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Foreword

Plant Disease Epidemiology: Facing Challenges of

the 21st Century

Plant disease epidemiology deals with diseases in
plant populations. During the past century, it has
become a vibrant field of science, achieving signif-
icant conceptual innovations with important im-
pact on the management of plant diseases. Plant
disease epidemiology mobilises concepts and
methods from ecology, genetics, environmental
physics, botany, and mathematics. It deals with
cultivated and non-cultivated plants in environ-
ments where human activities have had large, or
lesser, impact. As in many other fields of science,
plant disease epidemiology faces important, some-
times new, questions. By and large, many of these
questions emerge from changes in human societies
and changes in the status of the planet on which we
live.

Global climate is changing at a rapid rate: will it
render plant diseases more, or less, harmful to man-
made and spontaneous ecosystems? There is much
debate on this issue, because global climate has
varying, sometimes very large effects on the local
environment of growing plant canopies, and be-
cause the physical micro-environment and its var-
iation strongly influence plant diseases and their
consequences on ecosystem functioning and per-
formance; in addition, changes in global climate
trigger many profound changes in the way ecosys-
tems, cultivated or not, are managed. Interest-
ingly, much of the early literature on botanical
epidemiology dealt with climate-disease or climate-
pathogen relationships – in fact these kinds of
relationships have long been perceived as the bulk
of epidemiological research by many. Plant disease
epidemiologists thus have a strong scientific tradi-
tion in studying climate-pathogen-disease rela-
tionships. Can such an asset be mobilised by the
epidemiological community to answer questions
about the effect of climate change on plant diseases?

Global trade, and thus, trade of plant products,
have increased at an unprecedented rate during the

20th century, and will continue to expand in the
next century. Exchanges of plant materials at very
different scales, local to global, have profound ef-
fects on plant diseases. Plant disease epidemiolo-
gists have become experts in assessing the risk of
irruption of novel pathogens in plant communities,
the consequences it may have on ecosystems, and
ways to manage such perturbations. The concepts
related to biological invasions or population dis-
placements certainly are not new to plant pathol-
ogists: the epidemiological community in fact
contributed to craft them in the past century. New
threats may now also exist, whereby exotic or
novel plant pathogens would intentionally be
introduced: these threats must be dealt with. The
consequences of plant pathogen transport are
many: on local performances of spontaneous
ecosystems and agricultural ecosystems; on farm-
ers’ livelihoods; on local, national, and regional
economies; and perhaps more importantly, they
can have adverse consequences on trade regula-
tion. Will plant disease epidemiologists provide
answers to such pressing questions?

Biodiversity, a buzzword of the past century, is
also of global concern. The decline in global bio-
diversity that is currently taking place has been
referred to as the sixth great extinction process our
planet has experienced during its history, but this
time, it is man-made. Generations of plant
pathologists, and especially of plant disease epi-
demiologists, have been dealing with biodiversity.
The huge diversity of life that resides in the rhi-
zosphere and the phyllosphere are causes both of
diseases in plants, and of their suppression. Much
current research is addressing ways of harnessing
such biodiversity not as enemies – of which
pathogens are an inherent part – but rather as
important biological allies to control disease epi-
demics. The diversity of plants is another facet of
global biodiversity, and there are concerns about
the decline in the genetic diversity of crop plants. It
is from this diversity that possibly the most potent
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instrument for disease management has been
developed by plant pathologists: genetic host plant
resistance. Will we run short of resistance genes
against major plant pathogens? Host plant diver-
sity, and the disease resistance genes it harbours,
can be deployed over time and space, according to
epidemiological principles. In-depth knowledge of
the characteristics of individual pathogens causing
specific diseases that must be controlled has been
mobilised to develop appropriate strategies at the
plant population, field, landscape, and sub-re-
gional levels. Major successes have been achieved
using such strategies, and the end of the past
century has seen their recognition by the scientific
community. Will epidemiologists succeed in the
future in fully sharing these technologies with the
farmer so that they are more fully utilised?

Food security was a central concern of the
global agricultural research community in the
middle of the 20th century, but apparently, not
anymore. However, the world population still
increases, and is expected to do so for several
decades. One out of six human beings living on
earth today suffers from lack of food. Many of
today’s poor live in cities, with no access to land
and agriculture, and most of the projected in-
crease in the world population will take place in
the world’s largest cities. Pests, including plant
pathogens, cause losses in pre-harvest yield in the
range of 20–40%; estimates of post-harvest losses
are inadequate, but it is a fair assumption that
they are often higher than 10 or 20%. Why are
our estimates – the raison d’être of plant pathol-
ogy – still so vague today? Seldom do economists
currently address the issue of food security – why?

