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Preface

Groundwater is the principal source of drinking water 
for over 1.5 billion people. With increasing demands for 
potable water, continued threats to water quality, and grow-
ing concerns about climate change, the processes controlling 
groundwater availability are of paramount concern. There are 
also considerable concerns about the sustainability of ground-
water supplies, given that much of the water withdrawn from 
aquifers today was recharged thousands of years ago. Data 
about hydrologic properties controlling flow and transport 
are needed to predict and simulate water-resources manage-
ment practices, aquifer remediation, well-head protection, 
ecosystem management, and geologic isolation of radioactive 
waste. As the study of fundamental processes moves forward, 
we find that the physical processes of flow are complex at 
all scales, and furthermore are coupled with chemical and 
biological processes. In the 21st century, hydrologic scientists 
increasingly find themselves considering a diverse range of 
processes, data types, and analytical tools to help unravel 
processes controlling subsurface dynamics. 

Quantifying the nature of hydrogeologic processes such as 
fluid flow, contaminant transport, or groundwater-surface-
water interactions is difficult due to poor spatial sampling, 
heterogeneity at multiple scales, and time-varying properties. 
This book provides a series of examples where multiple data 
types have been integrated to better understand subsurface 
hydrology. We hope it serves to stimulate discussion and 
research on ways to improve our understanding on hydrologic 
processes, which are increasingly relevant as societal needs 
for clean water become more pressing. We thank the authors 
and reviewers of the chapters contained within this mono-
graph and Allan Graubard, our AGU acquisitions editor.

David W. Hyndman
Frederick D. Day-Lewis

Kamini Singha
Editors

Subsurface Hydrology: Data Integration for Properties and Processes
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Copyright 2007 by the American Geophysical Union.
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Understanding the processes that control water move-
ment in the subsurface has been recognized as a “grand 
challenge” in environmental science [National Research 
Council, 2001b]. Research into methods to estimate hydro-
logic parameters that control water movement extends at 
least back to Theis [1935], who worked simultaneously 
on methods to predict (forward model) aquifer response 
to pumping, and also to estimate (using an inverse model) 
the controlling hydrologic parameters—transmissivity and 
storativity. Seventy years after Theis’ pioneering work, 
hydrologists continue to use pumping tests and slug tests to 
characterize heterogeneous aquifers. Despite advances in 
modeling tools and inverse methods, aquifer characteriza-
tion remains an extremely difficult problem due to spatial 
heterogeneity, temporal variability, and coupling between 
chemical, physical, and biological processes. 

The concept of data integration (also called data fusion or 
data assimilation) involves merging multiple data types to 
develop more reliable predictive models, and to answer basic 
and applied science questions. In many applications, com-
binations of complementary data types has been shown to 
yield more information than analysis of more abundant data 
of a single type [National Research Council, 2000; National 
Research Council, 2001a]. Ideally, this would involve a 
seamless connection of field data across broad ranges of 
data types, temporal scales, and spatial scales from pores 

to watersheds and beyond. In practice, hydrologic measure-
ments tend to be either sparse, local, and representative of 
only small volumes of the subsurface, or integrated over 
large volumes making it difficult to characterize heteroge-
neous hydrologic parameters. As a result, there remains a 
need for cost-effective data sources, and novel approaches 
to integrate multiple data types that consider coupled pro-
cesses across multiple scales. Data integration is thus criti-
cal to improve our understanding of complex, multi-scale 
hydrologic processes, which often have feedbacks with 
other physical, chemical, and biological processes at mul-
tiple scales.  

Reliable predictions of future system behavior depend 
on our ability to develop models that accurately represent 
field conditions based on collected data, while simulating 
key processes with a sparse set of parameters. With limited 
data, the problem of model identification is generally poorly 
constrained; as additional data types are considered, how-
ever, the intersection between viable sets of models becomes 
smaller (Figure 1) and estimates of parameters and rates of 
processes in the field improve. Recognition of this synergy 
is evidenced by the increasing number of integrated analy-
ses of multiple data types, and a growing realization that 
simultaneous consideration of multiple data types, provides 
improved ways to characterize and monitor subsurface 
hydrologic properties and processes [e.g., Hubbard and 
Hornberger, 2006]. 

There are a wide range of data types that can be used to 
improve our understanding of hydrologic processes, ranging 
from direct estimates of hydrologic parameters (e.g., perme-

Fig. 1Fig. 1
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ameter measurements on cores or flowmeter measurements 
of hydraulic conductivity) to indirect information from geo-
logic maps, geophysical tomography, or quantities related to 
parameters of interest through physical models such as heat 
or solute transport. Table 1 provides a list of representative 
references where the listed data type is used to estimate 
parameters in subsurface models. This list is by no means 
exhaustive, but indicates the diversity of information sources 
used in hydrology. While data integration is increasingly 
implemented in hydrologic studies, it is also an active area 
of research due to the complexities of scale and measurement 
support volume, data weighting, model parameterization, 
realistic representation of geology in numerical models, and 
implementation of coupled-process numerical models.

This volume provides a broad sampling of papers that 
represent the current state of the science of data integration 
for subsurface hydrology. The premise underlying the col-
lected work in this volume is that simultaneous consideration 
of multiple data types allows for an improved understanding 

of subsurface hydrology. The monograph is divided into four 
sections: (1) approaches to quantitative data integration; (2) 
data integration for characterization of hydrologic properties; 
(3) data integration for understanding hydrologic processes; 
and (4) meta analysis. 

