1j � 1 and e2j � 1. The above definition

ensures that the two-stage process is efficient if and only if e1j ¼ e2j ¼ 1.

If we define ej ¼

Xs
r¼1

uryro

Xm
i¼1

vixio

as the two-stage overall efficiency, then we arrive at

another type of research, as in Kao and Hwang (2008) who describe a two-stage

process where 24 non-life insurance companies use operating and insurance

expenses to generate premiums in the first stage, and then underwriting and

investment profits in the second stage. As in Kao and Hwang (2008), we have

ej ¼ e1j � e2j at optimality provided we assume wd ¼ ewd. Note that such a decom-

position of efficiency is not available in the standard DEA approach, and the

network DEA approaches.

1.2.3 Network DEA

We point out that in these above examples, it is the case that the intermediate

measures are the only inputs to the second stage, i.e., there are no additional

independent inputs to that stage. There are, of course, other types of two-stage

processes and even DMUs with network structures that may have inputs to the

second stage in addition to the intermediate measures. In a more general

situation than two-stage processes, Castelli et al. (2004) discuss DMUs with

two-stage and two-layer structures. The network DEA approach of Färe and

Whittaker (1995) and Färe and Grosskopf (1996), and the slacks-based network

DEA approach of Tone and Tsutsui (2009, 2010) may involve more than

two stages. Fukuyama and Weber (2010) considers a slacks-based measure for

a two-stage process with bad outputs. More recently, Chen (2009) developed a

network DEA model incorporating dynamic effects in production networks.

A number of empirical studies have used this type of DEA technique, see,

e.g., Avkiran (2009), and Yu and Lin (2008), among others. We call these

network DEA approaches.

Similar network DEA approaches are used in two-stage processes described in

Fig. 1.1. For example, Chen and Zhu (2004) study the impact of information

technology use on bank branches performance (Wang et al. 1997). Under the

assumption of variable returns to scale (VRS), Chen and Zhu (2004) and

1 DEA for Two-Stage Networks: Efficiency Decompositions and Modeling Techniques 5



Chen et al. (2006) develop linear and non-linear models for measuring the impact of

information technology on the firm performance via a two-stage process. However,

their individual stage efficiency scores do not provide information on the overall

performance and best-practices of the two-stage process.

1.2.4 Game-Theoretic Approaches

The fourth type of approach uses game theory concepts. It originates from the

work of Liang et al. (2006) who use DEA to measure the performance of supply

chains with two members (as in a manufacturer-retailer setting, for example).

In Liang et al. (2006), the concepts of the Stackelberg game (or leader-follower)

and the cooperative game are used to develop models for measuring performance

in supply chain settings. We should point out that in their paper, the second

stage(retailer) has not only the inputs from the first stage (manufacturer), but

also its own inputs not linked with the first stage, i.e. additional inputs to the

second stage are introduced (see, for example, Fig. 1.2 above). As a results,

e2j ¼

Xs
r¼1

uryrj

XD
d¼1

ewdzdjþ
XH
h¼1

Qhx
2
hj

, where x2hj (h ¼ 1,. . ., H) are inputs to the second stage

that are not related to the first stage. In this case, it may be more convenient and

tractable to express the overall efficiency as 1
2

e1j þ e2j

� �
, since the alternative,

namely e1j � e2j , results in a highly non-linear problem.

We note that their models can actually be directly applied to the two-stage process

described in Fig. 1.1, since if there are no additional inputs x2hj (h ¼ 1,. . ., H), the

structure of their two-member supply chain is identical to the two-stage process

shown. Liang et al. (2008) provide detailed models for the two-stage process using

the same modeling principle as in Liang et al. (2006).

While the current chapter focuses on the two-stage processes that have only the

intermediate measures linking the stages, we will discuss the relations among DEA

models for specific two-stage processes, and for the more general network

structures.

