IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANSCEIVERS

ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES

Consulting Editor: Mohammed Ismail. Ohio State University **Related Titles:** CMOS CURRENT-MODE CIRCUITS FOR DATA COMMUNICATIONS Yuan Fei ISBN: 0-387-29758-8 ADVANCED DESIGN TECHNIQUES FOR RF POWER AMPLIFIERS Rudiakova, A.N., Krizhanovski, V. ISBN 1-4020-4638-3 CMOS CASCADE SIGMA-DELTA MODULATORS FOR SENSORS AND TELECOM del Río, R., Medeiro, F., Pérez-Verdú, B., de la Rosa, J.M., Rodríguez-Vázquez, A. ISBN 1-4020-4775-4 Titles in former series International Series in Engineering and Computer Science: SIGMA DELTA A/D CONVERSION FOR SIGNAL CONDITIONING Philips, K., van Roermund, A.H.M. Vol. 874, ISBN 1-4020-4679-0 CALIBRATION TECHNIQUES IN NYQUIST A/D CONVERTERS van der Ploeg, H., Nauta, B. Vol. 873, ISBN 1-4020-4634-0 ADAPTIVE TECHNIQUES FOR MIXED SIGNAL SYSTEM ON CHIP Fayed, A., Ismail, M. Vol. 872, ISBN 0-387-32154-3 WIDE-BANDWIDTH HIGH-DYNAMIC RANGE D/A CONVERTERS Doris, Konstantinos, van Roermund, Arthur, Leenaerts, Domine Vol. 871 ISBN: 0-387-30415-0 METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS: WITH CASE STUDIES Pastre, Marc, Kaval, Maher Vol. 870, ISBN: 1-4020-4252-3 HIGH-SPEED PHOTODIODES IN STANDARD CMOS TECHNOLOGY Radovanovic, Sasa, Annema, Anne-Johan, Nauta, Bram Vol. 869, ISBN: 0-387-28591-1 LOW-POWER LOW-VOLTAGE SIGMA-DELTA MODULATORS IN NANOMETER CMOS Yao, Libin, Stevaert, Michiel, Sansen, Willy Vol. 868, ISBN: 1-4020-4139-X DESIGN OF VERY HIGH-FREOUENCY MULTIRATE SWITCHED-CAPACITOR CIRCUITS U, Seng Pan, Martins, Rui Paulo, Epifânio da Franca, José Vol. 867, ISBN: 0-387-26121-4 DYNAMIC CHARACTERISATION OF ANALOGUE-TO-DIGITAL CONVERTERS Dallet, Dominique; Machado da Silva, José (Eds.) Vol. 860, ISBN: 0-387-25902-3 ANALOG DESIGN ESSENTIALS Sansen, Willy Vol. 859, ISBN: 0-387-25746-2 DESIGN OF WIRELESS AUTONOMOUS DATALOGGER IC'S Claes and Sansen Vol. 854. ISBN: 1-4020-3208-0 MATCHING PROPERTIES OF DEEP SUB-MICRON MOS TRANSISTORS Croon, Sansen, Maes Vol. 851, ISBN: 0-387-24314-3 LNA-ESD CO-DESIGN FOR FULLY INTEGRATED CMOS WIRELESS RECEIVERS Leroux and Steyaert Vol. 843. ISBN: 1-4020-3190-4 SYSTEMATIC MODELING AND ANALYSIS OF TELECOM FRONTENDS AND THEIR BUILDING BLOCKS Vanassche, Gielen, Sansen Vol. 842, ISBN: 1-4020-3173-4 LOW-POWER DEEP SUB-MICRON CMOS LOGIC SUB-THRESHOLD CURRENT REDUCTION van der Meer, van Staveren, van Roermund Vol. 841, ISBN: 1-4020-2848-2 WIDEBAND LOW NOISE AMPLIFIERS EXPLOITING THERMAL NOISE CANCELLATION Bruccoleri, Klumperink, Nauta Vol. 840, ISBN: 1-4020-3187-4

IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANSCEIVERS

by

Sao-Jie Chen

National Taiwan University, Taipei, Taiwan

and

Yong-Hsiang Hsieh

Muchip, Hsin-Chu, Taiwan

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-5082-8 (HB) ISBN-13 978-1-4020-5082-4 (HB) ISBN-10 1-4020-5083-6 (PB) ISBN-13 978-1-4020-5083-1 (PB)

> Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

> > www.springer.com

Printed on acid-free paper

All Rights Reserved © 2006 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Contents

