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Molecular Excitation Dynamics
and Relaxation



Related Titles

Radons, G., Rumpf, B., Schuster, H. G.
(eds.)

Nonlinear Dynamics of
Nanosystems

2010

ISBN: 978-3-527-40791-0

Siebert, F., Hildebrandt, P.

Vibrational Spectroscopy in
Life Science
2008
ISBN: 978-3-527-40506-0

Schnabel, W.

Polymers and Light
Fundamentals and Technical Applications

2007

ISBN: 978-3-527-31866-7

Reich, S., Thomsen, C., Maultzsch, J.

Carbon Nanotubes
Basic Concepts and Physical Properties

2004
ISBN: 978-3-527-40386-8

May, V., Kühn, O.

Charge and Energy Transfer
Dynamics in Molecular
Systems

2011

ISBN: 978-3-527-40732-3

Yakushevich, L. V.

Nonlinear Physics of DNA

1998

ISBN: 978-3-527-40417-9



Leonas Valkunas, Darius Abramavicius,
and Tomáš Mančal
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Preface

Classical mechanics is known for its ability to describe the dynamics of macroscop-
ic bodies. Their behavior in the course of time is usually represented by classical
trajectories in the real three-dimensional space or in the so-called phase space de-
fined by characteristic coordinates and momenta, which together determine the
degrees of freedom of the body under consideration. For the description of the dy-
namics of a microscopic system, however, quantum mechanics should be used. In
this case, the system dynamics is qualified by the time evolution of a complex quan-
tity, the wavefunction, which characterizes the maximum knowledge we can obtain
about the quantum system. In terms of the quantum mechanical description, coor-
dinates and momenta cannot be determined simultaneously. Their values should
satisfy the Heisenberg uncertainty principle. At the interface between the classi-
cal world in which we live and the world of microscopic systems, this type of de-
scription is inherently probabilistic. This constitutes the fundamental differences
between classical and quantum descriptions of the system dynamics. In principle,
however, both classical and quantum mechanics describe a reversible behavior of
an isolated system in the course of time.

Irreversibility of time evolution is a property found in the dynamics of open sys-
tems. No realistic system is isolated; it is always subjected to coupling to its en-
vironment, which in most cases cannot be considered as a negligible factor. The
theory of open quantum systems plays a major role in determining the dynamics
and relaxation of excitations induced by an external perturbation. A typical external
perturbation is caused by the interaction of a system with an electromagnetic field.
In resonance conditions, when the characteristic transition frequencies of the sys-
tem match the frequencies of the electromagnetic field, the energy is transferred
from the field to the system and the system becomes excited. The study of the re-
sponse of material systems to various types of external excitation conditions is the
main objective of spectroscopy. Spectroscopy, in general, is an experimental tool to
monitor the features and properties of the system based on the measurement of its
response. More complicated spectroscopic experiments study the response which
mirrors the dynamics of excitation and its relaxation.

Together with the widely used conventional spectroscopic approaches, two-
dimensional coherent spectroscopic methods were developed recently, and they
have been applied for studies of the excitation dynamics in various molecular
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systems, such as photosynthetic pigment–protein complexes, molecular aggre-
gates, and polymers. Despite the complexity of the temporal evolution of the
two-dimensional spectra, some of these spectra demonstrate the presence of
vibrational and electronic coherence on the subpicosecond timescale and even
picosecond timescale. Such observations demonstrate the interplay between the
coherent behavior of the system, which might be considered in terms of conven-
tional quantum mechanics, and the irreversibility of the excitation dynamics due
to the interaction of the system with its environment.

From the general point of view, quantum mechanics is the basic approach for
considering various phenomena in molecular systems. However, a typical descrip-
tion must be based on a simplified model, where specific degrees of freedom are
taken into consideration, and the rest of them are attributed to an environment or
bath. This is the usual approach used for open quantum systems. Thus, complexity
of the molecular system caused by some amount of interacting molecules has to be
specifically taken into account by describing the quantum behavior of the system.
For this purpose the concept of excitons is usually invoked.