Stage 1 Stage 2 

zdj,d = 1…D

xij,i = 1,…m yrj,r = 1…s

xhj      ,h = 1,…Hstage−2

Fig. 1.2 Two-stage process

with additional inputs to the

second stage

6 W.D. Cook and J. Zhu



1.3 Centralized Model

Liang et al. (2006) show that using the concept of cooperative game theory, or

centralized control, the two stage process can be viewed as one where the stages

jointly determine a set of optimal weights on the intermediate factors to maximize

their efficiency scores. This would be the case in situations where the manufacturer

and retailer jointly determine prices, order quantities, etc., to achieve maximum

profit (Huang and Li 2001). In other words, the cooperative or centralized approach

is characterized by lettingwd ¼ ewd in (1.1), and the efficiency scores of both stages

are optimized simultaneously. The optimization can be based upon maximizing the

average of e1o and e2o in a non-linear program as in Liang et al. (2006), Kao and

Hwang (2008), and Liang et al. (2008). However, it is noted that because of the

assumption wd ¼ ewd in (1.1), e1o � e2o becomes

Xs
r¼1

uryro

Xm
i¼1

vixio

. Therefore, instead of

maximizing the average of e1o and e2o, we have

ecentralizedo ¼ Max e1o � e2o ¼

Xs
r¼1

uryro

Xm
i¼1

vixio

s:t: e1j < 1 and e2j < 1 and wd ¼ ewd:

ð1:2Þ

Model (1.2) can be converted into the following linear program format:

ecentralizedo ¼ Max
Xs
r¼1

uryro

s:t:
Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � , i ¼ 1, 2, . . . ,m; ur � ,

r ¼ 1, 2, . . . , s

ð1:3Þ

Model (1.3) is the Kao and Hwang (2008) model and the centralized model

developed in Liang et al. (2008). Note that constraints
Xs
r¼1

uryrj �
Xm
i¼1

vixij � 0 are

1 DEA for Two-Stage Networks: Efficiency Decompositions and Modeling Techniques 7



redundant in Kao and Hwang’s (2008) model, since
Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 and

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 imply
Xs
r¼1

uryrj �
Xm
i¼1

vixij � 0.

Model (1.3) gives the overall efficiency of the two-stage process. Assume the

above model (1.3) yields a unique solution. We can then obtain

e1,centralizedo ¼

XD
d¼1

w�
dzdo

Xm
i¼1

v�i xio

¼
XD
d¼1

w�
dzdo and e2,centralizedo ¼

Xs
r¼1

u�r yro

XD
d¼1

w�
dzdo

ð1:4Þ

as the efficiencies for the first and second stages, respectively. If we denote

the optimal value to model (1.3) as ecentralizedo , then we have

ecentralizedo ¼ e1;centralizedo � e2;centralizedo .

If only one layer is considered in the internal structure of Castelli et al. (2004),

then the same above efficiency decomposition can be obtained. Therefore, the

approaches of Castelli et al. (2004) and Kao and Hwang (2008) can be viewed as

cooperative game models.

As noted in Kao and Hwang (2008), optimal multipliers from model (1.3) may

not be unique. They propose deriving the maximum achievable value of e1;centralizedo

or e2;centralizedo . In fact, as shown in Liang et al. (2008), their models can also be used

to test whether e1;centralizedo and e2;centralizedo , obtained from model (1.3), are unique.

The maximum achievable value of e1;centralizedo can be determined via

e1þo ¼ Max
XD
d¼1

wdzdo

s:t:
Xs
r¼1

uryro ¼ ecentralizedo

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0,

r ¼ 1, 2, . . . , s

ð1:5Þ

8 W.D. Cook and J. Zhu



This yields the minimum of e2;centralizedo , namely, e2�o ¼ e centralized
o

e1þo
. The maximum of

e2;centralizedo can be calculated via the following linear program,

e2þo ¼ Max
Xs
r¼1

uryro

s:t:
Xs
r¼1

uryro � ecentralizedo �
Xm
i¼1

vixio ¼ 0

Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdo ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0, r ¼ 1, 2, . . . , s,