Is it so that globalised exchanges, novel biological
technologies, and the self-regulating mechanisms
of trade, will be sufficient to fulfil the needs of
future generations? Will these not have negative
side-effects, and will they truly prevent the current
over exploitation of natural resources, water and
land in particular?

Sustainable production and crop protection
systems need to be devised, which could exploit
scarcer resources sparingly, and if possible en-
hance the resource base. Can these production and
protection systems be designed so that they gen-
erate healthy, high-quality products that would
find niche markets both locally and globally, and
so provide farmers with the income they require,
and offer consumers products that suit their needs
and their incomes? Plant disease epidemiologists
alone cannot provide answers to such questions,
but certainly could significantly contribute to these
new strategies.

The five-day International Plant Disease Epi-
demiology Workshop (held 10–15th April, 2005,
in Landernau, France, the ninth of a series) re-
ported in this special issue of the European
Journal of Plant Pathology, obviously could not
address all of these issues, and others, with all the
depth good science demands. However it provided
a unique opportunity for scientists interested in
this field to meet and face challenging questions,
contribute to animated debates, and reflect on the
future development of the science of plant disease
epidemiology.

SERGEERGE SAVARYAVARY

MIKEIKE COOKEOOKE
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Abstract

Epidemiology involves the study of the temporal, spatial, and spatio-temporal dynamics of disease in
populations, and the utilization of results of experiments and surveys to describe, understand, compare, and
predict epidemics. Such understanding and description of epidemics can lead directly to the development
and evaluation of efficient control strategies and tactics. Mathematical and statistical models are key tools
of the epidemiologist. Recent advances in statistics, including linear and nonlinear mixed models, are
allowing a more appropriate matching of data type and experimental (or survey) design to the statistical
model used for analysis, in order to meet the objectives of the investigator. Coupled ordinary and partial
differential equations, as well as simpler growth-curve equations, are especially useful deterministic models
for representing plant disease development in fields in time and space over single seasons or many years,
and their use can lead to appraisal of control strategies through metrics such as the basic reproduction
number, a summary parameter that may be calculated for many general epidemic scenarios. Recently,
compelling arguments have been made for the use of Bayesian decision theory in developing and evaluating
real-time disease prediction rules, based on measured disease or weather conditions and either empirical or
mechanistic models for disease or control intervention. Through some simple calculations of predictor
accuracy and (prior) probability of an epidemic (or the need for control), the success of any predictor can
be quantified in terms of the estimated probability of random observations being epidemics when predicted
to be epidemics or not epidemics. Overall, despite the many contributions in epidemiology over the past
four decades, more effort is still needed to convince those outside of epidemiology to more fully use
epidemiological results and insights into the development and evaluation of disease controls.

Introduction

In 1963, van der Plank made a most compelling
case for the importance of botanical epidemiology,
both for understanding plant diseases at the pop-
ulation scale and for determining disease man-
agement strategies (van der Plank, 1963). He also
made the bold statement at the time that ‘epide-
miology is here to stay.’ Individual disciplines en-
joy ‘ups and downs’ of popularity, of course, and
epidemiology is no exception. The tremendous

growth in the discipline within plant pathology
during the 1960s, 1970s, and 1980s (e.g., Campbell
and Madden, 1990; Kranz, 1990; Jones, 1998;
Zadoks, 2001) has been eclipsed by growth in the
larger field of molecular biology over the last two
decades. Nevertheless, more than 40 years after
van der Plank’s book (1963), botanical epidemi-
ology is still here, and still of utmost importance in
giving a sound theoretical and practical basis for
disease management. This view may not always be
held outside of the discipline, however, and it
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remains a challenge for epidemiologists to con-
tinue to make the compelling case that epidemi-
ology matters.

