

The Data Warehouse Toolkit

Third Edition

The Definitive Guide to Dimensional Modeling

Ralph Kimball Margy Ross

The Data Warehouse Toolkit

The Data Warehouse Toolkit

The Definitive Guide to Dimensional Modeling

Third Edition

Ralph Kimball Margy Ross

WILEY

The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, Third Edition

Published by John Wiley & Sons, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wilev.com

Copyright © 2013 by Ralph Kimball and Margy Ross

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-53080-1

ISBN: 978-1-118-53077-1 (ebk) ISBN: 978-1-118-73228-1 (ebk) ISBN: 978-1-118-73219-9 (ebk)

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013936841

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

About the Authors

Ralph Kimball founded the Kimball Group. Since the mid-1980s, he has been the data warehouse and business intelligence industry's thought leader on the dimensional approach. He has educated tens of thousands of IT professionals. The Toolkit books written by Ralph and his colleagues have been the industry's best sellers since 1996. Prior to working at Metaphor and founding Red Brick Systems, Ralph coinvented the Star workstation, the first commercial product with windows, icons, and a mouse, at Xerox's Palo Alto Research Center (PARC). Ralph has a PhD in electrical engineering from Stanford University.

Margy Ross is president of the Kimball Group. She has focused exclusively on data warehousing and business intelligence since 1982 with an emphasis on business requirements and dimensional modeling. Like Ralph, Margy has taught the dimensional best practices to thousands of students; she also coauthored five Toolkit books with Ralph. Margy previously worked at Metaphor and cofounded DecisionWorks Consulting. She graduated with a BS in industrial engineering from Northwestern University.

Credits

Executive Editor

Robert Elliott

Project Editor

Maureen Spears

Senior Production Editor

Kathleen Wisor

Copy Editor

Apostrophe Editing Services

Editorial Manager

Mary Beth Wakefield

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Marketing Manager

Ashley Zurcher

Business Manager

Amy Knies

Production Manager

Tim Tate

Vice President and Executive Group

Publisher

Richard Swadley

Vice President and Executive Publisher

Neil Edde

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katie Crocker

Proofreader

Word One, New York

Indexer

Johnna VanHoose Dinse

Cover Image

iStockphoto.com / teekid

Cover Designer

Ryan Sneed

Acknowledgments

irst, thanks to the hundreds of thousands who have read our Toolkit books, attended our courses, and engaged us in consulting projects. We have learned as much from you as we have taught. Collectively, you have had a profoundly positive impact on the data warehousing and business intelligence industry. Congratulations!

Our Kimball Group colleagues, Bob Becker, Joy Mundy, and Warren Thornthwaite, have worked with us to apply the techniques described in this book literally thousands of times, over nearly 30 years of working together. Every technique in this book has been thoroughly vetted by practice in the real world. We appreciate their input and feedback on this book—and more important, the years we have shared as business partners, along with Julie Kimball.

Bob Elliott, our executive editor at John Wiley & Sons, project editor Maureen Spears, and the rest of the Wiley team have supported this project with skill and enthusiasm. As always, it has been a pleasure to work with them.

To our families, thank you for your unconditional support throughout our careers. Spouses Julie Kimball and Scott Ross and children Sara Hayden Smith, Brian Kimball, and Katie Ross all contributed in countless ways to this book.

Contents

	Introduction
1	Data Warehousing, Business Intelligence, and Dimensional Modeling Primer
	Different Worlds of Data Capture and Data Analysis2
	Goals of Data Warehousing and Business Intelligence
	Publishing Metaphor for DW/BI Managers5
	Dimensional Modeling Introduction
	Star Schemas Versus OLAP Cubes8
	Fact Tables for Measurements
	Dimension Tables for Descriptive Context
	Facts and Dimensions Joined in a Star Schema16
	Kimball's DW/BI Architecture
	Operational Source Systems18
	Extract, Transformation, and Load System
	Presentation Area to Support Business Intelligence
	Business Intelligence Applications22
	Restaurant Metaphor for the Kimball Architecture
	Alternative DW/BI Architectures
	Independent Data Mart Architecture
	Hub-and-Spoke Corporate Information Factory Inmon Architecture 28
	Hybrid Hub-and-Spoke and Kimball Architecture29
	Dimensional Modeling Myths30
	Myth 1: Dimensional Models are Only for Summary Data
	Myth 2: Dimensional Models are Departmental, Not Enterprise 31
	Myth 3: Dimensional Models are Not Scalable31
	Myth 4: Dimensional Models are Only for Predictable Usage31
	Myth 5: Dimensional Models Can't Be Integrated32
	More Reasons to Think Dimensionally
	Agile Considerations
	Summary

