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Preface

The rapid growth in electronic systems in the past decade has boosted re-
search in the area of computational intelligence. As it has become increasingly
easy to generate, collect, transport, process, and store huge amounts of data,
the role of intelligent algorithms has become prominent in order to visualize,
manipulate, retrieve, and interpret the data. For instance, intelligent search
techniques have been developed to search for relevant items in huge collec-
tions of web pages, and data mining and interpretation techniques play a very
important role in making sense out of huge amounts of biomolecular measure-
ments. As a result, the added value of many modern systems is no longer
determined by hardware only, but increasingly by the intelligent software that
supports and facilitates the user in realizing his or her objectives.

Over the past years, considerable progress has been made in the area of com-
putational intelligence, which can be positioned at the intersection of computer
science, discrete mathematics, and cognitive science. This has led to a grow-
ing community of practitioners within Philips Research that develop, analyze,
and apply intelligent algorithms. The Symposium on Intelligent Algorithms
(SOIA) intends to provide this community of practitioners with a platform to
exchange information. The first edition of SOIA, held in 2002, addressed the
topic of intelligent algorithms in ambient intelligence. To share the output of
the symposium with a larger audience, a selection of papers was edited and
published by Kluwer in the Philips Research Book Series under the title “Al-
gorithms in Ambient Intelligence.” For the second edition, held in 2004, the
scope of the symposium was broadened so as to comply with the three main

consists of 17 chapters, divided over three parts corresponding to the strategic
topics mentioned above. The main topic in Healthcare is the understanding
of biological processes, for Lifestyle the main topic is content retrieval and
manipulation, and finally for Technology most contributions relate to media
processing. Below we present more detailed information about the individual
chapters.

logy. Again a selection of papers was edited, resulting in the present book. It
topics of the Philips company strategy, i.e., Healthcare, Lifestyle and Techno-

xvii



xviii Preface

Part I consists of four chapters. In Chapter 1, Chris Clack discusses the
topic of modeling biological systems, thus allowing to perform in-silico exper-
iments by means of computer simulation, to formulate hypotheses. In Chapter
2, Nevenka Dimitrova gives an overview of the reverse approach, where one
does not use computers to simulate biological processes, but where one uses
biology to perform computations, in DNA computing and synthetic biology.
In Chapter 3, Martin Kersten and Arno Siebes discuss data management in-
spired by biology, resulting in an organic database system. In Chapter 4, Kees
van Zon discusses how to achieve machine consciousness, and how it can be
applied.

problem of making a schedule of preferred TV programs, while at the same
time selecting TV programs for recording, under the assumption of a limited
number of tuners. In Chapter 6, Mauro Barbieri, Nevenka Dimitrova, and
Lalitha Agnihotri present a technique to automatically summarize video into a
condensed preview, allowing one to quickly browse and access large amounts
of stored programs. Chapters 7–9 concerns audio applications. First, Janto
Skowronek and Martin McKinney discuss in Chapter 7 the topic of automatic
classification of audio and music, for which they developed the automatic ex-
traction of the higher-level feature of percussiveness. In Chapter 8, Steffen
Pauws presents a technique to automatically extract the key from a piece of
music, providing an emotional connotation to it, and making it possible to
build well-sounding music mixes. In Chapter 9, Zharko Aleksovski, Warner
ten Kate, and Frank van Harmelen address the problem of combining multiple
databases of music data in a semantic way, by approximating matches of music
classes. Next, Jan Korst, Gijs Geleijnse, Nick de Jong, and Michael Verschoor
discuss in Chapter 10 the possibilities to fill a knowledge database, using an
ontology to collect and structure data from web pages. In the last chapter of
part II, which Wim Verhaegh, Aukje van Duijnhoven, Pim Tuyls, and Jan Ko-
rst resolve the privacy issue of population-based recommenders by encrypting
the users’ profiles and performing the required algorithms on encrypted data.