Until molecular biology or more traditional
breeding results in durable resistance to all plant
pathogens on all crops, coupled with the accep-
tance of the new cultivars by growers and the
public, there will be plant disease epidemics, and
many of these will result in substantial reductions
in yield. There is certainly increasing use of crop
GMOs around the world (James, 2003), but cul-
tivars with very broad-acting and durable resis-
tance have yet to be developed. Moreover, the
public opinion against their use remains strong in
many regions; thus, it would be naı̈ve to expect
‘super resistant’ cultivars in the foreseeable future.
Use of fungicides and other chemicals in a pro-
tectant or curative manner is only practical for
some crops and some diseases, and there is
increasing societal pressure to (drastically) reduce
the use of these chemicals in many regions. Thus, a
scientific basis for applying or not applying
chemicals is needed, and the decision clearly in-
volves knowledge (or prediction) of the disease
dynamics under different environmental condi-
tions. The development of resistance to fungicides
and antibiotics continues, and new cultivars have a
finite lifetime.

No control tactics are known that will totally
eliminate epidemics in crops and forests where the
pathogen is present over large areas. Biological
and cultural controls may be very beneficial,
depending on the pathosystem (Maloy, 1993), but
variability of control efficacy may be high with the
former, and grower acceptance may be low with
the latter (e.g., unwillingness to rotate crops).

The public and the scientific community have
been definitely reminded of the importance of
epidemiology, and the research tools that epi-
demiologists can bring to a problem, in recent
years. A few examples are given. With increasing
world trade of agricultural commodities as well as
international travel, the risk of pathogen invasion
of new countries or regions is well recognized
(NRC, 2002), and predictions of the risk of inva-
sion involve many epidemiological characteristics
of pathogens, such as survival probabilities and
reproductive potential (Madden and Wheelis,
2003). Moreover, the decision to attempt to erad-
icate or not also involves knowledge of disease
epidemiology. The cases of citrus canker in Flor-

ida, karnal bunt in Arizona, and plum pox in
Pennsylvania, U.S., are three examples of disease
invasions (Gildow et al., 2004; Gottwald et al.,
2001; Rush et al., 2005).

New pathogens (or pathogens new to a given
crop) continue to be discovered, as well as strains,
races, or biotypes of previously known pathogens.
The new very aggressive biotype of African cas-
sava mosaic virus in Africa is an example of a
newly evolved isolate (Legg, 1999; Strange and
Scott, 2005) that is proving very difficult to con-
trol. Sudden oak death, caused by Phytophthora
ramorum, is a newly identified disease of oak and
several other plant species, which is spreading
naturally and (unfortunately) with the assistance
of man, in the U.S. and elsewhere (Rizzo et al.,
2002).

For diseases such as sudden oak death or Asian
soybean rust (newly introduced into the U.S.),
there is a great need to know the extent of spread
from current locations (e.g., from the point of
introduction) to other locations. For any disease
that is locally concentrated (e.g., around the point
of a new introduction), or does not yet exist in a
country or region, ethically one cannot deliber-
ately introduce the pathogen where it does not
occur in order to study spore movement and
resulting disease intensity. Thus, modelling is a key
research tool for understanding risks based on key
epidemiological characteristics or traits of a dis-
ease (Madden and van den Bosch, 2002; Madden
and Wheelis, 2003). Epidemiology as a discipline
depends heavily on the tools of mathematical and
statistical modelling (Campbell and Madden,
1990), so epidemiologists are, in general, quite
prepared to tackle the problem of disease spread
through modelling. Model parameters for these
types of situations can be obtained from observa-
tions where the disease of interest does occur
naturally.

Most practicing epidemiologists would strongly
support van der Plank’s (1963) statement that
epidemiology sets the strategy for disease control,
and numerous examples can be given where epi-
demic knowledge leads to better control (Zadoks
and Schein, 1979; Fry, 1982; Maloy, 1993). Fur-
thermore, epidemiological principles and results
can also lead to specific control recommendations,
through the process of disease forecasting or risk
prediction (Hardwick, 1998; Hughes et al., 1999),
as demonstrated 45 years ago (Waggoner, 1960).
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However, as pointed out recently by Jeger (2004),
many controls are utilized and evaluated without
explicit consideration of disease dynamics in fields.
Although there is great danger in basing conclu-
sions on disease intensity measured at one time in
an epidemic (especially for polycyclic diseases; see
Campbell and Madden, 1990), this unfortunately
happens too often. Thus, epidemiologists still need
to be pro-active in working with others in devel-
oping and evaluating disease control measures.