As can be anticipated, this area of research covers a very broad range of fields
in physics and chemistry. Having this in mind, we have divided this book into two
parts. Part One, being more general, describes the basic principles and theoretical
approaches which are necessary to describe the excitation dynamics and relaxation
in quantum systems interacting with the environment. These theoretical approach-
es are then used for the description of spectroscopic observables in Part Two.

Consequently, we have many different readers of this book in mind. First of all,
the book addresses undergraduate and graduate students in theoretical physics
and chemistry, molecular chemical physics, quantum optics and spectroscopy. For
this purpose the basic principles of classical physics, quantum mechanics, statisti-
cal physics, and stochastic processes are presented in Part One. Special attention
is paid to the interface of classical and quantum physics. This includes discus-
sion on the decoherence and entanglement problems, the projection operator, and
stochastic classical and quantum problems. These processes are especially relevant
in small molecular clusters, often serving as primary natural functioning devices.
Therefore, the adiabatic description of molecules, the concept of Frenkel and Wan-
nier–Mott excitons, charge-transfer excitons, and problems of exciton self-trapping
and trapping are also presented. This knowledge helps understand other chapters
in this book, especially in Part Two, which is more geared toward graduate students
and professionals who are interested in spectroscopy. Since different approaches to
the problem are widely used to describe the problem of coherence, various meth-
ods used for the description are also discussed. Possible modern approaches for
observation of the processes determining the excitation dynamics and relaxation in
molecular systems are discussed in Part Two, which is mainly devoted to the theo-
retical description of the spectroscopic observations. For this purpose the response
function formalism is introduced. Various spectroscopic methods are discussed,
and the results demonstrating the possibility to distinguish the coherent effects on
the excitation dynamics are also presented.
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1
Introduction

Photoinduced dynamics of excitation in molecular systems are determined by var-
ious interactions occurring at different levels of their organization. Depending on
the perturbation conditions, the excitation in solids and molecular aggregates may
lead to a host of photoinduced dynamics, from coherent and incoherent energy
migration to charge generation, charge transfer, crystal lattice deformation, or re-
organization of the environmental surroundings. The theoretical description of all
these phenomena therefore requires one to treat part of the molecular system as
an open system subject to external perturbation. Since perfect insulation of any
system from the rest of the world is practically unattainable, the theory of open
systems plays a major role in any realistic description of experiments on molecular
systems.

In classical physics, the dynamics of an open system is reflected in the temporal
evolution of its parameters, leading to a certain fixed point in the corresponding
phase space. This fixed point corresponds to a thermodynamic equilibrium, with
the unobserved degrees of freedom determining the thermodynamic bath. Many
situations in molecular physics allow one to apply a classical or semiclassical de-
scription of the evolution of the perturbation-induced excitation in an open system.
Often, the influence of the large number of degrees of freedom can be efficiently
simulated by stochastic fluctuations of some essential parameters of the system.
Such fluctuations may lead to transitions between several stable fixed points in the
phase space of the system, or, in a semiclassical situation, to transitions between
several states characterized by different energies.

Apart from classical fluctuations, a genuine quantum description might be re-
quired when entanglement between constituents of the system has to be consid-
ered. This is especially essential for systems with energy gaps larger than the ther-
mal energy, which is an energy characteristics of the bath defined by macroscopic
degrees of freedom. Only a full quantum description then leads to proper forma-
tion of a thermal equilibrium.

Indeed it is impossible to switch off fluctuations completely. Even if we place a
system in a complete vacuum and isolate it from some light sources, there still exist
background vacuum fluctuations of the electromagnetic field. Even at zero temper-
ature these fluctuations affect the quantum system, and the resulting spontaneous

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mančal.
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4 1 Introduction

emission emerges. All these fluctuations cause decay of excited states and establish
thermal equilibrium and stochasticity “in the long run.”