The first section includes papers on approaches to hydro-
logic data integration, which range from qualitative inter-
pretation of multiple data types to rigorous non-linear 
inversion of coupled-process numerical models. In the last 
few decades, non-linear regression models that estimate sub-
surface properties based on groundwater data [e.g., Neuman 
and Yakowitz, 1979; Gorelick, 1990; Gailey et al., 1991; 
Wagner, 1992; Poeter and Hill, 1997] have been developed 
and are built into commercially available modeling soft-
ware. Software packages such as PEST [Doherty, 2002] and 
UCODE [Poeter et al., 2005] allow for automated model 
calibration that includes multiple datasets (e.g., hydraulic 
heads and tracer concentrations). Often, regression model-
ing requires that the inverse problem be overdetermined; 
hence only a handful of parameters can be estimated, or 
zonal patterns of heterogeneity need to be defined a priori. 
Stochastic inversion methods provide alternatives to conven-
tional non-linear regression by seeking to identify multiple 
models that match a given dataset, thus yielding additional 
information on parameter uncertainty and how this trans-
lates into uncertainty in model predictions. Although papers 
on stochastic inversion abound in the hydrologic literature 
[e.g., Ginn and Cushman, 1990; Harvey and Gorelick, 1995; 
McLaughlin and Townley, 1996; Gomez-Hernandez et al., 
1997; Capilla and Gomez-Hernandez, 2003], widespread 
use of such methods has been hampered by the perceived 
complexity of these tools. In this volume, Deutsch provides 
an overview of common geostatistical approaches that were 
originally developed for petroleum and mineral problems 
but are applied with increasing frequency in subsurface 
hydrology. The author discusses practical aspects of geo-
statistical methods that range from estimation with sparse 
data and declustering, to integration of secondary data and 
complex geological structures. Kitanidis provides a review 
of a Bayesian framework for inversion of groundwater data, 

Table 1Table 1

Table 1. A partial list of information sources used for estimating hydrologic parameters or processes. 

Data Type Representative papers or books
Stratigraphic/sedimentologic information Weissmann and Fogg [1999], Koltermann and Gorelick [1992]
Temperature Anderson [2005], Stonestrom and Constantz [2003]
Geophysics Vereecken et al. [2006], Rubin and Hubbard [2006]
Isotopes Clark and Fritz [1997], Kaufmann et al. [1984] 
Geochemistry and microbiology Chappelle [2000], Kendall and McDonnell [1998] 
Hydraulic head Hill and Tiedeman [2007], Kitanidis [1997]
Solute concentrations Rubin [2003], Harvey and Gorelick [1995]
Remote sensing Hoffmann et al. [2003], Houser et al. [1998]

Figure 1. Sets of models can explain different data types. The 
intersection identifies the “best” model or models that represent the 
system across the integrated range of available data types. 
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with emphasis on estimating hydraulic parameters using 
head data; this paper describes a linear Gaussian stochastic 
inverse approach (often referred to as geostatistical inver-
sion) including the underlying concepts, mathematics, and 
applications. 

The second section of this monograph includes papers 
that use data integration methods to characterize hydro-
logic properties such as hydraulic conductivity, porosity, 
or fracture connectivity as well as parameters representing 
boundary conditions and contaminant release histories. The 
interest in estimating hydrologic properties is many-fold, 
including development of models that can be used to assess 
the risks that contamination poses to potential receptors or 
to evaluate rates of natural processes including recharge. 
The papers collected here represent work with different data 
across a range of settings. 

For vadose-zone applications, spatially variable water 
content controls flow in the subsurface. Extrapolation of 
these data to large spatial scales is complicated, however, 
given only direct measurements of water content. Knight et 
al. integrate neutron-probe and ground-penetrating radar 
data to assess specific geostatistical characteristics of water 
content data from Hanford, Washington, USA. This work 
moves toward more quantitative integration of surface GPR 
data in hydrologic studies, and offers insights into issues 
with the measurement support volume.

The hydrologic community has long benefited from shared 
interests and cross-pollination with petroleum engineering 
and exploration geophysics. This monograph includes two 
crossover papers from the petroleum community. Avseth et 
al. present a data integration method developed to charac-
terize lithologic facies in reservoirs. Their approach com-
bines geologic and seismic information using petrophysical 
relations within a Bayesian framework, while Caers and 
Castro present an application of a probabilistic approach to 
integrate geologic, facies, seismic, and well production data 
to characterization of a North Sea reservoir. To estimate 
geologic facies and match water and oil production data, 
they analyze static and dynamic data with multipoint geo-
statistical and perturbation methods. The work they present 
is applied to basin-scale fluid flow and reservoir dynamics; 
the methodologies, however, have direct application for 
hydrologic data integration. Multipoint geostatistics for data 
integration is still not commonly used in hydrology, despite 
work such as this that indicates its promise [e.g., Feyen and 
Caers, 2006].

Michalak and Shlomi contribute a theoretical framework 
for estimating the spatial and temporal evolution of solute 
plume distributions. This framework is based on geostatisti-
cal inverse modeling and multiple monitoring events, given 
knowledge about geological variability and other factors 

affecting solute transport, but without knowing the source 
location or release history. In their approach, concentration 
data can be used to reconstruct past plume distributions that 
are consistent with all available information. Woodbury pres-
ents the generalized inverse problem for heat and groundwa-
ter, as an example of how the Bayesian framework can be 
used for data integration. The paper includes two examples, 
one focusing on inversion of heat conduction for paleocli-
mate reconstructions, and the second focusing on ground-
water flow within the Edwards aquifer. 

In a vision paper, Yeh et al. discuss state-of-the-art tomo-
graphic approaches including both hydraulic tomography 
and electrical resistivity tomography. Several examples 
illustrate the benefits of combining multiple data types, 
such as hydraulic and tracer data. The authors then propose 
tomographic approaches to basin-scale hydrologic character-
ization; they suggest that natural hydrologic, geologic, and 
climatic stimuli (e.g., river-stage fluctuations, earthquakes, 
and lightning) can serve as hydrologic or geophysical pertur-
bations needed for regional-scale tomographic surveys (i.e., 
hydraulic, seismic, or electrical). 

In addition to characterizing physical or chemical proper-
ties that affect hydrologic processes, data integration meth-
ods are used to shed light on the processes themselves. The 
third section of the monograph is a collection of papers that 
demonstrate the use of diverse types of data to elucidate 
processes spanning subsurface-hydrologic research, from 
paleohydrology to watershed response to modern coastal 
aquifer dynamics. A range of data types (e.g., geochemical, 
isotopic, hydraulic, geophysical) and integration methods 
(i.e., spectral analysis, physically based numerical model-
ing, etc.) are considered. This range of topics is timely as 
we attempt to identify the influence of human activities 
associated with land use and climate change on hydrologic 
and ecological systems. 