In the remainder of this article, I discuss a few
developments that I consider to be very important
in the development of plant disease epidemiology.
Many more topics could have been covered. I have
two major themes. One deals with the advance-
ment in our theoretical understanding of the
population-dynamic processes of disease spread in
space and increase in time, coupled with the
improvements in relating certain models (or their
parameters) to empirical results (i.e., model fit-
ting). The other theme deals with the prediction of
plant disease on a real-time basis, or prediction of
the need to impose a control measure, based on
principles from probability theory. Citations are
deliberately sparse, and are mainly to major re-
views of topics rather than to all the (many)
important original papers published over the last
few decades. I assume throughout that modelling
and statistical data analysis are methodological
foundations for understanding epidemics and uti-
lizing any gained knowledge in disease control.

Temporal and spatial dynamics of disease

Growth curve modelling and analysis

Van der Plank (1963) used the monomolecular and
logistic equations as heuristic models of monocy-
clic (simple interest) and polycyclic (compound
interest) disease epidemics. These models continue
to be the benchmarks for quantification of epi-
demics, especially over single growing seasons.
However, plant pathologists discovered in the
1960s and 1970s that these two models did not
necessarily provide an adequate description (based
on statistical principles of model fitting) for many
disease progress curves (Campbell and Madden,
1990). Several alternative models were proposed or
developed, some of them flexible in the sense that
different degrees of skewness could be represented

with the same model (depending on a realized
value of a shape parameter). A feature of these
models is that they are all based on a single re-
sponse variable (disease intensity, y) in relation to
continuous time, which can be obtained as a
solution for the rate of change of y with time, dy/dt
[e.g., dy/dt=rLy(1)y) for the logistic model]. In
some cases, the solution can be expressed as a
linear model, e.g., logit(y)=a + rLt, where a is a
transformation of disease intensity at time 0, rL is
the per capita rate parameter, and logit(y) is a
linearizing transformation of y.

A good fit of an empirical model, or even a
perfect fit, to data collected over time, is not proof
of any mechanism for population growth (Camp-
bell and Madden, 1990; Zadoks, 2001). But a good
fit of a particular model for several disease pro-
gress curves could lead one to hypothesize about
mechanisms, and then test the hypothesis with
additional data or experiments. Moreover, using a
model that provides a (reasonably) good fit to data
is extremely important to accurately compare
epidemics; among other things, using an inappro-
priate model will lead to biased estimates of the
rate parameter and its standard error (Neter et al.,
1983).

One clear trend in botanical epidemiology is the
dramatically increasing complexity of statistical
models and methods that have been applied to all
epidemiological data over the last few decades (e.g.,
Gilligan, 2002; van Maanen and Xu, 2003). This is
a natural development given the fact that epide-
miology is a science of populations, and popula-
tions can only be adequately characterized and
compared using the methodology of statistics. Al-
though I am sure there are some who feel that the
emphasis on mathematics and statistics obscures
the understanding of the biology of epidemics, I
would make the opposite claim, and declare
emphatically that mathematical and statistical
modelling are foundations for understanding epi-
demics. I further believe that, with some excep-
tions, the use of statistical analysis is actually still
inadequate in most of epidemiological research,
and certainly in most of plant pathology research!
Many investigators still only: measure disease at a
single time, do not match the chosen form of data
analysis to the type of disease intensity variable
(discrete for incidence, continuous but unequal
variance for severity, ordinal for many disease
rating scales); do not base their analysis on the
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chosen experimental design; or perform inefficient
(and sometimes uninformative) analyses. An
example of the latter is the still common practice of
performing a separate data analysis for each
assessment time during an epidemic rather than
simultaneously analyzing treatments (between-
subject factors) and time (within-subject factors),
and their interactions. Garrett et al. (2004) and
citations therein can lead the reader to some of the
important recent advances in statistical data anal-
ysis of relevance in plant pathology.