2	Kimball Dimensional Modeling Techniques Overview 37
	Fundamental Concepts
	Gather Business Requirements and Data Realities37
	Collaborative Dimensional Modeling Workshops
	Four-Step Dimensional Design Process
	Business Processes
	Grain
	Dimensions for Descriptive Context
	Facts for Measurements
	Star Schemas and OLAP Cubes
	Graceful Extensions to Dimensional Models41
	Basic Fact Table Techniques
	Fact Table Structure
	Additive, Semi-Additive, Non-Additive Facts
	Nulls in Fact Tables
	Conformed Facts
	Transaction Fact Tables
	Periodic Snapshot Fact Tables
	Accumulating Snapshot Fact Tables
	Factless Fact Tables
	Aggregate Fact Tables or OLAP Cubes
	Consolidated Fact Tables
	Basic Dimension Table Techniques
	Dimension Table Structure46
	Dimension Surrogate Keys
	Natural, Durable, and Supernatural Keys
	Drilling Down
	Degenerate Dimensions47
	Denormalized Flattened Dimensions
	Multiple Hierarchies in Dimensions
	Flags and Indicators as Textual Attributes48
	Null Attributes in Dimensions
	Calendar Date Dimensions48
	Role-Playing Dimensions
	lunk Dimensions

	Snowflaked Dimensions
	Outrigger Dimensions
Inte	gration via Conformed Dimensions
	Conformed Dimensions
	Shrunken Dimensions
	Drilling Across
	Value Chain
	Enterprise Data Warehouse Bus Architecture
	Enterprise Data Warehouse Bus Matrix52
	Detailed Implementation Bus Matrix
	Opportunity/Stakeholder Matrix
Dea	aling with Slowly Changing Dimension Attributes
	Type 0: Retain Original54
	Type 1: Overwrite
	Type 2: Add New Row
	Type 3: Add New Attribute
	Type 4: Add Mini-Dimension
	Type 5: Add Mini-Dimension and Type 1 Outrigger55
	Type 6: Add Type 1 Attributes to Type 2 Dimension
	Type 7: Dual Type 1 and Type 2 Dimensions
Dea	aling with Dimension Hierarchies56
	Fixed Depth Positional Hierarchies
	Slightly Ragged/Variable Depth Hierarchies
	Ragged/Variable Depth Hierarchies with Hierarchy Bridge Tables 57
	Ragged/Variable Depth Hierarchies with Pathstring Attributes57
Ad۱	vanced Fact Table Techniques58
	Fact Table Surrogate Keys
	Centipede Fact Tables
	Numeric Values as Attributes or Facts
	Lag/Duration Facts59
	Header/Line Fact Tables
	Allocated Facts60
	Profit and Loss Fact Tables Using Allocations
	Multiple Currency Facts
	Multiple Units of Measure Facts

xii Contents

Year-to-Date Facts	61
Multipass SQL to Avoid Fact-to-Fact Table Joins	61
Timespan Tracking in Fact Tables	62
Late Arriving Facts	62
Advanced Dimension Techniques	62
Dimension-to-Dimension Table Joins	62
Multivalued Dimensions and Bridge Tables	63
Time Varying Multivalued Bridge Tables	63
Behavior Tag Time Series	63
Behavior Study Groups	64
Aggregated Facts as Dimension Attributes	64
Dynamic Value Bands	64
Text Comments Dimension	65
Multiple Time Zones	65
Measure Type Dimensions	65
Step Dimensions	65
Hot Swappable Dimensions	66
Abstract Generic Dimensions	66
Audit Dimensions	66
Late Arriving Dimensions	67
Special Purpose Schemas	67
Supertype and Subtype Schemas for Heterogeneous Products	67
Real-Time Fact Tables	68
Error Event Schemas	68
3 Retail Sales	69
Four-Step Dimensional Design Process	70
Step 1: Select the Business Process	70
Step 2: Declare the Grain	71
Step 3: Identify the Dimensions	72
Step 4: Identify the Facts	72
Retail Case Study	72
Step 1: Select the Business Process	74
Step 2: Declare the Grain	74
Step 3: Identify the Dimensions	76