Hyndman et al. illustrate the use of the new Integrated 
Landscape Hydrology Model (ILHM), which was devel-
oped to predict spatial and temporal variations in groundwa-
ter recharge at the watershed scale. This code simulates the 
redistribution of precipitation through the vegetation canopy, 
sediment surface, soil and sediment layers, and snow pack 
to various surface and subsurface pathways using a process-
based description of the water balance, based on GIS data 
and minimal use of site-specific parameters. A process-based 
simulation for a watershed in western Michigan, USA, illus-
trates the region’s strong seasonality in recharge rates; most of 
the precipitation and snowmelt becomes groundwater recharge 
from September through March, while virtually none of the 
precipitation during the growing season is recharged. 

The dynamics of coastal and island aquifers remain impor-
tant basic- and applied-science topics. Understanding inter-
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actions between aquifers, estuaries, and the coastal ocean 
requires consideration of many different data types collected 
over a range of temporal and spatial scales. Saltwater intru-
sion is a potential threat to many coastal and island aquifers, 
many of which are sole-source supplies of potable water. 
Marksamer et al. investigate the Nantucket Island aquifer in 
Massachusetts, USA, which extends deeper than expected 
given the current climate and water-table configuration. 
The authors use numerical modeling and multiple lines of 
evidence to test alternative paleohydrologic hypotheses to 
explain anomalous offshore freshwater and Nantucket’s deep 
freshwater lens. Working in the coastal region of the south-
eastern USA, Schultz et al. combine groundwater monitor-
ing, geochemical, electrical, electromagnetic, and vegetation 
mapping data to examine multi-scale, spatial and temporal 
coastal-aquifer dynamics. Target processes include salt-
water intrusion, submarsh groundwater discharge, salinity 
gradients at the ocean boundary, and possible pore-water 
free convection. 

The spectral content of hydrologic time series can provide 
insight into the time-scales of, and linkages between, impor-
tant natural processes. Kendall and Hyndman demonstrate 
how spectral analysis of hydrologic datasets can be used to 
better understand linkages between precipitation, stream-
flows, and groundwater levels for watersheds in northern 
lower Michigan, USA. This analysis shows non-stationary 
behavior in these hydrologic systems, including the large 
reductions in summer streamflows due to canopy intercep-
tion and evapotranspiration. 

Fractured rock is, perhaps, the most complicated hydro-
logic setting [National Research Council, 1996]. Fluid 
concentration data from many fractured rock sites do not 
follow standard advective-dispersive behavior, and new 
data integration approaches are needed to identify dominant 
processes and understand the role of permeability heteroge-
neity [National Research Council, 2000, 2001b]. Shapiro 
et al. present an example of data integration from the U.S. 
Geological Survey’s Fractured-Rock Hydrology research 
site, near Mirror Lake, New Hampshire, USA. The authors 
investigate anomalous solute-transport behavior at a variety 
of spatial scales using tracer and hydraulic testing as well 
as chemical sampling. Detailed borehole information and 
fracture mapping was integrated with the hydrologic data 
to clarify the geologic controls on f low and transport at 
each scale. 

The collection of studies in this volume clearly demon-
strates the value of data integration for hydrology; important 
limitations, however, remain. Recent work has underscored 
pitfalls and limitations of certain approaches or strategies 
used to combine data of different types. For example, addi-
tional work is needed to address the problems arising from 

model identification, non-linear feedbacks, uncertainty 
assessment, realistic characterization of geological vari-
ability, and discrepancies between the support volumes of 
different measurement types. The monograph’s fourth sec-
tion focuses on meta analysis and includes papers that reflect 
on opportunities for further research. Singha et al. discuss 
problems in the conversion of geophysical tomograms to 
hydrologic properties of interest. Although tomograms may 
provide qualitative information about hydrologic properties, 
the images have limited resolution and tend to be blurry ver-
sions of reality. The authors compare an analytical approach 
with a numerical approach to evaluate and address this prob-
lem. McLaughlin also discusses limitations associated with 
environmental data assimilation, in particular, problems that 
arise from the assumptions of linearity and normality on 
which most current approaches are based. He proposes that 
robust, rather than optimal, estimates should be sought, and 
that nonlinearity should be accepted and addressed. 

Given current attention to coupled physical and chemical 
processes, and the increasing importance of groundwater as 
a resource, there is a strong need for novel data integration 
methods in hydrology. With continued advances in computa-
tional resources and rapidly evolving software for numerical 
modeling and inversion, future data integration methods 
will be better able to resolve both the nature of subsurface 
heterogeneities and the rates of critical processes across the 
range of hydrologic scales. Such developments will provide 
tools to help scientists address questions that arise through 
interdisciplinary research, where the measurements and 
models incorporate a host of processes that were typically 
studied individually within single disciplines. We believe 
that the integration of data and methods from hydrology with 
those from other sciences will be an active area of future 
research as hydrologic problems are increasingly recognized 
as being complex and dynamic. Data integration methods 
can provide important advances in the study of water quality 
and quantity, which will both be imperative for future deci-
sion-making in water resources.
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A Review of Geostatistical Approaches to Data Fusion
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Geostatistics has evolved to a mature discipline with a well understood theoreti-­­
cal framework and a standard set of tools. The tools have been applied with many 
geospatial variables in many different contexts. This paper provides a brief review 
of geostatistical approaches to problems involving multiple data types in subsur-­­
face hydrology. The random function paradigm of geostatistics is presented. Bayes 
Law is the engine that permits multivariate spatial and remotely sensed data to be 
integrated. The required multivariate probabilities are often fit with the Gaussian 
distribution. There are many implementation decisions and practicalities of geo-­­
statistics. These include declustering, inference in presence of sparse data, dealing 
with many secondary data, and modeling complex geological features. Subjects of 
practical importance are reviewed.