It has been known for many years (Madden,
1986) that disease values collected over time in the
same experimental or sampling unit (e.g., plot) are
serially correlated and that the variation in disease
over time within plots is different from the varia-
tion between plots. This may be in part due to the
cumulative nature of disease progress curves (see
pp. 521–522 in Schabenberger and Pierce, 2002,
for general discussion of cumulative processes over
time). Serial correlations, sometimes called tem-
poral autocorrelations, are especially troublesome
in the comparison of treatments. My recent studies
now show, however, that fitting of appropriate
population-growth models to disease progress
data often reduces the correlation of residuals to
near zero for individual disease progress curves,
reducing the need to directly utilize cumbersome
adjustments to standard errors for calculated rates
(unpublished). However, in the larger setting of
multiple disease progress curves, corresponding to
multiple treatment factors and blocks, there will
always be non-zero correlations of observations
within the plots by the nature of the experimental
design (Schabenberger and Pierce, 2002). How-
ever, the structure of the correlations and vari-
ances may be quite complex, due to the cumulative
process of disease development, but simple vari-
ance-covariance models can adjust for this prop-
erty. For disease progress models that can be
expressed in linear form through the use of a
transformation of y [e.g., logit(y)], linear mixed
models provide a tremendous (and still underuti-
lized) tool for a thorough analysis of the epidemics
(Garrett et al., 2004). Most plant pathologists
(including epidemiologists) are not aware of the
major advances made in mixed model analysis in
statistics, a field that encompasses classical ANO-
VA and regression, and many other topics in a
unified manner (Schabenberger and Pierce, 2002;
Garrett et al., 2004). Instead of estimating disease

progress model parameters for each epidemic, with
a follow-up analysis of variance, through mixed
models one can simultaneously estimate the dis-
ease progress parameters and their appropriate
standard errors based on the explicit features of
the design. The former approach (e.g., estimated
slope for each plot, and then an ANOVA of these
slopes), still common with researchers, is known to
be the least powerful approach to detect differ-
ences in treatments (Wolfinger, 1996). Through
these mixed-model methods, random effects (such
as locations, blocks, and possibly genotypes), and
their interactions with fixed effects (treatments)
can be appropriately estimated and realistic infer-
ences made.

Many population dynamic processes can be
expressed only in nonlinear form (e.g., y=f(t; a,b),
where f(d) is a nonlinear function). The recent
advances in nonlinear mixed models (Garrett
et al., 2004) can be applied to these situations, but
the range of experimental designs is much more
limited (currently), and considerably larger data
sets are required to estimate and compare param-
eters. Nevertheless, statistically savvy and moti-
vated epidemiologists can make considerable
progress here.

Mechanistic modelling (linked differential
equations)

Van der Plank (1963) clearly realized that models
such as the logistic were inadequate for a biologi-
cally meaningful characterization of disease pro-
gress in time. His approach was to use a so-called
differential-delay equation in order to represent
polycyclic disease development. This model relates
dy/dt to the infectious disease intensity rather than
to total disease intensity, with infectious disease
estimated based on assumed fixed-duration latent
and infectious periods. Although the use of dif-
ferential-delay equations serve as a good founda-
tion for developing computer simulation models
with fixed time steps, such equations are extremely
cumbersome for mathematical analysis, making it
difficult to explore implications of different bio-
logical properties of hosts and pathogens, or of
different control strategies, on long-term disease
development. Eventually, plant pathologists dis-
covered the mathematical elegance of linked or
coupled differential equations for characterizing
disease progress (Jeger, 1986a, b; van Maanen and
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Xu, 2003). The approach – which was utilized as
long ago as 1911 for representing malaria epi-
demics (Ross, 1911) – is to use two-to-several
differential equations, with some variables of
interest and parameters appearing in more than
one of the equations. The beauty of this approach
is that new terms can be easily added, as needed, to
meet the objectives of the investigator and the
details of the pathosystem, and asymptotic and
steady state results (such as disease persistence)
can be explored quantitatively. Furthermore, even
though analytical solutions cannot generally be
obtained (i.e., one cannot write out y as a function
of parameters and time without the use of the
integral symbol), numerical solutions are now easy
to obtain with many mathematical programmes
such as MATHCAD and MATHEMATICA.

Statistical software such as PROC MODEL of the
SAS/EST system allows direct parameter estimation
of one or more parameters for these types of
models (Madden et al., 1987). The approach is
iterative and computationally intensive, but read-
ily accomplished by those who have a good
understanding of nonlinear models and statistics.
However, unlike the case for models with analyt-
ical solutions (linear or nonlinear; see previous
sub-section above), one cannot easily incorporate
the features of the experimental design (e.g., split
plot, etc.) into the model fitting. Rather, one gen-
erally needs to estimate parameters for each indi-
vidual epidemic (e.g., each field or plot) and then
perform t-tests or analysis of variance on the
estimated parameters (depending on the experi-
mental design).