The first part of this book presents a coarse-grained review of the knowledge
which is needed for a description of excitation dynamics and relaxation in molecu-
lar systems. Basic topics of classical physics which are directly related to the main
issue of this book are presented in Chapter 2. It is worthwhile mentioning that
concepts of classical physics are also needed for better understanding of the basic
behavior of quantum systems. The electromagnetic field, which is responsible for
electronic excitations, can usually be well described in terms of classical electrody-
namics. Thus, the main principles of this theory and the description of the field–
matter interaction are also introduced in Chapter 2. The concept and main ap-
plicative features of stochastic dynamics are presented in Chapter 3. Markov pro-
cesses, the Fokker–Planck equation, and diffusive processes together with some
relationships between these descriptions and purely stochastic dynamics are also
described in Chapter 3. The basic concepts of quantum mechanics, which is the
fundamental theory of the microworld, are presented in Chapter 4. Together with
its main postulates and equations, some typical model quantum systems with ex-
act solutions are briefly discussed. The density matrix and second quantization of
the vibrations and electromagnetic field are briefly introduced as well. Special at-
tention is paid in this book to consideration of molecular aggregates. The adiabatic
approximation, the exciton concept, Frenkel excitons, Wannier–Mott excitons, and
charge-transfer excitons are described together with vibronic interactions, the self-
trapping problem, and the exciton trapping problem in Chapter 5. Chapter 6 is
devoted to a discussion of decoherence and entanglement concepts. The problem
of measurements in quantum mechanics and the relative state interpretation are
also discussed. The basics of statistical physics are then presented in Chapter 7.
The relationship between the statistical approach and thermodynamics is briefly
outlined, and standard statistics used for descriptions of classical and quantum
behavior are presented. The harmonic oscillator model of the system–bath inter-
action is described in Chapter 8. In Chapter 9 we describe the projection operator
technique together with the concept of the reduced density matrix and its master
equations. The path integral technique is then discussed in Chapter 10 together
with the stochastic Schrödinger equation approach and the so-called hierarchical
equations of motions. Excitation dynamics and relaxation in some model systems
are discussed in Chapter 11.
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2
Overview of Classical Physics

In this chapter we will review some of the most important concepts of classical
physics. Despite the eminent role played by quantum mechanics in the descrip-
tion of molecular systems, classical physics provides an important conceptual and
methodological background to most of the theories presented in later chapters and
to quantum mechanics itself. Often classical or semiclassical approximations are
indispensable to make a theoretical treatment of problems in molecular physics
feasible. In the limited space of this chapter we have no intention to provide a
complete review as we assume that the reader is familiar with most of the classical
concepts. Specialized textbooks are recommended to the interested reader in which
the topics presented in this chapter are treated with full rigor (e.g., [1–4]).

2.1
Classical Mechanics

Classical mechanics, as the oldest discipline of physics, has provided the formal
foundation for most of the other branches of physics. Perhaps with the exception
of phenomenological thermodynamics, there is no theory with a similar gener-
al validity and success that does not owe its foundations to mechanics. Classical
mechanics reached its height with its Lagrangian and Hamiltonian formulations.
These subsequently played a very important role in the development of statistical
and quantum mechanics.

In classical mechanics, the physical system is described by a set of idealized ma-
terial points (point-sized particles) in space which interact with each other by a
specific set of forces. The coordinates and velocities of all particles fully describe
the state of the system of the particles. The three laws formulated by Newton fully
describe the properties of motion of this system. The first law states that the parti-
cle moves at a constant speed in a predefined direction if it is not affected by a force.
The second law relates the change of motion of the particle due to the presence of
external forces. The third law defines the symmetry of all forces: particle a acts on
particle b with the same force as particle b acts on particle a.

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mančal.
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6 2 Overview of Classical Physics

The dynamics of the system of N particles is described by a set of differential
equations [1, 2, 4]:

mi Rr i D
X

j

F i j (r1 . . . rN ) . (2.1)

Here mi is the mass of the ith particle and F i j is the force created by the j th par-
ticle acting on the ith particle. The velocity of the ith particle is given by a time
derivative of the coordinate Pr i . For a problem formulated in three spatial dimen-
sions the particle momenta p i D mi Pr i together with the coordinates r i create a
6N -dimensional phase space in the three-dimensional real space.