1. INTRODUCTION

The word geostatistics commonly refers to the theory 
of regionalized variables and the related techniques that 
are used to predict rock properties at unsampled locations. 
Georges Matheron formalized this theory in the early 1960’s 
(Matheron, 1971). The development of geostatistics was 
led by engineers and geologists faced with real problems. 
They were searching for a consistent set of numerical tools 
that would help them with ore reserve estimation, reservoir 
performance forecasting, and site characterization.

At any instance in geological time, there is a single true 
distribution of rock properties over each study area. This 
true distribution is inaccessible with limited data and the 
chaotic nature of certain aspects of geological processes. 
Geostatistics strives to create numerical models that mimic 
the physically significant features of property variations.

Conventional mapping algorithms were devised to create 
smooth maps to reveal large-­­scale geologic trends; they 
are low pass filters that remove high frequency property 
variations. For practical problems of flow prediction, how-­­

ever, this variability has a large affect on the predicted 
response. Geostatistical simulation techniques, conversely, 
were devised with the goal to reproduce a realistic amount 
of variability, that is, create maps or realizations that are 
neither unique nor smooth. Although the small-scale vari-­­
ability of these realizations may mask large-scale trends, 
geostatistical simulation is more appropriate for predictions 
of subsurface flow.

Geostatistics is primarily concerned with constructing 
high-resolution 3-D models of categorical variables such as 
facies and continuous variables such as porosity and per-­­
meability. It is necessary to have hard truth measurements 
at some volumetric scale. All other data types including 
geophysical data are called soft data and must be calibrated 
to the hard data. It is neither possible nor optimal to con-­­
struct models at the resolution of the hard data. Models are 
generated at some intermediate geological modeling scale, 
and then scaled to an even coarser resolution for flow mod-­­
eling. An important goal of geostatistics is the creation of 
detailed numerical 3-D geologic models that simultaneously 
account for a wide range of relevant data of varying degrees 
of resolution, quality, and certainty. Much of geostatistics 
relates to data calibration and reconciling data types at dif-­­
ferent scales. This data integration or fusion is the focus of 
this review paper.

Subsurface Hydrology: Data Integration for Properties and Processes
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Geostatistical techniques allow alternative realizations to be 
generated. These realizations are often combined in a model 
of uncertainty, that is, they are processed through a numerical 
model of the response and the different outcomes are assem-­­
bled in a distribution of response uncertainty. Uncertainty is 
becoming an important goal of geostatistical studies.

Numerical models are rarely built in one step. A hierarchi-­­
cal framework is followed with different techniques and tools 
at each level. A typical scenario consists of (1) mapping large 
scale bounding surfaces with conventional or geostatistical 
techniques, (2) mapping trends of facies proportions within 
each major stratigraphic layer, (3) creating high resolution 
facies models within each layer reproducing the mapped 
trends, (4) assigning continuous rock properties such as 
porosity and permeability within each facies, and (5) post 
processing and upscaling the resulting high resolution mod-­­
els for flow simulation. The classical random function model 
formalism of geostatistics is presented first, then some of the 
practical implementation aspects are described.

2. RANDOM FUNCTION FORMALISM

We start by considering a regionalized variable such as a 
subsurface elevation, formation thickness, facies proportion, 
facies indicator, porosity or permeability. We denote a specific 
value as z. The uncertainty about an unsampled value z is mod-­­
eled through the probability distribution of a random variable 
(RV) Z. The probability distribution of Z after data condition-­­
ing is usually location-dependent; hence the notation Z(u), 
with u being the coordinate location vector. A random func-­­
tion (RF) is a set of RVs defined over some field of interest, 
e.g., Z(u), u ∈ study area A. Geostatistics is concerned with 
inference of statistics related to a random function (RF).

Inference of any statistic requires some repetitive sampling. 
For example, repetitive sampling of the variable z(u) is needed 
to evaluate the cumulative distribution function: F(u;z) = 
Prob{ Z(u) ≤ z } from experimental proportions. However, in 
most cases, at most one sample is available at any single loca-­­
tion u; therefore, the paradigm underlying statistical inference 
processes is to trade the unavailable replication at location u 
for replication over the sampling distribution of z-samples col-­­
lected at other locations within the same general area.

This trade of replication corresponds to the decision of 
stationarity. Stationarity is a property of the RF model, not 
of the underlying regionalized variable. Thus, it cannot be 
checked from data. The decision to pool data into statistics 
across facies is not refutable a priori from data; however, it 
can be shown inappropriate a posteriori if differentiation per 
facies is critical to the study.

The first and most important aspect of stationarity is the 
decision to pool data together for common processing. Another 

aspect of stationarity is a decision regarding the location-
dependency of statistical parameters. A common practical 
approach is to assume that key statistical parameters do not 
depend on location within reasonably defined geological 
populations.

The statistical paradigm faced by geostatisticians is one of 
multivariate statistics: the same variable at multiple locations 
and multiple secondary data. We could denote the secondary 
data as Y(u) and index Y if required to be clear regarding the 
number of secondary data. This is illustrated schematically 
in Plate 1.

The two wells and gridded seismic response on Plate 1 
illustrate the multivariate aspect of the problem faced by 
geostatisticians. We are interested in the uncertainty at a 
location that has not been drilled. The nearby data (n) consist 
of well and seismic data:

	 (n) = {z(uα),α=1,…,nw},{y(uβ’), β=1,…,ns}	 (1)

The uncertainty at a particular unsampled location must 
be inferred in light of the (n) conditioning data. A best 
estimate can be retrieved from the conditional distribu-­­
tion or it could be sampled by Monte Carlo simulation 
for alternative realizations. The standard approach to 
estimate conditional probabilities is Bayes Law, which has 
been used for more than 200 years. Bayes Law provides 
the arithmetic to infer the conditional distribution of the 
unsampled value z(u):

	 	 (2)

The numerator on the right side is an n+1 variate distribu-­­
tion of the unknown and the n data. The denominator on the 
right side is the n variate distribution of the conditioning 
data. The univariate distribution on the left side is what we 
are after–the conditional distribution of the unsampled value 
given the set of conditioning data (n).