A relatively simple coupled differential equation
model for a polycyclic disease with no plant mor-
tality is given by:

dH

dt
¼ �bHI

dL

dt
¼ bHI� xL

dI

dt
¼ xL� lI

dR

dt
¼ lI

ð1Þ

where H, L, I and R are the densities of disease-
free (healthy), latently infected, infectious, and
post-infectious (removed) individuals (e.g., plants,
leaves, roots, or even sites on leaves), 1/x is the

mean latent period, 1/l is the mean infectious
period, and b is the per capita transmission rate
(new diseased individuals per diseased individual
per healthy individual per unit time). For fungal
(or oomycetes) diseases, b is the product of spore
production per time unit per infectious individual,
the probability that a spore comes in contact with
a healthy individual, and the probability that a
spore in contact with a healthy host individual
causes an infection. Total disease at any time is
determined as Y=L+I+R, and disease intensity
as a proportion is given by y=Y/(H+L+I+R). If
initial disease intensity is very low, then at t=0,
initial total host density is virtually the same as
initial healthy host density,H0. The product bH0 is
analogous to van der Plank’s (1963) corrected
basic infection rate (new diseased individuals per
diseased individual per unit time).

A fundamental result with this model is that
disease will increase (i.e., an epidemic will occur)
only if bH0/l>1. The expression to the left of the
inequality is known as the basic reproduction
number, R0 (Diekmann and Heesterbeek, 2000).
This composite parameter also indicates the final
intensity of disease (after a long time) and the
initial exponential rate of increase (see Segarra
et al., 2001, for details). An example realization of
the model in equation 1 is shown in Figure 1 for
the situation with R0=2.5. Final disease is less
than 100%, and is estimated by iteratively solving
y¥=1-exp()R0y¥). Control strategies are devel-
oped or evaluated by finding combinations of b,
x, and l that give R0 < 1; specific control tactics
(e.g., host resistance, protectant fungicide, cura-
tive fungicide) can then be directed at reducing b,
etc.

An advantage of the equation 1 formulation is
the easy expansion for other situations. For in-
stance, a simple-interest disease component
(infections from resident inoculum throughout the
epidemic, rather than just at the start) can be
incorporated by using the pxH term, where x is the
density of inoculum and p is a simple-interest rate
parameter. One can consider x to be constant or to
change (typically, decline over time), so that dx/
dt=Jx. When x does not change, then px is
equivalent to the monocyclic rate parameter (rM)
of the monomolecular model. The pxH term is
subtracted from dH/dt and added to dL/dt in
equation 1. A pure simple-interest epidemic results
if b=0; otherwise, a composite of polycyclic and
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monocyclic processes occurs over time, very
typical for root diseases (Gilligan, 2002). Host
mortality can be incorporated by using a death-
rate parameter g. Then gH, gL, gI, and gR are
subtracted from the right hand sides of the equa-
tions for dH/dt, dL/dt, dI/dt, and dR/dt, respec-
tively. Host growth can be incorporated in various
ways. One approach is to consider just a single per
capita growth rate (X) for disease-free individuals,
and add the term X to the right hand side of the
dH/dt equation. Suppose, further, that host size
(e.g., number of citrus trees in a region) is fixed
(say, at Hmax), and that new trees are only planted
if others die. Then, the growth rate is also the
mortality rate, and new host individuals can be
expressed as X=gHmax; the combined growth/
mortality for H can then be written as g(Hmax)H).

A more general epidemic model can be writ-
ten as

dH

dt
¼ �bHI� pxHþ gðHmax �HÞ

dL

dt
¼ bHIþ pxH� xL� gL

dI

dt
¼ xL� lI� gI

dR

dt
¼ lI� gR

dx

dt
¼ �#x

ð2Þ

Note that in this example, total host size
(H+L+I+R) does not change, even though there
is continuous loss and addition of the host indi-
viduals (with a balance between the additions and
losses). This can be seen by noting that
Hmax=H+L+I+R and adding the rates: dH/
dt+dL/dt+dI/dt+dR/dt=0. The model can be
written in different ways to unlink the growth and
mortality, to incorporate more complicated link-
ages, and to account for more than one disease or
more than one host genotype at a time, but the
example is useful to show one model formulation.
When p=0 (no simple interest component), an R0

can be defined for many host-growth/mortality
model situations. For instance, with p=0 (no
simple-interest component), R0=[bHmax/
(l+g)]Æ[x/(x+g)]. An example realization of this
model is shown in the lower frame of Figure 1.
Note that Y (=L+I+R) and H oscillate a little
before settling down to the steady states. The
steady-state level of disease at a given R0 is lower
for the dynamic host than the fixed-host situation
(equation 1); without the simple-interest compo-
nent, the steady state Y is 1)(1/R0).