ð1:6Þ

and the minimum of e1;centralizedo is then calculated as e1�k ¼ ecentralizedo /e2þo Note that

e1�o ¼ e1þo if and only of e2�o ¼ e2þo . Note also if e1�o ¼ e1þo or e2�o ¼ e2þo , then

e1;centralizedo and e2;centralizedo are uniquely determined via model (1.3). If e1�o 6¼ e1þo or

e2�o 6¼ e2þo , Liang et al. (2008) develop a procedure to obtain an alternative decom-

position of e1;centralizedo and e2;centralizedo .

Table 1.1 presents data on 24 non-life insurance companies in Taiwan where

there are two intermediate measures (Kao and Hwang 2008). The two inputs to the

first stage (premium acquisition) are Operating expenses and Insurance expenses.

The intermediate measures (or the outputs from the first stage) are Direct written

premiums and Reinsurance premiums. The outputs of the second stage (profit

generation) are Underwriting profit and Investment profit.

The efficiency scores for the two individual stages are calculated based upon

(1.4) via a set of optimal solutions from model (1.3) (see the 2nd, 3rd and 4th

columns of Table 1.2). Note that the efficiency decompositions are identical to

those in Kao and Hwang (2008). In fact, the use of models (1.5) and (1.6) indicates

that e1�o ¼ e1þo and e2�o ¼ e2þo for all the DMUs. Therefore, the e1;centralizedo and

e2;centralizedo defined in (1.4), or the efficiency decompositions in Kao and Hwang

(2008), are uniquely determined via model (1.3).

1 DEA for Two-Stage Networks: Efficiency Decompositions and Modeling Techniques 9
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1.4 Stackelberg Game

In the previous section we examined the cooperative or centralized game approach

to the two stage problem. In this section we look at the two-stage process from

the perspective of the non-cooperative game. The non-cooperative approach is

characterized by the leader-follower, or Stackelberg game. For example, consider

a case of a supply chain where there is non-cooperative advertising on the part of

the manufacture (leader) and the retailer (follower). The manufacturer determines

its optimal brand name investment and local advertising allowance based on

an estimation of the local advertisement by the retailer to maximize its profit. The

retailer, as a follower on the other hand, based on the information from the

manufacturer, determines the optimal local advertisement cost to maximize its

profit (Huang and Li 2001).

In a similar manner, if we assume that the first stage is the leader, then the first

stage performance is more important, and the efficiency of the second stage is

computed subject to the requirement that the efficiency of the first stage is to stay

fixed. We first calculate the efficiency for the first stage. Based upon the CRS

model, we have for a specific DMUo

e1�o ¼ Max
XD
d¼1

wdzdo

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m:

ð1:7Þ

Note that model (1.7) is in fact the standard (CCR) DEA model. i.e., e1�o is the

regular DEA efficiency score.

Once we obtain the efficiency for the first stage, the second stage will only

consider wd that maintains e1o ¼ e1�o . Or, in other words, the second stage now treatsXD
d¼1

wdzdj as the “single” input subject to the restriction that the efficiency score of

the first stage remains at e1�o . The model for computing e2o, the second stage’s

efficiency, can be calculated as (Liang et al. 2008)
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e2�o ¼ Max

Xs
r¼1

Uryro

Q
XD
d¼1

wdzdo

s:t:

Xs
r¼1

Uryrj

Q
XD
d¼1

wdzdj

� 1 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

XD
d¼1

wdzdo ¼ e1�o

Ur,Q,wd, vi � 0, r ¼ 1, 2, . . . , s; d ¼ 1, 2, . . . ,D; i ¼ 1, 2, . . . ,m

ð1:8Þ

Note that in model (1.8), the efficiency of the first stage is set equal to e1�o . Let

ur ¼ Ur

Q , r ¼ 1, 2, . . . , s.Model (1.8) is then equivalent to the following linearmodel

e2�o ¼ Max
Xs
r¼1

uryro

 !
=e1�o

s:t:
Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

XD
d¼1

wdzdo ¼ e1�o

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0, r ¼ 1, 2, . . . , s

ð1:9Þ

In a similar manner, if we take the second stage as the leader, we then calculate

the regular DEA efficiency (e2
o

o ) for the second stage first using the CCR model.
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Once we obtain the second stage efficiency, the efficiency for the first stage, namely

e1
o

o , is calculated via the following linear program (see Liang et al. 2008)