Part III consists of six chapters, focusing on the technology underlying in-
telligent algorithms and intelligent systems. The first two chapters discuss
theoretical aspects of intelligent algorithms. In Chapter 12, Peter Grünwald
gives an overview on the minimum description length principle to resolve the
problem of model selection, based on the fundamental idea to see learning as
a form of data compression. In Chapter 13, Herman ter Horst discusses the
computational complexity of reasoning with semantic web ontologies, such as
RDF Schema and OWL. Next, Wojciech Zajdel, Ben Kröse, and Nikos Vlas-
sis present in Chapter 14 an introduction to dynamic Bayesian networks, and
show their application in robot localization and multiple-person tracking. In

content management and retrieval. In Chapter 5, Wim Verhaegh discusses the
Par tII consists of eight chapters, addressing problems from the area of



Preface xix

Chapter 15, Berry Schoenmaker and Pim Tuyls discuss efficient protocols for
securely matching two user profiles, without leaking information on the de-
tails of the profiles. Finally, Chapters 16 and 17 address resource issues in
intelligent systems. In Chapter 16, Sai Shankar N., Richard Chen, Ruediger
Schmitt, Chun-Ting Chou, and Kang Shin revisit fairness in multi-rate wire-
less networks, and present a solution to fairly schedule airtime. Finally, in
Chapter 17, Akash Kumar and Sergei Sawitzki discuss the design alternatives
of Reed Solomon decoders, and address the problem of making optimal design
decisions to obtain a high-throughput, low-power solution.

We are convinced that the chapters presented in this book comprise an in-
teresting collection of examples of the use of intelligent algorithms in different
settings, and that the book reconfirms that the area of computational intelli-
gence is a truly challenging field of research.

WIM F.J. VERHAEGH, EMILE AARTS, AND JAN KORST
Philips Research Laboratories Eindhoven
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Chapter 1

BIOSCIENCE COMPUTING AND THE ROLE OF
COMPUTATIONAL SIMULATION IN BIOLOGY

Christopher D. Clack

Abstract Bioscience computing exploits the synergy of challenges facing both computer
science and biology, drawing inspiration from biology to solve computer sci-
ence challenges and simultaneously using new bio-inspired adaptive software to
model and simulate biological systems. This chapter first provides an introduc-
tion to bioscience computing — discussing the role of computational simulation
in terms of hypothesis formulation and prototyping for biologists and medics,
and explaining how bioscience computing is both timely and well-suited to sys-
tems biology. A concrete example of computational simulation is then provided
— the artificial cytoskeleton, which utilises swarm agents and a cellular au-
tomaton to model cell morphogenesis. Morphological adaptation for tasks such
as chemotaxis and phagocytosis are presented, and the role of the artificial cy-
toskeleton and its swarm-based techniques in both computer science and biology
is explained.

Keywords Bioscience computing, systems biology, computational simulation, morphogen-
esis, adaptive systems, agent based modelling, swarm agents.

1.1 Introduction to bioscience computing
Bioscience computing exploits the synergy of challenges facing both com-

puter science and biology, drawing inspiration from biology to solve problems
in computer science and simultaneously using new bio-inspired adaptive soft-
ware to model and simulate self-organising, adaptive, biological systems.

There has recently been a substantial increase in inter-disciplinary research
interactions between computer science and the life sciences. From the biolo-
gist’s perspective, the post-genomic era is characterised by huge amounts of
data but little understanding of how genes map to physiological functions, and
there is an urgent need for the application of intelligent computing techniques
to gain increased understanding. From the computer scientist’s perspective,
the new biological data and expanding understanding of biological processes

3

© 2006 Springer. Printed in the Netherlands. 
Wim F.J. Verhaegh et al. (Eds.), Intelligent Algorithms in Ambient and Biomedical Computing, 3-19.
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provide both an excellent driver for new methods in bioinformatics and an in-
creasing source of ideas for new computational techniques in areas such as
intelligent systems and artificial life.

The purpose of the first part of this chapter is to provide an introduction to
the biological context and to explain the role of bioscience computing within
that context.

