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PREFACE

This book is inspired by The Structure of Proof: With Logic and Set Theory published
by Prentice Hall in 2002. My motivation for that text was to use symbolic logic as a
means by which to learn how to write proofs. The purpose of this book is to present
mathematical logic and set theory to prepare the reader for more advanced courses that
deal with these subjects either directly or indirectly. It does this by starting with propo-
sitional logic and first-order logic with sections dedicated to the connection of logic
to proof-writing. Building on this, set theory is developed using first-order formulas.
Set operations, subsets, equality, and families of sets are covered followed by relations
and functions. The axioms of set theory are introduced next, and then sets of num-
bers are constructed. Finite numbers, such as the natural numbers and the integers, are
defined first. All of these numbers are actually sets constructed so that they resemble
the numbers that are their namesakes. Then, the infinite ordinal and cardinal numbers
appear. The last chapter of the book is an introduction to model theory, which includes
applications to abstract algebra and the proofs of the completeness and compactness
theorems. The text concludes with a note on Gödel’s incompleteness theorems.

MICHAEL L. O’LEARY

Glen Ellyn, Illinois

July 2015
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â 88
∣ 98
|c| 116, 307

A First Course in Mathematical Logic and Set Theory, First Edition. Michael L. O’Leary.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

xvii



xviii LIST OF SYMBOLS

Symbol Page(s)
∈ 118
∉ 118
∅ 118
N 119
Z 119
Q 119
R 119
C 119
∞ 120
[a, b] 120
(a, b) 120

{x : p(x)} 122
Z+ 123
Z− 123
∪ 126
∩ 126
⧵ 127
A 128
× 130
R2 130
Rn 131
⊆ 135, 361
* 135
⊂ 136
gcd 140
P(A) 151
⋃

ℱ 152
⋂

ℱ 152
(A,R) 161
IA 162

dom(R) 162
ran(R) 162
◦ 163, 195
R−1 166, 203
aR b 168
a R̸ b 168
≡ 170, 387

mod m 170
[a]R 171
[n]m 171
A∕R 172
Zm 172
4 178
A∗ 178

Symbol Page(s)
� 178
⟂ 183
f (a) 190

f : D → B 190
D → B 191
⟦x⟧ 192
AB 193
�a 194
� 197, 352
∗ 198
≅ 212, 380

'[C] 216
'−1[C] 217
Ch(A ) 232

Z 235
ZF 235
ZFC 235
M 236
a+ 237, 290
! 238
n! 242
ℤ 250
ℚ 254
nPr 262
(n
r

) 263
Fn 269
� 271

seg4(A, b) 275
ℝ 276
0 278
1 278
ℂ 281
i 281

seg(�, �) 286
<�A 294
≈ 298
nℤ 298
≉ 298
⪯ 300
̸⪯ 300
≺ 300
�B 304
ℵ0 313
ℵ 313



LIST OF SYMBOLS xix

Symbol Page(s)
CH 313
GCH 314
i 316
cf 328
A 333

(A, a) 333
Iax 336
SatS 340
Mn(ℝ) 345
M∗
n(ℝ) 345

GL(n,ℝ) 345
Sat 352
Mn(ℝ) 355
⟨a⟩ 363

⋃


∈� A
 372
' : A→ B 375

Symbol Page(s)
A→ B 375
ker( ) 379
⪯ 389
- 393
A∼ 404

Th(A) 408
S 410
P 410
P 410
PA 411
P′ 411
V� 417
V 419

TC(A) 419
V� 420





CHAPTER 1

PROPOSITIONAL LOGIC

1.1 SYMBOLIC LOGIC

Let us definemathematics as the study of number and space. Although representations
can be found in the physical world, the subject of mathematics is not physical. Instead,
mathematical objects are abstract, such as equations in algebra or points and lines in
geometry. They are found only as ideas in minds. These ideas sometimes lead to the
discovery of other ideas that do not manifest themselves in the physical world as when
studying various magnitudes of infinity, while others lead to the creation of tangible
objects, such as bridges or computers.