The real phase space is often smaller due to specific symmetries, resulting in
certain conservation laws. For instance, if the points describe some finite body,
which is at rest, the center of mass of all points may be fixed. In that case the
dimension of the phase space effectively decreases by six (three coordinates and
three momenta corresponding to a center of mass equal to zero). If additionally
the body is rigid, we are left with three dimensional phase space, characterizing
orientation of the body (e.g. three Euler angles).

A single point in the phase space defines an instantaneous state of the system.
The notion of the system’s state plays an important role in quantum physics; thus,
it is also useful to introduce this type of description in classical physics. The motion
of the system according to Newton’s laws draws a trajectory in the phase space. In
the absence of external forces, the energy of the system is conserved, and the trajec-
tory therefore corresponds to a particular energy value. Different initial conditions
draw different trajectories in the phase space as shown schematically in Figure 2.1.
The phase space trajectories never intersect or disappear. Later in the discussion of
statistical mechanics this notion is used to describe the microcanonical ensemble
of an isolated system.

Note that in Newton’s equation, (2.1), we can replace t by �t and the equation
remains the same. Thus, the Newtonian dynamics is invariant to an inversion of
the time axis, and the dynamics of the whole system is reversible. This means
that Newton’s equation for a finite isolated system with coordinate-related pairwise
forces has no preferred direction of the time axis. Because energy is conserved,
the whole system does not exhibit any damping effects. The damping is often in-
troduced phenomenologically. In order to achieve irreversible dynamics using a

q

p

Figure 2.1 Motion of the system in a phase space starting with different initial conditions.
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microscopic description, one has to introduce an infinitely large system so that the
observable part is a small open subsystem of the whole. In such a subsystem the
damping effects occur naturally from statistical arguments. Various treatments of
open systems are described in subsequent chapters.

2.1.1
Concepts of Theoretical Mechanics: Action, Lagrangian, and Lagrange Equations

Some problems in mechanics can be solved exactly. The feasibility of such an exact
solution often depends crucially on our ability to express the problem in an ap-
propriate coordinate system. Let us find now a more general way of expressing me-
chanical equations of motion that would have the same general form in an arbitrary
system of coordinates, and would therefore allow a straightforward transformation
from one coordinate system to another. This new form of the representation of
Newton’s equations is called the Lagrangian formulation of mechanics.

Let us start with Newton’s law, (2.1), in the following form:

X
i

(F i � mi Rr i ) D 0 . (2.2)

Here we sum up over all particles in the system, and F i D
P

j F i j is the total force
acting on the ith particle. With a given initial condition, the whole trajectory r i (t)
of the ith particle satisfies (2.2). At every point of the trajectory, we can imagine a
small displacement of the trajectory δ r i (t) from r i (t) to r i (t) C δ r i (t), that is, an
infinitesimal variation. We multiply each term of the sum in (2.2) by δ r i (t) and
integrate it over time from t1 to t2. The right-hand side of the equation remains
zero. On the left-hand side we assume that the force can be expressed by means of
a gradient of the potential V as F i D �@V/@r i , so we get

t2Z
t1

dt

 X
i

@V
@r i
C mi Rr i

!
� δ r i (t) D 0 . (2.3)

The first term on the left-hand side of (2.3) can obviously be written as a variation
of an integral over the potential:

t2Z
t1

dt
X

i

@V
@r i
� δ r i (t) D δ

t2Z
t1

Vdt . (2.4)

The second term on the left-hand side can be turned into a variation as well. We
apply integration by parts and interchange the variation with the derivative to ob-
tain

t2Z
t1

dtmi Rr i � δ r i D [mi Pr i � δ r i ]
t2
t1
�

t2Z
t1

dtmi Pr i � δ Pr i . (2.5)
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By assuming now that variation of the trajectory δ r i (t) is zero at times t1 and t2,
that is, δ r i (t1) D 0 and δ r i (t2) D 0 for all i , we set the first term on the right-hand
side to zero. Therefore, (2.3) reads

δ

t2Z
t1

dt

 X
i

1
2

mi jPr i j2 � V

!
D 0 . (2.6)

Here we used the rules of variation of a product, and we multiplied the equation
obtained by �1. Now, the first term denotes the total kinetic energy of the system.
The second term is the full potential energy. Thus, the variation of the kinetic en-
ergy must be anticorrelated with the variation of the potential energy. This result is
also implied by the conservation of the total energy.