1.1.1 A change of focus in biology and medicine
The traditional reductionist view of biology is rooted in analysis and bio-

physics; it is based on a hierarchical perspective where the functioning of the
physiome1 is the deterministic product of a ‘one-way upward causation from
genes to cells, organs, system and whole organisms’ [Noble, 2002], and has
been remarkably successful with fundamental achievements such as discov-
ering the structure of DNA and mapping the genome for not one but several
organisms. The traditional role of computer science in biology (e.g. of bioin-
formatics) has been to support this endeavour by providing data-handling, data
visualisation, numerical simulation and data-mining services.

However, in the post-genomic era the super-abundance of data and relative
paucity of understanding, coupled with a clearer perspective of the complexity
of living organisms, are causing biologists to question whether the traditional
view is sufficient as a basis for a full understanding of nature. The traditional
view is giving way to a new biology, often referred to as systems biology.

The rise of systems biology has caused a much closer relationship to develop
between biologists and computer scientists. In systems biology, the computer
science techniques are no longer merely a data service to the biologists, but are
intimately involved in the formulation of biological hypotheses as biologists
embrace the process-oriented world of the computer scientist. systems biology
considers an organism as a self-organising, adaptive, complex, dynamic sys-
tem providing an information framework with global constraints and multiple
feedback and regulation paths between high and low levels (e.g. controlling
gene expression); the sub-modules are too inextricably connected, there are
too many interactions between levels, for a one-way hierarchy to be possible
[Noble, 2002]. Biologists now experiment not just in-vivo and in-vitro, but
increasingly in-silico. These in-silico experiments are the basis for what we
term bioscience computing.

1.1.2 Modelling and simulation
The primary aims of modelling and simulation in biology are to improve

understanding of a process or hypothesis, to highlight gaps in knowledge, and

1A glossary of biological terms is provided in Table 1.1 at the end of this chapter.

Christopher D. Clack
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to make clear, testable predictions [Kirkwood et al., 2003]. Note, however,
that an in-silico experiment itself can never truly be used to test a biological
hypothesis — rather, computational simulation in biology should be viewed as
a process of prototyping to assist hypothesis formulation.

Wet-lab experimental techniques tend to focus analytic attention on single
mechanisms. By contrast, computational simulation can contribute to the activ-
ity of synthesis, of integrating many separate elements that form a network of
activity. The resultant interaction and synergy can provide a qualitatively much
improved experimental framework. These in-silico results may then guide the
choice of (more expensive) subsequent wet-lab experiments.

proaches which generally represent qualitative features of a system, to low-
level mechanistic simulations which typically represent quantitative aspects
(though abstraction and quantification need not be mutually exclusive con-
cepts [Ideker & Lauffenburger, 2003]). Examples of available techniques in-
clude statistical data-mining, clustering and classification (e.g. support vector
machines), Bayesian networks, Markov chains, fractal theory, Boolean logic,
and fuzzy logic. At the mechanistic extreme there are cellular automata and
agent-based simulations. Differential equations are widely used and capable
of capturing detail at varying levels of abstraction. See Figure 1.1.

Statistical
mining

Bayesian
networks

Markov
chains

Cellular
automata

(Partial) differential equations

Phenomenological
global state
a-priori variables & relations

Mechanistic
local state

adaptive

Figure 1.1. Comparative spectrum of available techniques.

Phenomenological models tend to focus on the global state of a system. Of-
ten they describe an a-priori given set of relations between an a-priori given
set of variables [Giavitto et al., 2002]; the two sets cannot evolve jointly with
the running system, and very few of these models successfully capture a rich
enough semantics to be able to predict complex behaviour [Anderson & Chap-
lain, 1998]. By contrast, mechanistic models provide local interaction mod-
elling, where cells react (often adaptively) to a local environment, not to the
state of the system as a whole (thereby supporting heterogeneity). This leads

Techniques. There is a wide spectrum of techniques available to support
modelling and simulation, ranging from high-level phenomenological ap-

to a rich model of spatiotemporal dynamics, and offers insights into the

Bioscience Computing and Computational Simulation in Biology
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Differential equations and partial differential equations provide an excellent
mechanism for detailed expression of behaviours of many kinds, but are unsat-