1

e1
o

o

¼ Min
Xm
i¼1

vixio

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdo ¼ 1

Xs
r¼1

uryro ¼ e2
o

o

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0, r ¼ 1, 2, . . . , s

ð1:10Þ

We note that in (1.9), e1�o � e2�o ¼
Xs
r¼1

u�r yro at optimality, with
Xm
i¼1

v�i xio ¼ 1. i.e.,

e1�o � e2�o ¼

Xs
r¼1

u�r yro

Xm
i¼1

v�i xio

. Note also that at optimality,

Xs
r¼1

u�r yro

Xm
i¼1

v�i xio

¼ e1
o

o � e2oo in model

(1.10). This indicates that the leader-follower approach also implies an efficiency

decomposition for the two-stage process. i.e., the overall efficiency is a product of

efficiencies of individual stages. Further, note that in the first-stage leader case, e1�o
and e2�o , and in the second-stage leader case, e1

o

o and e2
o

o , are optimal values to linear

programs. Therefore, such efficiency decomposition is unique, and is not affected

by possible multiple optimal solutions. However, the two approaches may not yield

the same efficiency decomposition.

Note that ultimately, a common set of weights is used at both stages in both

centralized and Stackelberg game approaches. However, in the Stackelberg game

approach, the efficiency scores of two stages, e1o and e2o, are not optimized

simultaneously.

Liang et al. (2008) also study the relationships among non-cooperative and

centralized models and the standard DEA approach. We here summarize their

findings.

Let θ1o and θ2o be the standard CRS efficiency scores for the two stages.
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Theorem 1 If there is only one intermediate measure, then e1�o ¼ θ1o and e2�o ¼ θ2o
regardless of the assumption of whether the first stage is a leader or follower, where

e1�o and e2�o are obtained via the non-cooperative approach.
Theorem 1 indicates that when there is only one intermediate measure, the

non-cooperative approach yields the same result as applying the standard DEA

model to each stage.

Under the condition of multiple intermediate measures, we have

Theorem 2 For a specific DMUo, e
centralized
o � e1�o � e2�o , where ecentralizedo is the

optimal value to model (1.3), and e1�o and e2�o are obtained via the non-cooperative
(leader-follower) approach.

Based upon Theorems 1 and 2, we must have

Theorem 3 If there is only one intermediate measure, then ecentralizedo ¼ θ1o � θ2o
with θ1o ¼ e1;centralizedo and θ2o ¼ e2;centralizedo , where θ1o and θ2o are the CRS

efficiency scores for the two stages, respectively, and e1;centralizedo and e2;centralizedo

are defined in (1.4).
When there is only one intermediate measure, Theorem 3 indicates that (i) both

the non-cooperative and centralized models yield the same result as applying the

standard DEA model to each stage, and (ii) the efficiency decomposition is unique.

We finally note that the following is true with respect to the relations between the

non-cooperative and centralized approaches.

Theorem 4

(i) e1;centralizedo � e1�0 and θ2o(¼e2�o ) � e2;centralizedo when the second stage is the
leader,

(ii) e2;centralizedo � e2�o and θ1o(¼e1�o ) > e1;centralizedo when the first stage is the leader.