Inference of the required multivariate distributions is vir-­­
tually impossible. There are no replications of the unsampled 
value with the data values and there are unlikely to be rep-­­
lications of the precise data configuration (n). Nevertheless, 
those multivariate probabilities are required for inference of 
the conditional distribution.

The required multivariate probabilities are calculated from 
either an analytical distribution model or from a large set of 
analogue data deemed representative (sometimes referred to as 
a training image). The conventional paradigm of geostatistics 
is to use analytical distributions with parameters inferred from 
the available data. The multivariate Gaussian distribution will 

Plate 1Plate 1
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Plate 1. Illustration of the typical case faced by geostatisticians: there are a limited number of locations with precise 
measurements (the two wells in this case) and secondary variables that are often on grids (one variable shown).
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be explained in the next section. The classical approach of 
variograms and kriging will be explained now.

Subsurface variables are heterogeneous. Their spatial vari-­­
ability is quantified by the variogram function:

	 	 (3)

2γ is variability and is in the units of variance, h is a vector 
distance, Z(u) is the random variable. The expected value 
is approximated by a discrete sum over the available pairs. 
The available data do not permit estimation of 2γ for many 
distance and direction lags. The function is fit to interpolate 
2γ for h-values that cannot be calculated.

Estimation can be formulated as an optimization problem. 
The linear estimate at unsampled location u0 is written:

	 	 (4)

m(u) is the location-dependent mean and the λs are weights 
that are calculated to minimize the expected error variance. 
The equations that lead to the optimal weights are referred to 
as the normal equations or the simple kriging equations:

	 	 (5)

The C(h) covariance values are derived from the vario-­­
gram through the relation C(h)=σ2-γ(h), which is valid with 
the assumption of stationarity. Relatively straightforward 
modifications are necessary if the decision of stationarity is 
relaxed. Constraints may be added to ensure unbiasedness 
without specifying the location-dependent mean; the modifi-­­

cations are straightforward. We can calculate the minimized 
error variance, but it has no practical meaning outside of the 
Gaussian context (see Section 3 below).

Estimates from Equation 4 are useful. They provide a 
useful means to construct a grid of estimates. These esti-­­
mates are used for resource assessment and visualization of 
geologic trends. The kriging formalism of Equations 4 and 5 
may be extended to multiple correlated variables. The result 
is cokriging. The estimate follows the same form; however, 
the covariance values must come from a mathematically 
valid model of coregionalization.

Kriging was state of the art in the late 1970s and early 
1980s. Geostatisticians have come to expect more from their 
numerical models: local and joint uncertainty. Equation 2 is 
valid. A multivariate distribution is required. The multivari-­­
ate Gaussian distribution is a remarkably tractable model that 
has come to be relied upon in geostatistical calculations.

3. MULTIVARIATE GAUSSIAN DISTRIBUTION

The multivariate probabilities required for inference of con-­­
tinuous variable uncertainty cannot be directly inferred from 
data. A multivariate Gaussian model is systematically adopted. 
The continuous variable is transformed to a Gaussian distribu-­­
tion, and then all multivariate distributions are assumed to be 
Gaussian. We would wish for alternative probabilistic models 
to choose from; however, the multivariate Gaussian prob-­­
ability distribution is remarkably tractable and used almost 
exclusively. Figure 1 illustrates transformation of a continuous 
variable from an arbitrary distribution to a Gaussian distri-­­
bution. The distributions are shown as cumulative distribu-­­

Fig. 1Fig. 1

Figure 1. Schematic illustration of normal score transform. The original Z- data are on the left and the Gaussian 
Y‑values are on the right. The top figures are the global CDFs and the bottom figures represent local CDFs. Quantiles 
are transformed using the global distribution (the three part blue line).
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tions. In Gaussian units (the right side), all distributions are 
Gaussian in shape. The uncertainty in original units must be 
established by back transformation. The transformation and 
back transformation are written as:

	 	 (6)

Figure 1 reveals an important point. All conditional dis-­­
tributions in Gaussian units are non-standard Gaussian, see 
the lower right. The quantiles of such distributions can be 
back transformed via the global transformation. Conditional 
distributions in original units are not Gaussian, but we can 
establish their shape numerically, that is, back transformation 
of many quantiles. The 99 percentiles would be a good start; 
more are required for a stable estimate of the variance.

The mean and variance of each conditional non-standard 
Gaussian distribution are calculated with the normal equa-­­
tions that are identical to the kriging equations given in equa-­­
tions 4 and 5. The stationary mean is set to 0.0 in Gaussian 
units and the variogram/covariance are calculated from the 
normal score transforms of the data. The variance of estima-­­
tion has particular meaning in the Gaussian case; it is the 
variance of the conditional distribution:

	 	 (7)

A small example will be developed at the expense of some 
space. This example is a classic illustration of modern geo-­­
statistical tools used to assess uncertainty.

3.1 Small Example

Consider a square grid of 101–16m grid cells that cover 
just over one regular Section of land. Let’s directly model 
porosity. The global representative distribution will be taken 
as lognormal with a mean m=0.15 and a standard deviation 
σ=0.075. The global representative distribution would be 
obtained by declustering and/or debiasing using the available 
well and seismic data. Consider an average data of 0.15 in 
the northwest corner of the area and a high data of 0.25 in 
the southeast corner of the area.

Uncertainty is characterized in Gaussian units. The trans-­­
formation to a standard Gaussian distribution is defined 
analytically in this case:

	 	 (8)

In our case α =−2.01 and β =0.472. The back transform is 
also defined analytically: z=exp(yβ+α). The porosity data 
values of 0.15 and 0.25 are transformed to 0.236 and 1.317, 
respectively.

A fitted variogram model of the Gaussian transformed 
values is required. This would be obtained from the available 
data and analogue information. The variogram will be taken 
as an exponential function with an effective range of 2000m: 
γ(h)=1-­exp(3h/2000). In fact, γ(h) is the semivariogram or 
one half of the variogram. Under a decision of stationarity, the 
covariance function is C(h)=1-­γ(h)=exp(3h/2000).