	Step 4: Identify the Facts	6
	Dimension Table Details	9
	Date Dimension	9
	Product Dimension	3
	Store Dimension	7
	Promotion Dimension	9
	Other Retail Sales Dimensions	2
	Degenerate Dimensions for Transaction Numbers	3
	Retail Schema in Action	4
	Retail Schema Extensibility9	5
	Factless Fact Tables	7
	Dimension and Fact Table Keys9	8
	Dimension Table Surrogate Keys	8
	Dimension Natural and Durable Supernatural Keys	0
	Degenerate Dimension Surrogate Keys)1
	Date Dimension Smart Keys10	1
	Fact Table Surrogate Keys	2
	Resisting Normalization Urges	4
	Snowflake Schemas with Normalized Dimensions	4
	Outriggers	6
	Centipede Fact Tables with Too Many Dimensions10	8
	Summary	9
4	Inventory	1
	Value Chain Introduction	
	Inventory Models	
	Inventory Periodic Snapshot	
	Inventory Transactions	
	Inventory Accumulating Snapshot	
	Fact Table Types	
	Transaction Fact Tables	
	Periodic Snapshot Fact Tables	
	Accumulating Snapshot Fact Tables	
	Complementary Fact Table Types	

xiv Contents

	Value Chain Integration	122
	Enterprise Data Warehouse Bus Architecture	123
	Understanding the Bus Architecture	124
	Enterprise Data Warehouse Bus Matrix	125
	Conformed Dimensions	130
	Drilling Across Fact Tables	130
	Identical Conformed Dimensions	131
	Shrunken Rollup Conformed Dimension with Attribute Subset $$	132
	Shrunken Conformed Dimension with Row Subset	132
	Shrunken Conformed Dimensions on the Bus Matrix	134
	Limited Conformity	
	Importance of Data Governance and Stewardship	
	Conformed Dimensions and the Agile Movement	137
	Conformed Facts	138
	Summary	139
5	Procurement	141
	Procurement Case Study	141
	Procurement Transactions and Bus Matrix	142
	Single Versus Multiple Transaction Fact Tables	143
	Complementary Procurement Snapshot	147
	Slowly Changing Dimension Basics	147
	Type 0: Retain Original	148
	Type 1: Overwrite	149
	Type 2: Add New Row	150
	Type 3: Add New Attribute	154
	Type 4: Add Mini-Dimension	156
	Hybrid Slowly Changing Dimension Techniques	159
	Type 5: Mini-Dimension and Type 1 Outrigger	160
	Type 6: Add Type 1 Attributes to Type 2 Dimension	160
	Type 7: Dual Type 1 and Type 2 Dimensions	162
	Slowly Changing Dimension Recap	164
	Summary	165

6	Order Management
	Order Management Bus Matrix
	Order Transactions
	Fact Normalization
	Dimension Role Playing
	Product Dimension Revisited
	Customer Dimension
	Deal Dimension
	Degenerate Dimension for Order Number178
	Junk Dimensions
	Header/Line Pattern to Avoid
	Multiple Currencies
	Transaction Facts at Different Granularity184
	Another Header/Line Pattern to Avoid
	Invoice Transactions
	Service Level Performance as Facts, Dimensions, or Both
	Profit and Loss Facts
	Audit Dimension
	Accumulating Snapshot for Order Fulfillment Pipeline194
	Lag Calculations
	Multiple Units of Measure
	Beyond the Rearview Mirror198
	Summary
7	Accounting
	Accounting Case Study and Bus Matrix202
	General Ledger Data
	General Ledger Periodic Snapshot
	Chart of Accounts
	Period Close
	Year-to-Date Facts
	Multiple Currencies Revisited
	General Ledger Journal Transactions