This approach of using a dynamic (but fixed
total) host population size has been used in plant
disease epidemiology (e.g., Madden et al., 2000),
and even more so in medical epidemiology
(Anderson and May, 1991) to determine whether
or not an epidemic can occur (i.e., a disease inva-
sion) as well as the persistence (or not) of disease
long term. With primary infections occurring
throughout the epidemic (p>0), the concepts be-
come a little more complicated, but there may still
be a threshold (combination of parameters) that
must be met for disease to persist (see review in
Gilligan, 2002, and references cited therein).

Many other biological features can be incorpo-
rated in the model of equation 2. For instance,
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Figure 1. Density of healthy (H), latently infected (L), infec-

tious (I), and post-infectious (R) individuals (on a proportion

scale), together with total disease (Y=L+I+R), based on

equation 1 (upper frame) and equation 2 (lower frame). Mean

latent period (1/x) was 7, and mean infectious period (1/l)
was 10 time units. Upper frame: bH0=0.25 per time unit.

Lower frame: bH0=0.35 per time unit, g=0.02, and p=0 (no

simple-interest component). Because of proportion scale, y

and Y are the same here.
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since most plant viruses are transmitted by
arthropod vectors, the rate of change in H and L
does not directly depend on infectious plant indi-
viduals (I) but on infective vectors per plant (Z).
Thus, the contact rate term, bHI in the first two
equations of the model must be replaced by bHZ,
where Z is the density of infective vectors per
plant. Other components would be unchanged.
There is also a need to add equations for the
dynamics of the vector population, including
virus-free and infective vectors. Details are given in
Madden et al. (2000) and Jeger et al. (2004). Other
expansions can incorporate disruptions caused by
harvesting and/or planting for a multi-season time
scale, as well as host responses to infection (e.g.,
Gilligan, 2002; Madden and van den Bosch, 2002).

The models shown so far are all deterministic.
These can all be expressed in stochastic form,
which is useful if one is specifically interested in
heterogeneity of epidemics, small population sizes,
or the epidemic outcome for individual plants or
plant units. Gilligan (2002) and Gibson et al.
(1999) provide more details. The mathematics
definitely becomes more difficult with stochastic
models.

Some spatial aspects of epidemics

There are two different threads to the character-
ization of the spatial component of plant disease
epidemics. One thread deals with dispersal and
resulting disease gradients, and the use of observed
gradients to elucidate the form of the contact
distribution (Campbell and Madden, 1990), the
probability of a unit of inoculum at one location
(n) coming in contact with a host individual at
location s. This approach has been especially
valuable for determining the rate of disease
expansion from a focus, both within fields and
higher spatial scales (e.g., continents) (van den
Bosch et al., 1999). The contributions of van den
Bosch and Zadoks (see Zadoks, 2001), Ferrandino
(1993), and Aylor (1999) are especially noteworthy
for aerial pathogens, and of Gilligan and col-
leagues (2002) for root diseases.

One of the advantages of the coupled differential
equation approach of the previous section is that it
can be directly expanded to account for disease at
any location as well as any time. With two physical
dimensions, it is now necessary to be explicit in
notation about time t and location s. With two

dimensions, we need to use partial derivatives
rather than ordinary derivatives. Expanding
equation 1, we can write the spatio-temporal
model as:

@Hðt;sÞ
@t

¼�bHðt;sÞ
Z1

�1
Iðt;nÞDðs�nÞdn

@Lðt;sÞ
@t

¼bHðt;sÞ

�
Z1

�1
Iðt;nÞDðs�nÞdn�xLðt;sÞ

@Iðt;sÞ
@t

¼xLðt;sÞ�lIðt;sÞ ð3Þ

@Rðt;sÞ
@t

¼lIðt;sÞ

where all parameters are as defined before, and
D(s)n) is the contact distribution, which is simply
a scaled version of a disease gradient. Example
contact distributions include the exponential, Pa-
reto, Cauchy, and normal. Unlike with the simpler
purely temporal model(s), the rate of decline in
healthy host individuals at location s (and the rate
of increase in latently infected host individuals at
s) is explicitly based on the integration of the
contributions of infectious individuals at all loca-
tions (all n values). The specific contribution at n
to disease at s is the product of magnitude of
infectious individuals at n multiplied by the
probability that a unit of inoculum (say, spore) at
n reaches location s (based on the contact
distribution).