Local conditional distributions are defined everywhere by 
a local conditional mean and variance that are computed by 
simple kriging. Plate 2 shows these results. The locations of 
the wells are evident on the conditional variance map–the 
conditional variance is zero at the two well locations. These 
results are in Gaussian units. We back transform these condi-­­
tional distributions to original units by back transforming a 
large number of quantiles, say 200. Plate 3 shows maps of the 
conditional mean, conditional variance, P90 low value and P10 
high value in original units. Note how the conditional vari-­­
ance in original units is higher in the south and east because 
the mean is higher; the conditional variance in original units 
depends on the data as well as the data configuration.

Simulated realizations are required for two reasons. Firstly, 
they provide numerical models of heterogeneity for process 
evaluation. Secondly, they permit input uncertainty to be 
transferred to output uncertainty, for example, calculating 
uncertainty in resources or transport. There are a number of 
implementations that generate multiple realizations. Sequential 
methods such as sequential Gaussian simulation are popular.

Multiple realizations of porosity are generated by Gaussian 
simulation. Five realizations are shown on the left of Plate 
4. The two well data are reproduced by all realizations. The 
pore volume was calculated on each realization assuming a 
thickness of 10m. The distribution of pore volume is shown 
at the right of Plate 4. These realizations allow us to visualize 
heterogeneity as well as assess uncertainty. The realizations 
could be ranked by their pore volume and select realizations 
(say the ones with the P90, P50 and P10 outcomes) could be 
input to flow simulation.

This little example shows a hint of what geostatistics is 
aimed at. In practice, we must consider multiple stratigraphic 
layers, multiple facies, multiple data types, and multiple vari-­­
ables such as residual saturation and permeability. Some prac-­­
ticalities are addressed below.

3.2 Block Cokriging

An important practical reality of geostatistics is the pres-­­
ence of data with different type, noise content, and volume 

Plate 2Plate 2

Plate 3Plate 3

Plate 4Plate 4
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Plate 2. Map of the conditional mean (left side) and conditional variance (right side) for the Small Example.

Plate 3. Map of the conditional mean (upper left) and conditional variance (upper right) in original units. Maps of the 
P90 low value and P10 high values are shown in the lower left and right.
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Plate 4. Multiple realizations (5 out of 250) are illustrated on the left and a histogram of the OOIP for the 250 realiza-­­
tions is shown to the right.
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scale. We could invoke block cokriging to address these 
three critical issues. Different data types are handled with a 
cokriging and a model of coregionalization. Different volume 
scales of measurement are handled by block cokriging, that 
is, the use of volume averaged covariances. There are a num-­­
ber of inference problems and challenges with this approach: 
(1) linear averaging is assumed in Gaussian units, which is 
only correct if the original variable histograms are Gaussian 
in shape, (2) the point-scale statistics including histograms 
and variograms must be known, and (3) the noise content of 
each data source must also be known. This approach is valid 
and manageable in many cases. Nevertheless, these assump-­­
tions are serious and often lead practitioners to consider 
some simplifications. A number of practical implementa-­­
tion issues will now be discussed. These are unquestionably 
important for reasonable results in the combination of data 
with geostatistics.

4. PRACTICAL IMPLEMENTATION

4.1 Representative Statistics

Wells are not drilled to be statistically representative of 
the site; they are often intended as locations for production. 
Even in preliminary appraisal, there is a desire to delineate 
interesting areas of the site. It is critical to establish a repre-­­
sentative distribution for each variable being modeled. This 
includes facies proportions and the histograms of poros-­­
ity and permeability within each facies type. Declustering 
techniques weight the data such that wells drilled close 
together are given less weight. Wells drilled farther apart 
are given more weight. Declustering is suitable when there 
are sufficient data to sample areas of high and low quality. 
Sometimes there are too few wells. There may be areas of 
relatively poor reservoir quality that have not been drilled. 
Debiasing techniques are used to establish representative 
distributions based on a secondary variable such as seismic 
or a geologic trend. The results of declustering and debiasing 
include representative facies proportions and representative 
histograms of each continuous variable under consideration. 
A large-scale trend model may have been built for debias-­­
ing–this trend model will also come into subsequent geosta-­­
tistical calculations.

An essential feature of geostatistics is inference in pres-­­
ence of sparse data. We are faced with a paradox. A lack of 
data is precisely when a geostatistical model of uncertainty 
is warranted; however, it is also the case when inferring 
required parameters is difficult. Limiting ourselves to statis-­­
tics we can infer from the available data would be a mistake. 
We must often use analogue information related to spatial 
continuity, particularly in the vast interwell region. The 

spatial continuity in the vertical direction is relatively easy 
to infer even with limited well data. Horizontal to vertical 
anisotropy ratios based on the geologic setting can be useful 
to infer the horizontal continuity. The vertical variogram 
shape is used, but scaled according to a ratio. Figure 2 shows 
some typical ratios (Deutsch, 2003).

4.2 Hierarchical Modeling

A sequential approach is often followed for reservoir mod-­­
eling. The large-scale features are modeled first followed by 
smaller, more uncertain, features:
(1)	�E stablish the stratigraphic layers to model, that is, define 

the geometry of the container being modeled. A con-­­
ceptual model for the large scale continuity of facies 
and petrophysical properties within each major layer is 
chosen.

(2)	� The bounding surfaces are mapped. They may be simu-­­
lated with geostatistical techniques if they are associated 
with considerable uncertainty.

(3)	� The facies rock types are modeled by cell-based or 
object-based techniques within each stratigraphic layer 
(see below). Multiple realizations represent uncertainty 
in facies.

(4)	� The porosity and other petrophysical variables are mod-­­
eled on a by-facies basis. These may be modeled one 
after another or all together. Multiple realizations are 
used to represent uncertainty.

(5)	� The models are revised to match dynamic data such 
as pumping tests and flow history. Knowledge gained 
from trying to match this data may be coded as spatial 
constraints and the modeling repeated.

(6)	� These set of multiple realizations are input to flow and 
transport modeling or simply visualized to aid in deci-­­
sion making and resource assessment.