We next denote the kinetic energy term
P

i 1/2mi jPr i j2 by T , and introduce two
new functions:

S D
t2Z

t1

Ldt , (2.7)

where

L D T � V . (2.8)

Here, S denotes the action functional or simply the action. The scalar function L is
the Lagrangian function, or the Lagrangian. The whole mechanics therefore reduces
to the variational problem

δS D 0 , (2.9)

also known as the Hamilton principle. According to this principle, the trajectories
r i (t), which satisfy Newton’s laws of motion, correspond to an extremum of the
action functional S . In Chapter 10, we will see that the action functional plays an
important role in the path integral representations of quantum mechanics.

This formulation is independent of any specific choice of coordinates. Trajecto-
ries r i (t) can also be expressed in terms of coordinates different from the original
Cartesian coordinates r . Let us have the Lagrangian expressed in terms of general-
ized coordinates fqig D fq1, q2, . . . , q3Ng and their time derivatives f Pqig, where N
is the number of particles. The variational problem, (2.9), then leads to

t2Z
t1

dt
�

@L
@qi

δqi C @L
@ Pqi

δ Pqi

�
D 0 . (2.10)

By integrating the second term by parts under the assumption that δqi(t1) D
δqi(t2) D 0 as done for (2.6), we obtain

t2Z
t1

dt
�

@L
@qi
� d

dt

�
@L
@ Pqi

��
δqi D 0 . (2.11)
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This can only be satisfied for an arbitrary value of δqi if

d
dt

�
@

@ Pqi
L
�
� @

@qi
L D 0 . (2.12)

Equation (2.12) is the famous Lagrange equation of classical mechanics in a form
independent of the choice of the coordinate system.

There is some flexibility in choosing a particular form of the Lagrangian. If we
define a new Lagrangian L0 by adding a total time derivative of a function of coor-
dinates,

L0(qi , Pqi , t) D L(qi , Pqi , t)C d
dt

f (qi , t) , (2.13)

the equations of motion remain unchanged. The corresponding action integral S 0
is

S 0 D
t2Z

t1

dt LC
t2Z

t1

dt
d
dt

f (qi , t)

D
t2Z

t1

dt LC f (qi (t2), t2) � f (qi(t1), t1) , (2.14)

where the last two terms do not contribute to a variation with fixed points at times
t1 and t2. By means of (2.13), the Lagrangian can sometimes be converted into a
form more convenient for description of a particular physical situation. We will
give an example of such a situation in Section 2.4.3.

2.1.2
Hamilton Equations

A more symmetric formulation of mechanics can be achieved by introducing gen-
eralized momenta p i as conjugate quantities of coordinates qi . So far the indepen-
dent variables of the Lagrangian were qi and Pqi . Now we will define the generalized
momentun corresponding to the coordinate qi as

pi D @

@ Pqi
L . (2.15)

It can be easily shown that in Cartesian coordinates the momentum p i D m Pqi is
conjugate to the coordinate ri . Let us investigate the variation of the Lagrangian:

δL D
X

i

@L
@qi

δqi C
X

i

@L
@ Pqi

δ Pqi . (2.16)

First, from (2.12) and (2.15) we obtain a very symmetric expression:

δL D
X

i

Ppi δqi C
X

i

p i δ Pqi , (2.17)
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which can also be written as

δL D
X

i

Ppi δqi C δ

 X
i

p i Pqi

!
�
X

i

Pqi δ p i . (2.18)

This in turn can be written in such a way that we have a variation of a certain
function on the left-hand side and an expression with variations of pi and qi only
on the right-hand side:

δ

 X
i

p i Pqi � L

!
D
X

i

Pqi δ p i �
X

i

Ppi δqi . (2.19)