List of Figures	ix
List of Tables	xiii
List of Abbreviations	XV
Preface	xvii
Acknowledgments	xix
 1. INTRODUCTION Wireless LAN Standards IEEE 802.11 HiperLan HiperLan II OpenAir HomeRF and SWAP BlueTooth 	1 1 2 2 2 2 2 2 2 2
 Wireless in the 21st Century The 802 Standard and the IEEE 3.1 IEEE 802.11b 3.2 IEEE 802.11a 3.3 IEEE 802.11g 3.4 Performance and Characeristic Background and Motivation 	3 3 4 4 4 5 7

	5.	IEEE 802.11g RF Transceiver Performance Requirement	7
		5.1 Synthesizer Output Phase Noise	7
		5.2 Circuit Linearity	8
		5.3 Modulator/Demodulator I/Q Gain and Phase Imbalance	8
	6	Transceiver Design Goal	9
		6.1 Solutions on I/Q Balance	9
2.	TR	ANSCEIVER ARCHITECTURE DESIGN	11
	1.	Receiver Architecture	11
		1.1 Superheterodyne Receiver	11
		1.2 Low-IF Receiver	14
		1.3 Zero-IF Receiver	15
	2.	Comparison of Our Choice	17
	3.	Transceiver Architecture	18
	4.	The Choice of Intermediary Frequency	22
	5.	Receiver Chain Link Budget	26
		5.1 Receiver Adjacent Channel Rejection	26
		5.2 Receiver Cascade Gain	27
		5.3 Receiver Cascade Noise Figure	28
		5.4 Receiver Dynamic Range	32
		5.4.1 RF/IF Section Gain Windows	32
		5.4.2 Receiver IF VGA and I/Q Demodulator	
		Specification	36
		5.4.3 Cascade Gain of IF/BB	37
		5.4.4 Cascade Noise Figure of IF/BB	37
	6.	Transmitter Chain Link Budget	38
		6.1 Transmit Circuits Gain Distribution and Gain Range	39
		6.2 Transmit Error Vector Magnitude	40
		6.3 Transmit Signal Spectral Mask	41
3.	I/Q	MODULATOR AND DEMODULATOR DESIGN	43
	1.	I/Q Modulator and Demodulator Architecture Overview	43
	2.	Variable Gain Amplifier and Low-Pass Filter Re-use	44
		2.1 RX/TX Two-Mode Variable Gain Control Amplifier	45
		2.2 RX/TX Two-Mode Low-Pass Filter	47
		2.3 DC Offset Cancellation	48
4.	AN	AUTO-I/Q CALIBRATED MODULATOR	53
	1.	DC Offset, I/Q Gain and Phase Imbalance	53
	2.	DC Offset, I/Q Gain and Phase Imbalance Auto-Calibration	56
		2.1 DC Offset Auto-Calibration	57
		2.2 I/Q Gain Imbalance Auto-Calibration	60
		2.3 I/O Ouadrature Phase Mismatch Auto-Calibration	61

	2.4 Implementation of I/Q Auto-Calibration Circuitry	62
	2.5 TX I/Q Auto-Calibration Measurement Result	64
		(0)
5. AN	AUTO-I/Q CALIBRATED DEMODULATOR	69
1.	Single Test Tone Design	69
2.	I/Q Gain Imbalance and Quadrature Phase Mismatch	
	Auto-Calibration	71
	2.1 I/Q Gain Imbalance Auto-Calibration	71
	2.2 I/Q Quadrature Phase Mismatch Auto-Calibration	73
	2.3 Implementation of I/Q Auto-Calibration Circuitry	76
3.	RX I/Q Auto-Calibration Measurement Result	76
6. SY	STEM MEASUREMENT RESULT	79
1.	Transmitter Measurement Result	80
2.	Receiver Measurement Result	83
7. CC	ONCLUSION	87
Refere	nces	89

List of Figures

1-1	Expected 802.11a, 802.11b and 802.11g Data Rates at Varying	
	Distance from Access Point	6
2-1	Superheterodyne Receiver Architecture	12
2-2	Problem Caused by Image	12
2-3	Low-IF Receiver Architecture	15
2-4	Zero-IF Receiver Architecture	16
2-5	Effect of Even-Order Distortion on Interferers	17
2-6	Transceiver in Receiver Mode	19
2-7	Transceiver in Transmitter Mode	21
2-8	The signal relative position	22
2-9	Spurious Response Chart	24
2-10	Spurious Response Chart with three Different Regions	24
2-11	PCB Network from Antenna to Transceiver I/O	28
2-12	Simplified Receiver Architecture	30
2-13	Input Power versus I/Q Output SNR when RF/IF has two Gain	
	Modes	35
2-14	Input Power Versus I/Q Output SNR when RF/IF has Three	
	Gain Modes	36
2-15	Cascade Noise Figure Requirement of IF VGA and I/Q	
	Demodulator	38
2-16	Simplified Transmitter Architecture	40
3-1	Simplified Architecture of RX VGA and I/Q Demodulator	44
3-2	Simplified Architecture of I/Q Modulator and TX VGA	44
3-3	VGA Cell Design: (a) from [17] and (b) the Proposed	
	Architecture	46