In

An interesting mechanistic approach is the use of cellular automata — e.g.
Scalerandi’s 2D model of cardiac growth dynamics [Scalerandi et al., 2002].
When coupled with agent-based modelling, using a ‘swarm’ of thousands of
tiny agents (a mechanism itself inspired by nature) each representing a separate
macromolecule, this method has the advantages of both mathematical simplic-
ity and that the spatiotemporal fates of individual components (cell, proteins
etc.) can be tracked in minute detail. The resulting system is very good at rep-
resenting spatiotemporal dynamics and organisational behaviour, particularly
for the simulation of adaptive behaviour.

Objects and processes. The specific attraction of computational simulation
is that the computational approach corresponds more naturally to the way that
biologists think about their subject. Biologists (in particular molecular biolo-
gists) naturally focus on objects, interactions and processes.

Computational simulation permits biologists to express biological systems
in terms of computational objects, interactions and processes that relate di-
rectly to their biological counterparts and are therefore far easier to under-
stand and easier to manipulate than differential equations. Computational
simulations can be expressed in terms of information networks and can use
interaction-centric models (e.g. local-neighbourhood operations within a cel-
lular automaton grid), all of which naturally map onto (for example) cell struc-
ture and the interaction of macromolecules.

The experience of systems biology has been that biologists have increas-
ingly adopted the computational systems concepts of computer scientists. This
should not come as a surprise, since computer scientists have extensive ex-
perience of building, modelling, and simulating complex systems that require
analysis and synthesis at many different levels of abstraction.

parameters and mechanisms responsible for system dynamics [Gatenby &
Maini, 2003] and for collective organisational behaviour at the microscopic
level [Patel, 2004].

McElwain, 2004]. For example, where precise local effects due to inter-
isfactory for some highly detailed spatiotemporal behaviours [Araujo &

molecular interactions and random molecular movement are required, a great
number of equations must be generated and solved [Succi et al., 2002].
practice, the computational limits on solving a large number of related partial
differential equations leads to the technique normally being applied only to
abstractions of internal mechanisms and processes.

Christopher D. Clack
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1.1.3 A computational approach to biological complexity
The computational approach to biology enables simulations as dynamic

emergent hierarchies of biological complexity, with interactions and feedback
between the levels, for example as illustrated in Figure 1.2. At the lowest level,
system components are lightweight agents governed by local-neighbourhood
rules. The rules provide the system of dynamic interaction between agents,
and from this comes the self-organising properties of the simulated organ-
ism (threshold parameters may need to be derived via automatic search meth-

neighbourhood rules, the regulatory effects that arise from the self-organising
properties of those rules, and sets of global constraints (which may be derived
from experimental observation). The result is a complex, dynamic system,
which can itself be considered as an agent in a larger network of agents of simi-
lar complexity, each undergoing interactions according to local-neighbourhood
rules at a higher level, and from which yet more complex behaviour emerges.

co-operative & competitive
agent interactions

rules of
interaction

emergent
regulatory

effects

stochastic
non-chaotic
patterns of
behaviour

Higher-Level
Agents

Higher-Level
Self Organisation

Higer-Level
Emergence

Global Constraints

co-operative & competitive
agent interactions

rules of
interaction

emergent
regulatory

effects

stochastic
non-chaotic
patterns of
behaviour

Agents Self Organisation Emergence

Global Constraints

Emergent regulatory effects
can constrain behaviour at the
same level or at any other level This dynamic, complex system

is itself an agent in a higher-
level system (above)

Figure 1.2. The dynamic emergence of hierarchies of biological complexity.

ods). The emergent behaviour of the system is dependent on a combination
of the competitive and co-operative interactions of the underlying local-

hierarchy of levels each can constrain the realisable solutions of the other
While emergent behaviour has the potential for chaotic results, in a

Bioscience Computing and Computational Simulation in Biology
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1.1.4 Summary: The role of bioscience computing
The first part of this chapter has explored the role of bioscience computing

in biology and argued that it is both timely and well-suited to the emergence of
systems biology: it provides in-silico experiments; focuses on interactions and
integration of concurrent mechanisms; is intimately involved in the formula-
tion of biological hypotheses; manipulates objects, processes and interactions;
is mathematically straightforward, with a low barrier to uptake; and captures
rich spatiotemporal detail at low computational cost.