Fig. 2Fig. 2

Figure 2. Some typical horizontal-to-vertical anisotropy ratio 
conceptualized from available literature and experience. Such gen-­­
eralizations can be used to verify actual calculations and supple-­­
ment very sparse data.
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A detailed description of these steps is beyond the scope 
of this review paper, but some of the references are suitable. 
The book by Chiles and Delfiner (1999) is a comprehensive 
overview of geostatistical techniques. The book by Cressie 
(1991) presents a statistical perspective on this approach. The 
book by David (1977) is a practical mining approach. The 
two books by Deutsch (1998 and 2003) provide a software 
and petroleum perspective, respectively. Goovaerts (1997) 
provides another comprehensive overview of geostatisti-­­
cal techniques. Isaaks and Srivastava (1989) provide a nice 
introduction to basic concepts. Journel and Huijbregts (1978) 
provide a comprehensive theoretical presentation from a 
mining perspective. Kitanidis (2000) provides an introduc-­­
tion from a hydrogeologic perspective.

4.3 Facies Modeling

Facies are often important in reservoir modeling because 
the petrophysical properties of interest are highly correlated 
with facies type. Facies are distinguished by different grain 
size or different diagenetic alteration. The facies must have 
a significant control on the porosity and other properties of 
interest; otherwise, modeling the 3-D distribution of facies 
will be of little benefit since uncertainty will not be reduced 
and the resulting models will have no more predictive power. 
An additional constraint on the choice of facies is that they 
must have straightforward spatial variation patterns. The 
distribution of facies should be at least as easy to model as 
the direct prediction of petrophysical properties. Once the 
facies are defined, relevant data must be assembled and a 
3-D modeling technique selected.

The alternatives are (1) cell-based geostatistical model-­­
ing, (2) object-based stochastic modeling, or (3) determin-­­
istic mapping. Deterministic mapping is always preferred 
when there is sufficient evidence of the facies distribution 
to remove any doubt of the 3-D distribution. In many cases, 
there is evidence of geologic trends, which should be included 
in stochastic facies modeling.

Cell-based techniques are commonly applied to create facies 
models. The popularity of cell-based techniques is understand-­­
able: (1) local data are reproduced by construction, (2) the 
required statistical controls (variograms) may be inferred 
from limited well data, (3) soft seismic data and large-scale 
geological trends are handled straightforwardly, and (4) the 
results appear realistic for geological settings where there are 
no clear geologic facies geometries, that is, when the facies 
are diagenetically controlled or where the original depositional 
facies have complex variation patterns. Of course, when the 
facies appear to follow clear geometric patterns, such as sand-
filled abandoned channels or lithified dunes, object-based 
facies algorithms should be considered.

From a geological perspective, it is convenient to view 
reservoirs and aquifers from a chrono-stratigraphic perspec-­­
tive. The sedimentary architecture is considered in light of 
a hierarchical classification scheme. We consider modeling 
this genetic hierarchy of heterogeneities by surfaces and 
objects representing facies associations.

Despite the realism of object-based modeling, many res-­­
ervoirs show very complicated architectural element con-­­
figurations developed during meander migration punctuated 
by avulsion events. It is becoming increasingly common to 
attempt facies modeling in a manner that mimics original 
deposition and alteration. Like object-based modeling, there 
is a perception that these process-based models are difficult 
to condition to well data.

Image analysis based techniques using multiple point 
statistics have evolved to use the models generated by object- 
and process-based models as training images. The features 
of such models are imposed on 3-D geocellular models with 
multiple point statistics (Guardiano and Srivastava, 1992).

4.4 Secondary Data

The block cokriging approach mentioned above has lim-­­
ited applicability in presence of many secondary data at 
different scales. Inference of the required statistics is virtu-­­
ally impossible. Collocated cokriging simplifies the process 
to consider collocated secondary variables; however, there 
is no simple way to consider a large number of secondary 
variables simultaneously.

Many different variables must be considered: small scale 
well data, large-scale remotely sensed variables, interpreted 
trend-like variables, and other response variables. These data 
often cover different areas, provide data at different scales, 
and are variably correlated together. Conventional geostatisti-­­
cal techniques, such as the block cokriging mentioned above, 
incorporate the spatial structure but these techniques are 
cumbersome in the presence of many secondary variables. 
An increasingly common approach is to merge all secondary 
data into a single variable that contains all of the secondary 
variable information; this provides a conditional distribu-­­
tion. The spatial distribution of each variable is mapped with 
data of the same type of information; this provides a second 
conditional distribution. The two conditional distributions 
are merged to provide updated posterior distributions. This 
merging is done in Gaussian units and the variables must be 
back transformed for final analysis.

Two Gaussian conditional distributions may be merged 
to an updated Gaussian distribution assuming conditional 
independence of the two distributions. This type of Markov 
model is very common. The parameters of the updated 
Gaussian distribution are given by:
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	 	 (9)

This simple result is at the heart of much data integration. 
An important notion of data integration is that corroborating 
data cause the updated distributions to be non-convex. Figure 
3 shows three examples. In the first case, both distributions 
are high (m1=0.8, σ2

1=0.6, m2=1.0, σ2
2=0.4), that is, the 

mean values are greater than the global mean; therefore, the 
updated distribution is quite high (mu=1.21, σs

u=0.316). In 
the second case, one distribution is high and the other low 
(m1=-0.5, σ2

1=0.6, m2=0.5, σ2
2=0.6); therefore, the result is 

in the middle (mu=0.0, σs
u=0.429). In the third case, both 

distributions are low (m1=-0.8, σ2
1=0.6, m2=-1.0, σ2

2=0.4); 
therefore, the updated distribution is even lower (mu=-1.21, 
σs

u=0.316).
Recall that all of our data are transformed to Gaussian 

units, uncertainty is assessed, and the resulting uncertainty 
is back transformed to original units. Quantiles of local 
distributions can be back transformed or entire simulated 
realizations are back transformed. The multivariate Gaussian 
distribution is used routinely in geostatistics because it is 
straightforward to infer the required parameters with few 
data. Data integration and uncertainty prediction is relatively 
easy. Moreover, it is common that data within reasonably 
defined facies are often Gaussian. Nevertheless, we often 
seek an alternative to the Gaussian model to handle more 
complex features. The most common alternative is the indi-­­
cator formalism (Journel, 1983). 