3-4	RX/TX Two-Mode Variable Gain Control Amplifier (VGA)	
	Architecture	47
3-5	RX/TX Two-mode Gain Control Circuit	47
3-6	RX/TX Two-Mode Third-Order Bessel Low-Pass Filter	48
3-7	OTA Cell with two Differential Pairs for RX Input and TX Input	48
3-8	Offset Cancellation by (a) Capacitive Coupling, (b) Negative	
	Feedback, and (c) the Proposed Single end Feedback Structure	50
3-9	DC Offset Cancellation Loop with Two Different Loop	
	Bandwidths	51
4-1	An Illustration on the Error Vector and its Components	54
4-2	Circuits Non-ideal Effects on Constellation caused by: (a) DC	
	Offset, (b) I/Q Gain imbalance, and (c) Quadrature Phase	
	Mismatch	56
4-3	Auto-I/Q Calibration Flow Chart	57
4-4	Transceiver Block Diagram in Modulator I/Q Calibration	58
4-5	Simplified Modulator I/Q Calibration Signal Path	59
4-6	Flow Chart of Modulator Auto DC Offset Cancellation	60
4-7	Flow Chart of Modulator Auto I/Q Gain Imbalance Calibration	61
4-8	Flow Chart of Modulator Auto Quadrature Phase Mismatch	
	Calibration	62
4-9	Architecture of S/C Comparator	63
4-10	Simplified Circuit of a Delay Cell	64
4-11	Simplified Circuit of TX input Buffer with Gain and DC Offset	
	Tuning	64
4-12	Test Environment Setup for I/Q Auto-Calibration on a TX	
	Modulator	65
4-13	Measurement Result of TX DC Offset Auto-Calibration	66
4-14	Measurement Results of TX I/Q Gain Imbalance	
	Auto-Calibration: (a) the Whole Calibration Process and	
	(b) the Zoom-in of (a)	66
4-15	TX Modulator Single Side-Band Rejection Test	67
5-1	Transceiver Block Diagram in Demodulator I/Q Calibration	
	Mode	70
5-2	Block Diagram of RX Detector and Comparator in Gain	
	Calibration Mode	72
5-3	Flow Chart of Demodulator Auto I/Q Gain Imbalance	
	Cancellation	72
5-4	Block Diagram of RX Detector and Comparator in Phase	
_ =	Calibration Mode	75
5-5	Flow Chart of Demodulator Auto I/Q Phase Mismatch	
	Cancellation	75

х

List of Figures

5-6	Measurement Result of RX I/Q Gain Imbalance	
	Auto-Calibration	77
5-7	Measurement Result of Quadrature Phase Mismatch	
	Auto-Calibration	77
6-1	Die Micrograph	79
6-2	AC Characteristic Test Board	80
6-3	IF Output Power vs VGA Control Voltage	81
6-4	Phase Noise Plot	82
6-5	RF Output Spectrum Mask	82
6-6	Constellation in a 802.11g 54Mbps Data Rate Mode	83
6-7	RF/IF Section Cascade Noise Figure and Gain	84
6-8	Cascade Gain of IF VGA and Demodulator under Different	
	VGA Control Voltages	84
6-9	RX I and Q Output Voltage Swings (Less than 1 Quadrature	
	Phase Error and 0.1dB Gain Imbalance)	85
6-10	RX Output SNR vs RF Input Power	85

List of Tables

1-1	IEEE 802.11 Specifications	5
1-2	WLAN User Requirements and Technology Characteristics in	
	the U.S. [2]	6
2-1	Comparison of Receiver Architectures	14
2-2	Adjacent Channel Rejection Requirement	26
2-3	Receive Sensitivity Requirement	29
2-4	RX Chain Cascade Noise Figure under Different RF/IF Section	
	Gain	32
2-5	Calculation Result of Important Parameters under Different	
	Input Power	34
2-6	Receive FE Specification in Two-Gain Windows	34
2-7	Receive FE specification in Three-Gain Windows	36
6-1	Transmitter Performance Summary	81
6-2	Receiver Performance Summary	86