1.2 Simulating adaptive behaviour
This second part provides a concrete example of the bioscience computing

techniques discussed in the first part of this chapter, and presents the artificial
cytoskeleton, a computational simulation of the development and adaptation of
the shape and form of an organism: morphogenesis. The work is more fully
described by Bentley & Clack [2004; 2005].

Organisms in nature exhibit complex adaptive behaviour that far surpasses
the ability of current state-of-the-art autonomous software and robotics. Our
research focuses on morphological adaptation, the continuous lifetime re-
configuration of phenotypic form (shape) exhibited by natural systems in or-
der to continue to survive in a changing environment. Many unicell organisms
exhibit complex adaptations of their shape in rapid response to environmental
changes — e.g. fibroblast cells change shape to assist movement during wound
healing, and immune system cells change shape to eat invading bacteria —
even though they have no centralized control system. We aim to understand
the underlying mechanisms and principles that govern this adaptive behaviour,
to explore the concept of morphological adaptation as a mapping from envi-
ronment to phenotype rather than merely from genotype to phenotype, and to
draw inspiration from those mechanisms to improve the adaptive behaviour of
artificial systems.

The detailed spatiotemporal aspects of morphogenesis are difficult to com-
pute using partial differential equations and so we turned to a bioscience com-
puting technique; a cellular automaton and agent-based computing using a very
large number of simple agents (‘swarm’ agents).

1.2.1 The artificial cytoskeleton
Our mechanism, the ‘artificial cytoskeleton’, is closely modelled on the eu-

karyotic cytoskeleton, a complex, dynamic network of protein filaments which
extends throughout the cytoplasm and which gives the cell dynamic structure

levels — thus, an understanding of dynamic emergence in complex hierarchies
is a fundamental step in understanding the underlying mechanisms of biology.

Christopher D. Clack
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In particular actin cytoskeleton microfilaments are involved

3D cellular automaton (CA) rules to allow proteins to exist and interact with
their 26 nearest neighbours in a 3D voxellated environment. The agent-based
swarm technique permits the modelling and tracking of individual components
and their interactions. The CA simplifies visualization, supports 3D spatial
placement and movement, and reduces system complexity. The combination
of the two techniques (agent-based swarm and CA) provides opportunities for
optimizing computational overhead (e.g. it is not always necessary to compute
interactions for all cells in the CA — only those that contain or abut an agent).
The CA rules for chemical diffusion and agent interactions can be checked
against current understanding of the biology.

toskeleton via a pathway of protein reactions: the transduction pathway (TP).
See Figure 1.3. For efficiency, the artificial cytoskeleton and transduction path-
way comprise only a small selection of proteins — just those necessary for a
particular experiment. The artificial cytoskeleton’s non-rigid form permits it to
disassemble rapidly and re-form in a more advantageous distribution; it con-
stantly responds to environmental cues by reorganizing, i.e. altering the cell’s
internal topography and the membrane morphology.

tural proteins (actin and a nucleator), which make up the filaments, and several
accessory proteins, which regulate a filament’s behaviour (e.g. inhibiting, ac-
tivating, severing, bundling). Environmental signals filter into the cell via the
transduction pathway, affecting concentrations of accessory proteins and struc-
tural protein behaviour. The cooperative and competitive interactions of these
structural and accessory proteins can dramatically alter the cytoskeleton’s fila-
mentous structure, affecting the shape and structure of the cell as a whole, and
resulting in rich diversity in cell shape [Alberts et al., 1994].

The protein interactions are defined by a set of functions; these functions
encapsulate the complete mapping from environmental cues to cell morphol-
ogy (which in turn may affect the environment). We call this function set the
‘environment-phenotype map’ (or ‘E-P map’). Different cell behaviours may
require different E-P maps. The following explanation of the underlying mech-
anism will focus on the E-P map for chemotaxis; see Figures 1.3 and 1.4.