xvi Contents

	Multiple Fiscal Accounting Calendars	208
	Drilling Down Through a Multilevel Hierarchy	209
	Financial Statements	209
	Budgeting Process	210
	Dimension Attribute Hierarchies	214
	Fixed Depth Positional Hierarchies	214
	Slightly Ragged Variable Depth Hierarchies	214
	Ragged Variable Depth Hierarchies	215
	Shared Ownership in a Ragged Hierarchy	219
	Time Varying Ragged Hierarchies	220
	Modifying Ragged Hierarchies	220
	Alternative Ragged Hierarchy Modeling Approaches	221
	Advantages of the Bridge Table Approach for Ragged Hierarchies	223
	Consolidated Fact Tables	224
	Role of OLAP and Packaged Analytic Solutions	226
	Summary	227
8	Customer Relationship Management	
	CRM Overview	230
	Operational and Analytic CRM	231
	Customer Dimension Attributes	233
	Name and Address Parsing	233
	International Name and Address Considerations	236
	Customer-Centric Dates	238
	Aggregated Facts as Dimension Attributes	239
	Segmentation Attributes and Scores	240
	Counts with Type 2 Dimension Changes	243
	Outrigger for Low Cardinality Attribute Set	
	Customer Hierarchy Considerations	244
	Bridge Tables for Multivalued Dimensions	245
	Bridge Table for Sparse Attributes	247
	Bridge Table for Multiple Customer Contacts	248
	Complex Customer Behavior	249
	Behavior Study Groups for Cohorts	249

	Step Dimension for Sequential Behavior	. 251
	Timespan Fact Tables	. 252
	Tagging Fact Tables with Satisfaction Indicators	.254
	Tagging Fact Tables with Abnormal Scenario Indicators	. 255
	Customer Data Integration Approaches	.256
	Master Data Management Creating a Single Customer Dimension .	.256
	Partial Conformity of Multiple Customer Dimensions	
	Avoiding Fact-to-Fact Table Joins	
	Low Latency Reality Check	
	Summary	. 261
9	Human Resources Management	263
	Employee Profile Tracking	. 263
	Precise Effective and Expiration Timespans	. 265
	Dimension Change Reason Tracking	.266
	Profile Changes as Type 2 Attributes or Fact Events	. 267
	Headcount Periodic Snapshot	. 267
	Bus Matrix for HR Processes	.268
	Packaged Analytic Solutions and Data Models	. 270
	Recursive Employee Hierarchies	. 271
	Change Tracking on Embedded Manager Key	. 272
	Drilling Up and Down Management Hierarchies	. 273
	Multivalued Skill Keyword Attributes	. 274
	Skill Keyword Bridge	
	Skill Keyword Text String	. 276
	Survey Questionnaire Data	. 277
	Text Comments	. 278
	Summary	. 279
10	Financial Services	281
	Banking Case Study and Bus Matrix	. 282
	Dimension Triage to Avoid Too Few Dimensions	. 283
	Household Dimension	.286
	Multivalued Dimensions and Weighting Factors	. 287

xviii Contents

	Mini-Dimensions Revisited	289
	Adding a Mini-Dimension to a Bridge Table	290
	Dynamic Value Banding of Facts	291
	Supertype and Subtype Schemas for Heterogeneous Products	293
	Supertype and Subtype Products with Common Facts	295
	Hot Swappable Dimensions	296
	Summary	296
11	Telecommunications	297
	Telecommunications Case Study and Bus Matrix	297
	General Design Review Considerations	299
	Balance Business Requirements and Source Realities	300
	Focus on Business Processes	300
	Granularity	300
	Single Granularity for Facts	301
	Dimension Granularity and Hierarchies	
	Date Dimension	302
	Degenerate Dimensions	
	Surrogate Keys	
	Dimension Decodes and Descriptions	
	Conformity Commitment	
	Design Review Guidelines	
	Draft Design Exercise Discussion	
	Remodeling Existing Data Structures	
	Geographic Location Dimension	310
	Summary	310
12	Transportation	311
	Airline Case Study and Bus Matrix	311
	Multiple Fact Table Granularities	312
	Linking Segments into Trips	315
	Related Fact Tables	316
	Extensions to Other Industries	317
	Cargo Shipper	317
	Travel Services	317