The expression on the left-hand side,

H D
X

i

p i Pqi � L , (2.20)

must thereqfore be a function of parameters p i and qi only, that is, H D H(pi , qi).
By taking its formal variation and using (2.19), we arrive at

δH D
X

i

@H
@qi

δqi C
X

i

@H
@pi

δ p i D
X

i

Pqi δ p i �
X

i

Ppi δqi . (2.21)

Comparing the coefficients of variations of δqi and δ p i , we get two independent
equations:

Ppi D �@H
@qi

(2.22)

and

Pqi D @H
@pi

. (2.23)

Equations (2.22) and (2.23) are known as the canonical or Hamilton equations of
classical mechanics. We usually call the momentum p i the canonically conjugated
momentum only to the coordinate qi . The Hamilton equations represent mechanics
in a very compact and elegant way by the set of first-order differential equations.

The Hamiltonian or Lagrangian formalism applies to systems with gradient
forces, that is, those which are given by derivatives of potentials. This assumption
is true when considering gravitational, electromagnetic, and other fundamental
forces. However, frictional forces often included phenomenologically in the me-
chanical description of dynamic systems cannot be given as gradients of some
friction potential. Thus, the Hamiltonian description cannot describe friction phe-
nomena. The microscopic relaxation theory and openness of the dynamic system
are required to obtain a theory with the relaxation phenomena.
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2.1.3
Classical Harmonic Oscillator

Let us consider a one-dimensional case describing the movement of a particle along
coordinate x . Correspondingly the potential is defined as V(x ). The force acting on
the particle is then F(x ) D �gradV D �@/@xV(x ), and according to Newton’s laws
we can write the equation of motion as

m Rx D � @

@x
V(x ) . (2.24)

In the Lagrange formulation we can define the Lagrangian as the difference of
kinetic and potential energies, getting for a particle with mass m

L D m
Px2

2
� V(x ) . (2.25)

From (2.12) it follows that @/@ Px L D m Px , @/@x L D �@/@xV(x ), and thus

d
dt

(m Px )C @

@x
V(x ) D 0 , (2.26)

which is equivalent to the Newton’s equation as demonstrated in the previous sec-
tions.

Similarly, we can write the Hamiltonian

H D p 2

2m
C V(x ) , (2.27)

where the momentum p D m Px . In this case the Hamilton equations of motion
read

Pp D � @

@x
V(x ) , (2.28)

Px D p
m

. (2.29)

Again we get the same set of equations of motion, which means that the dynamics
is equivalent whatever type of description is chosen. However, the Hamiltonian
formulation gives one clue about the number of independent variables. In this case
we obtain two equations for variables x and p , the coordinate and the momentum,
respectively. Thus, in the context of dynamic equations, it is a two-dimensional
system (two-dimensional phase space).

We can easily solve the equations of motion when the potential surface has a
parabolic form as shown in Figure 2.2. In this case the dynamics corresponds to
the time evolution of the harmonic oscillator with the potential defined by V(x ) D
kx2/2. Then the equation of motion is

m Rx C kx D 0 , (2.30)
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V (x)

x

x

p

(a) (b)

Figure 2.2 Parabolic potential of the harmonic oscillator (a), and the two-dimensional phase
space of the oscillator (b). The trajectory is the ellipse or the circle.

and the solution is given by

x (t) D A cos(ω t)C B sin(ω t) , (2.31)

which yields

ω2 D k/m . (2.32)

Let us take the initial condition x (0) D x0, Px (0) D Px0. We then get A D x0 and
B D Px0/ω. The final solution is then

x (t) D x0 cos(ω t)C Px0

ω
sin(ω t) . (2.33)

We thus find that the frequency of the oscillator is described by the stiffness of
the force parameter k and the mass of the particle m. Keeping this in mind, we can
write the potential energy as

V(x ) D mω2 x2

2
. (2.34)

The oscillator equation can be given in somewhat more convenient form by in-
troducing dimensionless parameters. Let us take Hamiltonian (2.27) and denote
mω2 l2 D αω, where l is some typical length of the oscillation and α is a constant.
Denoting y D x/ l and z D p/(mω l) or z D Py/ω, we get the Hamiltonian in a
symmetric form where the coordinate and the momentum are dimensionless:

H D 1
2

αω(y 2 C z2) . (2.35)

Later we will find that this form of the Hamiltonian is equivalent to the Hamilto-
nian of the quantum harmonic oscillator and the constant α is associated with the
reduced Planck constant.