The results in Table 1.2 also verify Theorems 2 and 4. We finally note that

ecentralizedo ¼ e1�o � e2�o holds for 12 DMUs (50 % of the companies), where e1�o and

e2�o represent the efficiency scores for the two stages when the first stage is treated as

the leader. Note also that ecentralizedo ¼ e1
o

o � e2oo holds for only one DMU, namely

DMU 6, where e1
o

o and e2
o

o represent the efficiency scores for the two stages when the

second stage is treated as the leader. This may indicate that the first stage or the

premium-generating stage is more important.

1.5 Network DEA

If we model the two-stage process shown in Fig. 1.1 using the network approach of

Färe and Grosskopf (1996), we have
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min
Θ, λj, μj,ez Θ
subject to

stage 1ð ÞXn
j¼1

λjxij � Θxijo i ¼ 1, . . . , m

Xn
j¼1

λjzdj � ezdjo d ¼ 1, . . . , D

λj � 0, j ¼ 1, . . . , n

stage 2ð ÞXn
j¼1

μjzdj � ezdjo d ¼ 1, . . . , D

Xn
j¼1

μjyrj � yrjo r ¼ 1, . . . , s

μj � 0, j ¼ 1, . . . , n

ð1:11Þ

where ezdjo are set as decision variables related to the intermediate measures.

Model (1.11) is equivalent to the following model

min
Θ, λj, μj,ez Θ
subject toXn
j¼1

λjxij � Θxijo i ¼ 1, . . . , m

Xn
j¼1

λj � μj
� �

zdj � 0 d ¼ 1, . . . , D

Xn
j¼1

μjyrj � yrjo r ¼ 1, . . . , s

λj, μj � 0, j ¼ 1, . . . , n

ð1:12Þ

Model (1.12) is the dual to the centralized model (1.3). Therefore, the network

DEA approach of Färe and Grosskopf (1996) yields results equivalent to the

centralized model (1.3) of Liang et al. (2008) and Kao and Hwang (2008).

Chen et al. (2009a) show that the following CRS version of the Chen and Zhu’s

(2004) model is equivalent to model (1.3). (If we add the convexity constraints

∑ λj ¼ ∑ μj ¼ 1 into model (1.13), then model (1.13) becomes the original Chen

and Zhu (2004) model under the variable returns to scale assumption.)
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min
α, β, λj, μj,ez α� β

subject to

stage 1ð ÞXn
j¼1

λjxij � αxijo i ¼ 1, . . . , m

Xn
j¼1

λjzdj � ezdjo d ¼ 1, . . . , D

λj � 0, j ¼ 1, . . . , n

α � 1

stage 2ð ÞXn
j¼1

μjzdj � ezdjo d ¼ 1, . . . , D

Xn
j¼1

μjyrj � βyrjo r ¼ 1, . . . , s

μj � 0, j ¼ 1, . . . , n

β � 1

ð1:13Þ

Thus, since both the network DEA model (1.11) and model (1.13) are equivalent

to model (1.3), they ((1.11) and (1.13)) must then be equivalent to each other. This

implies that β ¼ 1 at optimality in model (1.13).

Chen et al. (2010a) demonstrate that the centralized model (1.3) may not yield

information on the efficient frontier of the two-stage process in Fig. 1.1. In other

words, due to the existence of intermediate measures, the usual procedure of

adjusting the inputs or outputs by the efficiency scores obtained from model (1.3),

as in the standard DEA approach, does not necessarily yield a frontier projection.

We note that the network DEA approach only provides information on the overall

efficiency of the two-stages, and does not yield information on the individual stages.

However, the equivalence between models (1.11) and (1.13) indicates that the

network DEA approach generates an efficient frontier point, since model (1.13)

ensures that a frontier point is obtained if α < 1 in optimality. SeeChen et al. (2010a).

1.6 Searching for the Global Optimal Solution

While in the previous sections, the DEA models can be converted into linear pro-

grams due to the specific nature of two-stage network processes depicted in Fig. 1.1.

A slight modification to Fig. 1.1, for example, by introducing additional (inde-

pendent) inputs to the second stage, the resulting models are not necessarily linear.
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