	Combining Correlated Dimensions	318
	Class of Service	319
	Origin and Destination	320
	More Date and Time Considerations	321
	Country-Specific Calendars as Outriggers	321
	Date and Time in Multiple Time Zones	323
	Localization Recap	324
	Summary	324
13	Education	325
	University Case Study and Bus Matrix	325
	Accumulating Snapshot Fact Tables	326
	Applicant Pipeline	
	Research Grant Proposal Pipeline	329
	Factless Fact Tables	329
	Admissions Events	330
	Course Registrations	
	Facility Utilization	
	Student Attendance	335
	More Educational Analytic Opportunities	336
	Summary	336
14	Healthcare	339
	Healthcare Case Study and Bus Matrix	339
	Claims Billing and Payments	342
	Date Dimension Role Playing	345
	Multivalued Diagnoses	345
	Supertypes and Subtypes for Charges	347
	Electronic Medical Records	348
	Measure Type Dimension for Sparse Facts	349
	Freeform Text Comments	350
	lmages	350
	Facility/Equipment Inventory Utilization	351
	Dealing with Retroactive Changes	351
	Summary	352

15	Electronic Commerce
	Clickstream Source Data353
	Clickstream Data Challenges
	Clickstream Dimensional Models
	Page Dimension
	Event Dimension
	Session Dimension
	Referral Dimension
	Clickstream Session Fact Table
	Clickstream Page Event Fact Table
	Step Dimension
	Aggregate Clickstream Fact Tables
	Google Analytics
	Integrating Clickstream into Web Retailer's Bus Matrix
	Profitability Across Channels Including Web
	Summary
16	Insurance
	Insurance Case Study
	Insurance Value Chain
	Draft Bus Matrix
	Policy Transactions
	Dimension Role Playing
	Slowly Changing Dimensions
	Mini-Dimensions for Large or Rapidly Changing Dimensions381
	Multivalued Dimension Attributes
	Numeric Attributes as Facts or Dimensions
	Degenerate Dimension
	Low Cardinality Dimension Tables
	Audit Dimension
	Policy Transaction Fact Table
	Heterogeneous Supertype and Subtype Products
	Complementary Policy Accumulating Snapshot384
	Premium Periodic Snapshot
	Conformed Dimensions
	Conformed Facts

	Pay-in-Advance Facts
	Heterogeneous Supertypes and Subtypes Revisited
	Multivalued Dimensions Revisited
	More Insurance Case Study Background388
	Updated Insurance Bus Matrix
	Detailed Implementation Bus Matrix
	Claim Transactions
	Transaction Versus Profile Junk Dimensions
	Claim Accumulating Snapshot392
	Accumulating Snapshot for Complex Workflows
	Timespan Accumulating Snapshot
	Periodic Instead of Accumulating Snapshot
	Policy/Claim Consolidated Periodic Snapshot
	Factless Accident Events
	Common Dimensional Modeling Mistakes to Avoid
	Mistake 10: Place Text Attributes in a Fact Table
	Mistake 9: Limit Verbose Descriptors to Save Space
	Mistake 8: Split Hierarchies into Multiple Dimensions398
	Mistake 7: Ignore the Need to Track Dimension Changes 398
	Mistake 6: Solve All Performance Problems with More Hardware 399
	Mistake 5: Use Operational Keys to Join Dimensions and Facts 399
	Mistake 4: Neglect to Declare and Comply with the Fact Grain 399
	Mistake 3: Use a Report to Design the Dimensional Model 400
	Mistake 2: Expect Users to Query Normalized Atomic Data 400
	Mistake 1: Fail to Conform Facts and Dimensions400
	Summary
17	Kimball DW/BI Lifecycle Overview
	Lifecycle Roadmap
	Roadmap Mile Markers
	Lifecycle Launch Activities
	Program/Project Planning and Management
	Business Requirements Definition410
	Lifecycle Technology Track
	Technical Architecture Design
	Product Selection and Installation