Let us define logic as the study of arguments. In other words, logic attempts to codify
what counts as legitimate means by which to draw conclusions from given information.
There are many variations of logic, but they all can be classified into one of two types.
There is inductive logic in which if the argument is good, the conclusion will probably
follow from the hypotheses. This is because inductive logic rests on evidence and
observation, so there can never be complete certainty whether the conclusions reached
do indeed describe the universe. An example of an inductive argument is:
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2 Chapter 1 PROPOSITIONAL LOGIC

A red sky in the morning means that a storm is coming.
We see a red sky this morning.
Therefore, there will be a storm today.

Whether this is a trust-worthy argument or not rests on the strength of the predictive
abilities of a red sky, and we know about that by past observations. Thus, the argument
is inductive. The other type is deductive logic. Here the methods yield conclusions
with complete certainty, provided, of course, that no errors in reasoning were made.
An example of a deductive argument is:

All geometers are mathematicians.
Euclid is a geometer.
Therefore, Euclid is a mathematician.

Whether Euclid refers to the author of the Elements or is Mr. Euclid from down the
street is irrelevant. The argument works because the third sentence must follow from
the first two.

As anyone who has solved an equation or written a proof can attest, deductive logic
is the realm of the mathematician. This is not to say that there are not other aspects to
the discovery of mathematical results, such as drawing conclusions from diagrams or
patterns, using computational software, or simply making a lucky guess, but it is to say
that to accept a mathematical statement requires the production of a deductive proof of
that statement. For example, in elementary algebra, we know that given

2x − 5 = 11,

we can conclude
2x = 6

and then
x = 3.

As each of the steps is legal, it is certain that the conclusion of x = 3 follows. In
geometry, we can write a two-column proof that shows that

∠B ≅ ∠D

is guaranteed to follow from
ABCD is a parallelogram.

The study of these types of arguments, those that are deductive and mathematical in
content, is calledmathematical logic.

Propositions

To study arguments, one must first study sentences because they are the main parts of
arguments. However, not just any type of sentence will do. Consider

all squares are rectangles.
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The purpose of this sentence is to affirm that things called squares also belong to the
category of things called rectangles. In this case, the assertion made by the sentence is
correct. Also, consider,

circles are not round.

This sentence denies that things called circles have the property of being round. This
denial is incorrect. If a sentence asserts or denies accurately, the sentence is true, but if
it asserts or denies inaccurately, the sentence is false. These are the only truth values
that a sentence can have, and if a sentence has one, it does not have the other. As
arguments intend to draw true conclusions from presumably true given sentences, we
limit the sentences that we study to only those with a truth value. This leads us to our
first definition.

DEFINITION 1.1.1

A sentence that is either true or false is called a proposition.
Not all sentences are propositions, however. Questions, exclamations, commands,

or self-contradictory sentences like the following examples can neither be asserted nor
be denied.

∙ Is mathematics logic?

∙ Hey there!

∙ Do not panic.

∙ This sentence is false.

Sometimes it is unclear whether a sentence identifies a proposition. This can be
due to factors such as imprecision or poor sentence structure. Another example is the
sentence

it is a triangle.

Is this true or false? It is impossible to know because, unlike the other words of the
sentence, the meaning of the word it is not determined. In this sentence, the word it is
acting like a variable as in x + 2 = 5. As the value of x is undetermined, the sentence
x+2 = 5 is neither true nor false. However, if x represents a particular value, we could
make a determination. For example, if x = 3, the sentence is true, and if x = 10, the
sentence is false. Likewise, if it refers to a particular object, then it is a triangle would
identify a proposition.

There are two types of propositions. An atom is a proposition that is not comprised
of other propositions. Examples include

the angle sum of a triangle equals two right angles

and
some quadratic equations have real solutions.
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A proposition that is not an atom but is constructed using other propositions is called
a compound proposition. There are five types.