The solution of the dynamic equations can now be written as

y (t) D Re
�

x0

l
C Px0

il ω

�
eiω t , (2.36)
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z(t) D �Im
�

x0

2l
C Px0

2il ω

�
eiω t , (2.37)

which shows that the phase space defined by the y and z axes corresponds to
the complex plane and a point x0/ l C Px0/(il ω) in this space draws a circle. In
the following we often face the application of classical or quantum oscillators. The
latter is described in Section 4.6.1.

2.2
Classical Electrodynamics

For our introduction to classical electrodynamics, the microscopic Maxwell–
Lorentz equations provide a convenient starting point. They enable us to view
matter as an ensemble of charged particles, as opposed to the continuum view
of macroscopic electrodynamics. The microscopic electric and magnetic fields are
usually denoted by E and B, respectively. Let us assume that there are particles
with charges qi located at points r i in space. The density of charge and the density
of current can be then defined as

ρ(r) D
X

i

q i δ(r � r i ) , j (r) D
X

i

q i Pr i δ(r � r i ) . (2.38)

The Maxwell–Lorentz equations for the fields in a vacuum read [3, 5]

r � E D ρ(r)
�0

, (2.39)

r � B D 0 , (2.40)

r � E D � @

@t
B , (2.41)

r � B D 1
c2

@

@t
E C μ0

@

@t
j . (2.42)

We introduced the usual constants – vacuum permittivity �0, magnetic perme-
ability μ0, and the speed of light in a vacuum c, which are all related through
c D 1/

p
�0μ0. r� denotes divergence, and r� is the curl operator as described

in Appendix A.1.
The same equations are valid for the microscopic and macroscopic cases. The

difference is only in the charge and current densities, which in the macroscopic
case are assumed to be continuous functions of space, while in the microscopic
case the charge and current densities are given as a collection of microscopic points
and their velocities.
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2.2.1
Electromagnetic Potentials and the Coulomb Gauge

For the subsequent discussion, it is advantageous to introduce the vector potential
A which determines the magnetic field through the following relation:

B D r � A . (2.43)

The magnetic field given by such an expression automatically satisfies the second
Maxwell–Lorentz equation, (2.40). Since for any scalar function � we have the iden-
tity r � (r�) D 0, the vector potential is defined up to the so-called gauge function
�, and the transformation

A! AC r� (2.44)

does not change the magnetic field.
The same identity allows us to rewrite the third Maxwell–Lorentz equation, (2.41),

in a more convenient form. Applying definition (2.43) to (2.41), we obtain

r �
�

E C @

@t
A
�
D 0 , (2.45)

which can be satisfied by postulating a scalar potential φ through

�rφ D E C @

@t
A . (2.46)

It is easy to see that if A is transformed by (2.44), the simultaneous transformation

φ ! φ � @

@t
� (2.47)

keeps (2.46) satisfied. The transformation composed of (2.44) and (2.47) is known
as the gauge transformation, and the Maxwell–Lorentz equations are invariant with
respect to this transformation. This phenomenon is denoted as gauge invariance.

The freedom in the choice of A and φ can be used to transform Maxwell–Lorentz
equations into a form convenient for a particular physical situation. Here we will
use the well-known Coulomb gauge, which is useful for separating the radiation part
of the electromagnetic field from the part associated with charges. The Coulomb
gauge is defined by the condition

r � A D 0 , (2.48)

which can always be satisfied [6].

2.2.2
Transverse and Longitudinal Fields

The Maxwell–Lorentz equations provide a complete description of the system of
charges and electromagnetic fields, including their mutual interaction. In most of