xxii Contents

	Lifecycle Data Track	0
	Dimensional Modeling420	0
	Physical Design	0
	ETL Design and Development	2
	Lifecycle BI Applications Track	2
	BI Application Specification	3
	BI Application Development	3
	Lifecycle Wrap-up Activities	4
	Deployment42	4
	Maintenance and Growth	5
	Common Pitfalls to Avoid420	6
	Summary	7
18	Dimensional Modeling Process and Tasks	9
	Modeling Process Overview	9
	Get Organized	1
	Identify Participants, Especially Business Representatives	1
	Review the Business Requirements43.	2
	Leverage a Modeling Tool	2
	Leverage a Data Profiling Tool	3
	Leverage or Establish Naming Conventions	3
	Coordinate Calendars and Facilities	3
	Design the Dimensional Model43	4
	Reach Consensus on High-Level Bubble Chart	5
	Develop the Detailed Dimensional Model	6
	Review and Validate the Model	9
	Finalize the Design Documentation	1
	Summary	1
19	ETL Subsystems and Techniques 443	3
	Round Up the Requirements	4
	Business Needs	4
	Compliance	5
	Data Quality	5
	Security	6
	Data Integration	6

Data Latency
Archiving and Lineage
BI Delivery Interfaces
Available Skills
Legacy Licenses
The 34 Subsystems of ETL
Extracting: Getting Data into the Data Warehouse
Subsystem 1: Data Profiling
Subsystem 2: Change Data Capture System45
Subsystem 3: Extract System
Cleaning and Conforming Data
Improving Data Quality Culture and Processes
Subsystem 4: Data Cleansing System
Subsystem 5: Error Event Schema45
Subsystem 6: Audit Dimension Assembler
Subsystem 7: Deduplication System46
Subsystem 8: Conforming System
Delivering: Prepare for Presentation
Subsystem 9: Slowly Changing Dimension Manager
Subsystem 10: Surrogate Key Generator46
Subsystem 11: Hierarchy Manager
Subsystem 12: Special Dimensions Manager
Subsystem 13: Fact Table Builders47
Subsystem 14: Surrogate Key Pipeline47
Subsystem 15: Multivalued Dimension Bridge Table Builder47
Subsystem 16: Late Arriving Data Handler
Subsystem 17: Dimension Manager System
Subsystem 18: Fact Provider System48
Subsystem 19: Aggregate Builder48
Subsystem 20: OLAP Cube Builder48
Subsystem 21: Data Propagation Manager48
Managing the ETL Environment
Subsystem 22: Job Scheduler48
Subsystem 23: Backup System
Subsystem 24: Recovery and Restart System 48

xxiv Contents

Subsystem 25: Version Control System	488
Subsystem 26: Version Migration System	488
Subsystem 27: Workflow Monitor	489
Subsystem 28: Sorting System	490
Subsystem 29: Lineage and Dependency Analyzer	490
Subsystem 30: Problem Escalation System	491
Subsystem 31: Parallelizing/Pipelining System	492
Subsystem 32: Security System	492
Subsystem 33: Compliance Manager	493
Subsystem 34: Metadata Repository Manager	495
Summary	496
20 ETL System Design and Development Process and Tasks	497
ETL Process Overview	497
Develop the ETL Plan	498
Step 1: Draw the High-Level Plan	498
Step 2: Choose an ETL Tool	499
Step 3: Develop Default Strategies	500
Step 4: Drill Down by Target Table	500
Develop the ETL Specification Document	502
Develop One-Time Historic Load Processing	503
Step 5: Populate Dimension Tables with Historic Data	503
Step 6: Perform the Fact Table Historic Load	508
Develop Incremental ETL Processing	512
Step 7: Dimension Table Incremental Processing	512
Step 8: Fact Table Incremental Processing	515
Step 9: Aggregate Table and OLAP Loads	519
Step 10: ETL System Operation and Automation	519
Real-Time Implications	520
Real-Time Triage	521
Real-Time Architecture Trade-Offs	522
Real-Time Partitions in the Presentation Server	524
Summary	526