∙ A negation of a given proposition is a proposition that denies the truth of the
given proposition. For example, the negation of 3 + 8 = 5 is 3 + 8 ≠ 5. In this
case, we say that 3 + 8 = 5 has been negated. Negating the proposition the sine
function is periodic yields the sine function is not periodic.

∙ A conjunction is a proposition formed by combining two propositions (called
conjuncts) with the word and. For example,

the base angles of an isosceles triangle are congruent,
and a square has no right angles

is a conjunction with the base angles of an isosceles triangle are congruent and
a square has no right angles as conjuncts.

∙ A disjunction is a proposition formed by combining two propositions (called
disjuncts) with the word or. The sentence

the base angles of an isosceles triangle are congruent,
or a square has no right angles

is a disjunction.
∙ An implication is a proposition that claims a given proposition (called the an-
tecedent) entails another proposition (called the consequent). Implications are
also known as conditional propositions. For example,

if rectangles have four sides, then squares have for sides (1.1)
is a conditional proposition. Its antecedent is rectangles have four sides, and its
consequent is squares have four sides. This implication can also be written as

rectangles have four sides implies that squares have four sides,

squares have four sides if rectangles have four sides,

rectangles have four sides only if squares have four sides,

and
if rectangles have four sides, squares have four sides.

A conditional proposition can also be written using the words sufficient and nec-
essary. The word sufficientmeans “adequate” or “enough,” and necessarymeans
“needed” or “required.” Thus, the sentence
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rectangles having four sides is sufficient for squares to have four sides

translates (1.1). In other words, the fact that rectangles have four sides is enough
for us to know that squares have four sides. Likewise,

squares having four sides is necessary for rectangles to have four sides

is another translation of the implication because it means that squares must have
four sides because rectangle have four sides. Summing up, the antecedent is
sufficient for the consequent, and the consequent is necessary for the antecedent.

∙ A biconditional proposition is the conjunction of two implications formed by
exchanging their antecedents and consequents. For example,

if rectangles have four sides, then squares have four sides,
and if squares have four sides, then rectangles have four sides.

To remove the redundancy in this sentence, notice that the first conditional can
be written as

rectangles have four sides only if squares have four sides

and the second conditional can be written as
rectangles have four sides if squares have four sides,

resulting in the biconditional being written as
rectangles have four sides if and only if squares have four sides

or the equivalent
rectangles having four sides is necessary and sufficient

for squares to have four sides.

Propositional Forms

As a typical human language has manyways to express the same thought, it is beneficial
to study propositions by translating them into a notation that has a very limited collec-
tion of symbols yet is still able to express the basic logic of the propositions. Once this
is done, rules that determine the truth values of propositions using the new notation can
be developed. Any such system designed to concisely study human reasoning is called
a symbolic logic. Mathematical logic is an example of symbolic logic.

Let p be a finite sequence of characters from a given collection of symbols. Call
the collection an alphabet. Call p a string over the alphabet. The alphabet chosen so
that p can represent a mathematical proposition is called the proposition alphabet and
consists of the following symbols.
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∙ Propositional variables: Uppercase English letters, P ,Q,R,… , or uppercase
English letters with subscripts, Pn, Qn, Rn,… , where n = 0, 1, 2,…

∙ Connectives: ¬, ∧, ∨,→,↔
∙ Grouping symbols: (, ), [, ].

The sequences P ∨Q and P1Q1∧↔ ((( and the empty string, a string with no charac-
ters, are examples of strings over this alphabet, but only certain strings will be chosen
for our study. A string is selected because it is able to represent a proposition. These
strings will be determined by a method called a grammar. The grammar chosen for
our present purposes is given in the next definition. It is given recursively. That is, the
definition is first given for at least one special case, and then the definition is given for
other cases in terms of itself.

DEFINITION 1.1.2

A propositional form is a nonempty string over the proposition alphabet such
that

∙ every propositional variable is a propositional form.
∙ ¬p is a propositional form if p is a propositional form.
∙ (p∧ q), (p∨ q), (p→ q), and (p↔ q) are propositional forms if p and q are
propositional forms.