Each voxel in the cellular automaton contains one of the following units:

1. environment which may contain concentrations of a chemoattractant ‘C’.

2. cytoplasm which may contain concentrations of the protein profilin;

and function.
in rapid changes to membrane shape in response to environmental signals
[Alberts et al., 1994]. We use agent-based swarm techniques combined with

receptors (sensors) in the membrane relay external signals to the artificial cy-
The artificial cytoskeleton resides within a membrane-bound ‘cell’ and

The underlying mechanism. The artificial cytoskeleton consists of struc-

Bioscience Computing and Computational Simulation in Biology
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Figure 1.3. A generalized environment-phenotyope map. The cytoskeleton is affected by
input from the environment (Env) via the transduction pathway (TP) and can affect the shape of
the cell, and thereby also the environment.

Figure 1.4. The environment-phenotype map as by Bentley & Clack [2004] abstracted from
the biological pathway for fibroblast chemotaxis. The simplified transduction pathway (TP)
contains a receptor and two macromolecules PIP2 and WASP, which convey information to the
artificial cytoskeleton (ArtCyto).

Christopher D. Clack
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3. an agent which may be either:

actin: which may be in the states S-actin (inactive), P1, P2, or F-actin
(in a filament) and which has 2 opposing binding sites (‘+’,‘ ’); or

a nucleator: the protein complex ‘Arp 2/3’, which may be switched on
or off and has one binding site.

The interactions of these two agents drive the creation, growth and dis-
association of actin filaments. The growth of actin filaments forces local
membrane shape changes, therefore altering the cell’s overall shape.

4. cell membrane which may contain a receptor and/or the two transduction
pathway proteins WASP and PIP2.

The membrane separates the cell from the environment. Initially, no
membrane units contain WASP or PIP2 but each has a probability of
containing a receptor.

Cell surface receptors are embedded in the membrane and mediate sig-
nals from the external environment to the cytoskeleton. Membrane units
containing receptors sum the concentration of C in their adjacent envi-
ronment voxels. If the sum exceeds a threshold, a cascade reaction inside
the cell is triggered; WASP and PIP2 are activated for the receptor and
for its adjacent membrane voxels. If the receptor deactivates, WASP and
PIP2 deactivate. See Figure 1.5.

The WASP proteins, when activated by a receptor, recruit agents nucle-
ator and P1 actin to the membrane (see below for a further explanation
of recruitment). A recruited nucleator agent will switch on and recruited
P1 actin changes state to P2 actin. Activated PIP2 releases a one-off
plume of protein profilin which diffuses through cytoplasm units. Deac-
tivated PIP2 causes removal of all profilin in the membrane unit’s adja-
cent cytoplasm voxels [Holt & Koffer, 2001].

Protein behaviour is governed by both general rules and specific rules of
interaction. The general rules are:

1. Diffusion: accessory proteins are represented as concentration gradients
which diffuse through cytoplasm voxels. Diffusion is calculated as by
Glazier & Graner [1993]; each cytoplasm voxel has a protein threshold,
the excess being evenly distributed to its cytoplasm neighbours.

2. Random movement: when not bound or stuck, an agent moves randomly.
When it moves to a new position, the protein concentration currently in
that position is diffused away and the voxel acquires the agent’s identi-
fier; the agent’s previous voxel becomes cytoplasm.

–
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Figure 1.5. Artificial cytoskeleton interactions. Receptors detect chemoattractant, WASP and
PIP2 activate and cause the cytoskeletal behaviours shown in stages 1 6, see text for details.

3. Recruitment: the biological concept of recruitment of proteins, to a spe-
cific protein S, is modelled as follows: an agent follows random move-
ment until it encounters an S in its nearest neighbours. It then can only
move such that an S is still in its nearest neighbours. Recruitment stops
if there is no S nearest neighbour.