21	Big Data Analytics
	Big Data Overview
	Extended RDBMS Architecture529
	MapReduce/Hadoop Architecture
	Comparison of Big Data Architectures
	Recommended Best Practices for Big Data
	Management Best Practices for Big Data
	Architecture Best Practices for Big Data
	Data Modeling Best Practices for Big Data
	Data Governance Best Practices for Big Data
	Summary
	Index543

Introduction

The data warehousing and business intelligence (DW/BI) industry certainly has matured since Ralph Kimball published the first edition of *The Data Warehouse Toolkit* (Wiley) in 1996. Although large corporate early adopters paved the way, DW/BI has since been embraced by organizations of all sizes. The industry has built thousands of DW/BI systems. The volume of data continues to grow as warehouses are populated with increasingly atomic data and updated with greater frequency. Over the course of our careers, we have seen databases grow from megabytes to gigabytes to terabytes to petabytes, yet the basic challenge of DW/BI systems has remained remarkably constant. Our job is to marshal an organization's data and bring it to business users for their decision making. Collectively, you've delivered on this objective; business professionals everywhere are making better decisions and generating payback on their DW/BI investments.

Since the first edition of *The Data Warehouse Toolkit* was published, dimensional modeling has been broadly accepted as the dominant technique for DW/BI presentation. Practitioners and pundits alike have recognized that the presentation of data must be grounded in simplicity if it is to stand any chance of success. Simplicity is the fundamental key that allows users to easily understand databases and software to efficiently navigate databases. In many ways, dimensional modeling amounts to holding the fort against assaults on simplicity. By consistently returning to a business-driven perspective and by refusing to compromise on the goals of user understandability and query performance, you establish a coherent design that serves the organization's analytic needs. This dimensionally modeled framework becomes the *platform for BI*. Based on our experience and the overwhelming feedback from numerous practitioners from companies like your own, we believe that dimensional modeling is absolutely critical to a successful DW/BI initiative.

Dimensional modeling also has emerged as the leading architecture for building integrated DW/BI systems. When you use the conformed dimensions and conformed facts of a set of dimensional models, you have a practical and predictable framework for incrementally building complex DW/BI systems that are inherently distributed.

For all that has changed in our industry, the core dimensional modeling techniques that Ralph Kimball published 17 years ago have withstood the test of time. Concepts such as conformed dimensions, slowly changing dimensions, heterogeneous products, factless fact tables, and the enterprise data warehouse bus matrix

continue to be discussed in design workshops around the globe. The original concepts have been embellished and enhanced by new and complementary techniques. We decided to publish this third edition of Kimball's seminal work because we felt that it would be useful to summarize our collective dimensional modeling experience under a single cover. We have each focused exclusively on decision support, data warehousing, and business intelligence for more than three decades. We want to share the dimensional modeling patterns that have emerged repeatedly during the course of our careers. This book is loaded with specific, practical design recommendations based on real-world scenarios.

The goal of this book is to provide a one-stop shop for dimensional modeling techniques. True to its title, it is a toolkit of dimensional design principles and techniques. We address the needs of those just starting in dimensional DW/BI and we describe advanced concepts for those of you who have been at this a while. We believe that this book stands alone in its depth of coverage on the topic of dimensional modeling. It's the definitive guide.

Intended Audience

This book is intended for data warehouse and business intelligence designers, implementers, and managers. In addition, business analysts and data stewards who are active participants in a DW/BI initiative will find the content useful.

Even if you're not directly responsible for the dimensional model, we believe it is important for all members of a project team to be comfortable with dimensional modeling concepts. The dimensional model has an impact on most aspects of a DW/BI implementation, beginning with the translation of business requirements, through the extract, transformation and load (ETL) processes, and finally, to the unveiling of a data warehouse through business intelligence applications. Due to the broad implications, you need to be conversant in dimensional modeling regardless of whether you are responsible primarily for project management, business analysis, data architecture, database design, ETL, BI applications, or education and support. We've written this book so it is accessible to a broad audience.

For those of you who have read the earlier editions of this book, some of the familiar case studies will reappear in this edition; however, they have been updated significantly and fleshed out with richer content, including sample enterprise data warehouse bus matrices for nearly every case study. We have developed vignettes for new subject areas, including big data analytics.

The content in this book is somewhat technical. We primarily discuss dimensional modeling in the context of a relational database with nuances for online