We follow the convention that parentheses can be replaced with brackets and
outermost parenthesis or brackets can be omitted. As with propositions, a propo-
sitional form that consists only of a propositional variable is an atom. Otherwise,
it is compound.
The strings P , Q1, ¬P , (P1 ∨ P2) ∧ P3, and (P → Q) ∧ (R ↔ ¬P ) are examples of

propositional forms. To prove that the last string is a propositional form, proceed using
Definition 1.1.2 by noting that (P → Q)∧(R↔ ¬P ) is the result of combining P → Q
and R ↔ ¬P with ∧. The propositional form P → Q is from P and Q combined with
→, andR↔ ¬P is fromR and ¬P combined with↔. These and ¬P are propositional
forms because P , Q, and R are propositional variables. This derivation yields the
following parsing tree:

(P → Q) ∧ (R ↔ ¬P)

 P → Q  R ↔ ¬P

P Q ¬PR

P
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The parsing tree yields the formation sequence of the propositional form:
P ,Q,R,¬P , P → Q,R↔ ¬P , (P → Q) ∧ (R ↔ ¬P ).

The sequence is formed by listing each distinct term of the tree starting at the bottom
row and moving upwards.

EXAMPLE 1.1.3

Make the following assignments:
p := R↔ (P ∧Q),
q := (R↔ P ) ∧Q.

The symbol := indicates that an assignment has been made. It means that the
propositional form on the right has been assigned to the lowercase letter on the
left. Using these designations, we can write new propositional forms using p and
q. The propositional form p ∧ q is

[R↔ (P ∧Q)] ∧ [(R ↔ P ) ∧Q]

with the formation sequence,
P ,Q,R, P ∧Q,R↔ P ,

R↔ (P ∧Q), (R↔ P ) ∧Q, [R↔ (P ∧Q)] ∧ [(R ↔ P ) ∧Q],

and ¬q → p is
¬[(R↔ P ) ∧Q]→ [R↔ (P ∧Q)]

with the formation sequence
P ,Q,R,R↔ P , P ∧Q, (R↔ P ) ∧Q,R↔ (P ∧Q),
¬[(R↔ P ) ∧Q],¬[(R↔ P ) ∧Q]→ [R↔ (P ∧Q)].

Interpreting Propositional Forms

Notice that determining whether a string is a propositional form is independent of the
meaning that we give the symbols. However, as we do want these symbols to con-
vey meaning, we assume that the propositional variables represent atoms and set this
interpretation on the connectives:

¬ not
∧ and
∨ or
→ implies
↔ if and only if

Because of this interpretation, name the compound propositional forms as follows:



8 Chapter 1 PROPOSITIONAL LOGIC

¬p negation
p ∧ q conjunction
p ∨ q disjunction
p → q implication
p ↔ q biconditional

EXAMPLE 1.1.4

To see how this works, assign some propositions to some propositional variables:
P := The sine function is not one-to-one.
Q := The square root function is one-to-one.
R := The absolute value function is not onto.

The following symbols represent the indicated propositions:
∙ ¬R
The absolute value function is onto.

∙ ¬P ∨ ¬Q
The sine function is one-to-one, or the square root function is not one-to-
one.

∙ Q → R
If the square root function is one-to-one, the absolute function is not onto.

∙ R↔ P
The absolute value function is not onto if and only if the sine function is not
one-to-one.

∙ P ∧Q
The sine function is not one-to-one, and the square root function is one-to-
one.

∙ ¬P ∧Q
The sine function is one-to-one, and the square root function is one-to-one.

∙ ¬(P ∧Q)
It is not the case that the sine function is not one-to-one and the square root
function is one-to-one.

The proposition
the absolute value function is not onto if and only if

both the sine function is not one-to-one and the square root function is one-to-one

is translated as R↔ (P ∧Q) and