Both so-called wave-like and non-wave-like
disease expansion is documented, where the
velocity of disease expansion into new areas is
constant or increases with time, and supported by
the theory summarized in equation 3. The velocity
of expansion (or the acceleration of expansion) is
generally proportional to ln(R0), so that there is no
spread if R0 £ 1. The form of the contact distri-
bution makes the difference in type of expansion.
An example realization is shown in Figure 2 for
non-wave-like expansion. The linkage of temporal
population dynamics of disease and focus expan-
sion rates is of fundamental importance because it
shows (qualitatively and quantitatively) how
reproduction (infection) and contact probabilities
(dispersal) fully determine spatio-temporal
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outcomes, given a set of initial conditions. Control
strategies are based, once again, on reducing R0 to
below 1, as well as reducing the scale of the contact
distribution (spread parameter of the dispersal
gradient) to a low value.

Equation 3 can be expanded for host growth,
simple-interest dynamics, and so on, just as equa-
tion 1 was expanded to equation 2. It is (much)
more difficult to work with partial differential
equations than with ordinary ones, and finding
numerical solutions can even be tedious. When the
epidemic starts with a single focus (say, at the edge
or centre of a region), then mathematical progress
can be made, usually with additional assumptions
(van den Bosch et al., 1990).

When there are several initial foci of infections,
or unknown number and locations of initial inoc-
ulum, spatio-temporal differential-equation mod-
els, such as equation 3, are much less useful for

studying epidemics because there is no single
spatial starting point. With many original starting
points (foci with disease at time 0), numerical
solutions to equation 3 – or solutions to stochastic
analogues of equation 3 (Xu and Ridout, 1998;
van Maanen and Xu, 2003), – can be used to de-
scribe epidemics and explore implications of bio-
logical and physical features on disease progress,
but it is more difficult to develop general principles
or characterize expansion rates. Moreover, fitting
a model such as equation 3 to data is generally
impractical with standard statistical programmes.
Thus, in epidemiology – as in ecology (Pielou,
1977) for that matter – more statistical (rather
than mathematical) approaches have been gener-
ally followed to study spatial aspects of epidemics
(Madden and Hughes, 1995, 2002; Hughes et al.,
1997). This is the second thread of spatial char-
acterization of epidemics. Concepts of clustering,
aggregation, and regularity are utilized in terms of
many different (but interrelated) statistical meth-
ods such as indices of dispersion, correlation, semi-
variograms, and distance statistics. This concep-
tual approach goes back to Cochran (1936) and
Bald (1937) in plant pathology. A further advan-
tage of the statistical approaches is that results (or
concepts) are often directly useful for developing
sampling plans, for either estimating disease
intensity or making a decision regarding a control
intervention (Madden and Hughes, 1999; Hughes
et al., 2002).

The interrelationships between spatial aggrega-
tion of disease and temporal dynamics is gradually
becoming more apparent. Using stochastic simu-
lation, Xu and Ridout (1998) nicely showed how
initial conditions, reproduction, and spatial con-
tact distribution affect disease dynamics. A more
theoretical approach has been to incorporate
spatial properties of epidemics without explicitly
using a spatial dimension (i.e., using models simi-
lar to equation 1). Models of this type are some-
times called spatially implicit, in contrast to the
spatially explicit ones such as equation 3. The
approach generally involves using a nonlinear
function of I and/or H in the contact term, where
the function depends on degree of aggregation
(Zhang et al., 2000).

In recent years there has been considerable
progress in bringing the two threads together
(Gibson, 1997; Keeling et al., 2004), through the
ingenious use of stochastic models and parameter
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Figure 2. Density of diseased individuals (Y=L+I+R) vs.

distance from a line source at 10-day time increments based

on the numerical solution of equation 3. H0=1000. Mean la-

tent period (1/x) was 7, and mean infectious period (1/l) was
10 time units. bH0=0.4 per time unit. A Pareto distribution

was used for the contact distribution. The horizontal distance

between pairs of successive curves at a single Y value (e.g.,

0.1), divided by 10 gives the velocity of disease expansion.
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