4.5 Indicator Formalism

Indicators are applied to both continuous and categorical 
variables. A series of threshold values zc are used to dis-­­
cretize the range of variability of the continuous Z-variable. 
The indicator coding of continuous variables:

	 	 (10)

This amounts to coding the continuous data as a series of 
cumulative probability values. It is common to consider 
between 9 and 20 threshold values; less than 9 leads to poor 
resolution and greater than 20 leads to difficult inference of 
the required parameters and no significant increase in preci-­­
sion of calculated conditional distributions.

Variogram analysis is conducted for each threshold. This 
permits the continuity of the low and high values to be 
modeled differently. The variograms should be consistent 
since they are based on the same underlying continuous 
variable; however, they are more flexible than the simplistic 
Gaussian model. 

Fig. 3Fig. 3

Figure 3. Three examples of updating two conditional Gaussian 
distributions into updated distributions.



DEUTSCH    17

Kriging is applied at each threshold with the correspond-­­
ing indicator variogram to directly calculate an estimate of 
the CDF value at the threshold values. This leads to a direct 
estimate of the conditional distribution. Figure 4 shows a 
schematic example. It is necessary to ensure that the esti-­­
mated CDF values form a valid distribution (non decreasing 
between 0 and 1) and to interpolate and extrapolate the CDF 
beyond the values predicted at the thresholds. These distribu-­­
tions can be used directly for uncertainty assessment or used 
in simulation to assess joint uncertainty.

The indicator coding for categorical variables is similar. 
Consider K facies. The data are coded as the probability of 
occurrence:

	 	 (11)

As with continuous variables, variograms are constructed for 
each of the K indicators. Kriging can be applied to predict 
the probability of each facies at an unsampled location. The 
probability estimates are corrected if necessary to ensure that 
they are non negative and sum to one. They are then used for 
uncertainty assessment or the simulation.

The hierarchical scheme described in Section 4.2 leads to 
multiple realizations of the study area under investigation. 
A variety of techniques, including indicator techniques, are 
used at different steps to arrive at a set of realizations that 
quantify the uncertainty. Each realization is a full specifi-­­
cation of the study area: location, geometry, internal facies 
and petrophysical properties. These realizations must be 
post processed.

4.6 Post Processing

Geostatistical models are useful for many purposes. The 
estimates at unsampled locations can be used directly for 
some decisions. The local uncertainty, that is, uncertainty 
at one location at a time is easily assembled from the mul-­­
tiple realizations. Maps can be made of P10 low values (the 
0.1 quantiles of the local distributions) and the P90 high 
values (the 0.9 quantiles). These maps reveal two important 
features: (1) when the P10 value is high, then the actual 
value is surely high–there is a 90% probability to be even 
higher, and (2) when the P90 value is low, then the actual 
value is surely low–there is a 90% probability to be even 
lower. The local conditional variance could also be mapped 
to summarize local uncertainty. Another summary statistic 
that can be useful is the probability for the true value to be 
within a percentage (say 15%) of the estimate. There is little 
uncertainty when this probability is high.

Local estimates and local uncertainty are useful; how-­­
ever, they do not tell us the uncertainty at multiple locations 
simultaneously. Whenever uncertainty at many locations is 
required, then simulated realizations must be used.

Estimates are smooth and often inappropriate for direct 
input into f low simulation; f low predictions are biased 
because the connectivity of high permeability f low con-­­
duits and low permeability flow baffles is not accounted for. 
Simulated realizations are more appropriate. They also carry 
a measure of uncertainty. The paradigm of probabilistic 
analysis is that the set realizations are processed through a 
transfer function to assess uncertainty in response variables, 
see Figure 5. 

Some response variables are straightforward such as vol-­­
umetric calculation of resources. In fact, the response of 
smooth estimated models should match the average of the 
simulated realizations. In most cases, the transfer function 
is non-linear. Resources above a critical threshold and the 
response of f low and transport modeling are non-linear 
transfer functions. The response of an average is not the same 
as the average response.

All realizations are processed through the transfer func-­­
tion. This provides a distribution of uncertainty in the 
response variables. There are times when the transfer func-­­
tion (flow simulation) is very CPU-demanding. Moreover, 
many different scenarios of the transfer function must be 
considered. It is intractable to process all of the realizations 
through all scenarios.

The realizations are ranked according to some easy to cal-­­
culate statistic such as the connected resource. Then, selected 
low, median, and high realizations are processed through the 
full transfer function. The ranking measure may be as simple 
as pore volume or as complex as the results of a fast flow 

Fig. 4Fig. 4

Fig. 5Fig. 5

Figure 4. Example of a probability distribution derived from the 
indicator formalism. Each probability estimate is derived from 
kriging the data coded at that threshold.
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simulation such as streamlines. A ranking measure of inter-­­
mediate complexity often suffices: the connected volume to 
well locations is a good intermediate measure.

The preceding discussion has focused on uncertainty. 
Another aspect of post processing is sensitivity analysis, 
that is, determining how sensitive the response variables 
are to each of the input parameters/variables. This is done 
by holding some parameters constant or with experimental 
design techniques.

5. FUTURE DIRECTIONS

Geostatistical techniques for data fusion are applied in 
subsurface hydrology and other areas of geological model-­­
ing. A number of alternatives exist; however, the classical 
geostatistical paradigm presented here has had a history of 
successful prediction, is applied regularly and will provide 
unquestioned value in future applications.

The main problems with the geostatistical approach are 
that (1) it is poorly constrained by geological knowledge 
and processes, and (2) many statistical parameters must be 
inferred. No approach is perfect and people often want a 
change from the tried, true and boring applications with con-­­
ventional techniques Alternatives are under consideration. 
Process-mimicking geological modeling, multiple point 
statistics, and data integration techniques provide interesting 
future directions.
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