The specific rules of interaction for the chemotaxis environment-phenotype
map consist of rules governing actin filament formation (and destruction) and
rules governing modifications to the shape of the cell membrane. These are
illustrated in Figure 1.5 and the stages are described in detail below:

An actin filament (AF) is created when a nucleator agent combines with an
actin agent. Figure 1.5 illustrates a chain of F-actin agents ‘F’ and a nucleator
(‘Arp2/3’). Each F-actin agent has two binding sites (‘+’/‘ ’): filament growth
occurs at the end with the exposed ‘+’ binding site. Subsequently other actin
agents may join the filament by attaching to an actin agent already in the fil-
ament. Over time the nucleator disassociates (and un-sticks) from its AF and
deactivates (stage 1). Similarly actin in a filament (F-actin) loses affinity for
the filament allowing cofilin (a severing protein) to disassociate it; it then gets
sequestered and changes to the inactive S-actin state (stage 2). Disassociation
always occurs at the filament’s ‘ ’ end. The actin or nucleator agent disassoci-
ates with a probability that increases with time spent in a filament. As the ‘+’
end of the filament grows, the ‘ ’ end shrinks and the filament, as a higher level
entity, moves towards the membrane.

Actin agents are initiated in the inactive state S-actin; S-actin units sum
the concentration of profilin in their nearest neighbours — if it exceeds the
threshold then the actin binds to profilin and changes to state P1, removing
an amount of profilin from the surrounding cytoplasm (stage 3). P1 actin is
recruited to active WASP to form P2 (stage 4). After recruited movement,

–

–

–

–
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if P2 actin has an actin filament ‘+’ site in its nearest neighbours, it binds
to it, changes state to F-actin, releases profilin to the surrounding cytoplasm,
and moves to the nearest neighbour cytoplasm voxel that permits its ‘ ’ site to
directly abut the actin filament ‘+’ site (stage 5).

A nucleator agent activates when recruited by WASP and then can nucleate
(start) actin filaments and set their orientation by binding to a P2 actin agent in
its nearest neighbours (also see push-out rule below). If there is a fully bound
F-actin nearest neighbour, then a nucleator can also ‘stick’ to it and nucleate a
branch actin filament (stage 6 [Alberts et al., 1994]).

There are three interactions affecting the cell membrane:

1. A gap must exist or be created between the AF’s ‘+’ end and the mem-
brane to allow P2 actin to bind either to F-actin or a nucleator. Adjacent
membrane is ‘pushed-out’ — the membrane voxels become cytoplasm
and the adjacent environment voxels become membrane (C is diffused
away first).2 The precise biology for this process is unclear [Condeelis,
2001].

2. To keep cytoplasm volume constant following ‘push-out’, the cytoplasm
or agent (but not F-actin) voxel within the cell that is furthest from the
newly created cytoplasm is replaced with a membrane voxel (any af-
fected profilin or agent is displaced).

3. If a membrane unit has no contact with inner cellular units, it is removed
(becomes an environment unit); this ensures there are no doubled-up
layers of membrane.

The combination of the above three interactions contracts the cell at the
opposite side to a leading edge and allows the cell’s centre of mass to move.

Experiments. Chemotaxis experiment. The artificial cytoskeleton was tested
in a simple experiment based on animal cell chemotaxis, requiring the cell to
undergo transformations in form in response to an external chemical stimulus.
The specific E-P map for our chemotaxis experiment [Bentley & Clack, 2004]
is given in Figure 1.4. The artificial cytoskeleton’s response to the stimulus
mimicked that of a real fibroblast cell (Figure 1.6), forming a leading edge
with protrusions. It moved towards the chemical source purely by lifetime
adapation of shape: see Figure 1.7.

Phagocytosis experiment. In nature, a single adaptive mechanism is able to
provide different morphologies in response to different environmental stimuli.

2After implementing this rule, a nucleator would switch off as it would no longer have WASP nearest
neighbours, so we permit a nucleator to remain switched on if any of its 26 nearest neighbours or any of
their surrounding 98 voxels contain WASP.

–
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