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To my father



Editors’ preface to the

Manchester Physics Series

The Manchester Physics Series is a series of textbooks at

first degree level. It grew out of our experience at the

Department of Physics and Astronomy at Manchester

University, widely shared elsewhere, that many textbooks

contain much more material than can be accommodated in

a typical undergraduate course; and that this material is

only rarely so arranged as to allow the definition of a shorter

self-contained course. In planning these books we have had

two objectives. One was to produce short books: so that

lecturers should find them attractive for undergraduate

courses; so that students should not be frightened off by

their encyclopaedic size or their price. To achieve this, we

have been very selective in the choice of topics, with the

emphasis on the basic physics together with some

instructive, stimulating and useful applications. Our second

objective was to produce books which allow courses of

different lengths and difficulty to be selected, with emphasis

on different applications. To achieve such flexibility we have

encouraged authors to use flow diagrams showing the

logical connections between different chapters and to put

some topics in starred sections. These cover more advanced

and alternative material which is not required for the

understanding of latter parts of each volume.

Although these books were conceived as a series, each of

them is self-contained and can be used independently of the

others. Several of them are suitable for wider use in other

sciences. Each Author’s Preface gives details about the

level, prerequisites, etc., of his volume.

The Manchester Physics Series has been very successful

with total sales of more than a quarter of a million copies.



We are extremely grateful to the many students and

colleagues, at Manchester and elsewhere, for helpful

criticisms and stimulating comments. Our particular thanks

go to the authors for all the work they have done, for the

many new ideas they have contributed, and for discussing

patiently, and often accepting, the suggestions of the

editors.

Finally, we would like to thank our publishers, John Wiley &

Sons Ltd, for their enthusiastic and continued commitment

to the Manchester Physics Series.

D. J. Sandiford

F. Mandl

A. C. Philips

February, 1997



The generall end therefore of all the book is to fashion

a noble person in vertuous and gentle discipline

—Edmund Spencer

Author’s Preface

Many science students acquire a distinctly negative attitude

towards the subject of statistics. The reasons for this are

clear. The traditional first year concentrated statistics

course of derivations and exhortations makes little impact

on the young undergraduates, who want to get to grips with

the basic truths of their chosen subject and have no interest

in sordid details like error bars. The hapless students then

go to laboratory classes, in which their enjoyment of the

experiments is marred by the awful chore of the ‘error

analysis’ at the end, where, whatever they do, they

inevitably get harshly criticised for doing it wrong. Under

such circumstances, ‘statistics’ can soon become a

collection of meaningless ritual, to be gone through

correctly if harsh words and bad marks are to be avoided.

As a student I was no different from any other in this

respect. But later, in the real world, doing real experiments,

statistics began to matter. Over the years I got to grips with

the subject, by talking to colleagues and digging in

reference books, and was agreeably surprised to discover

that it had an internal logic and structure. Once one really

got into it, it made sense. Eventually the time came when

people started asking me questions, and I somehow

acquired a reputation as the local statistics expert. On this

basis I devised a course, which was given as a set of

lectures to students at Manchester University. This has

convinced me that statistics can be taught to students in



such a way as to make it interesting for them, and give

them a real grasp of the subject.

This book has grown out of the lecture notes given out

with the course. Despite the shelves full of books on

‘statistics’ in any library or university bookshop, there is a

desperate lack of any suitable textbook for the physical

sciences beyond the very elementary level. The books

available are mainly aimed at the biological and social

sciences; for those of us in other fields they are

inappropriate, both in content and treatment. They deal

largely with samples and surveys, and the problems of

hypothesis testing, whereas we are more concerned with

the theory of measurements and errors, and with the

problem of estimation. Furthermore they assume, usually

correctly, that those for whom they are intended

(geographers, psychologists, and suchlike) will fear and

loathe anything at all mathematical. They therefore avoid

anything beyond (or even, in some cases, including) the

most elementary algebra. Now, although physicists and

chemists may fight shy of high-powered abstract

mathematics, they can happily differentiate and integrate

simple functions and follow basic algebra. They are thus

entitled to a reasonable explanation of the mathematics

involved in statistical calculations, and able to benefit from

it. This book thus assumes a reasonable degree of

numeracy from the reader, but nothing outstanding—any

real mathematician will find it hopelessly naive and

unrigorous.

This book is thus the textbook I would like to have had

available, both as a student and when teaching students,

and for my own use with real problems. I hope that others

will find it useful and interesting, and that it will eventually

lead them not only to use and understand statistics, but to

enjoy it.



I would like to record my acknowledgements to the many

people who, by discussions and advice, have helped form

my ideas on the subject, to the students on my course for

acting as guinea-pigs for the material, to John Ellison for

many helpful comments in preparing the manuscript for

publication, and finally to my wife Ann for putting up with

the trials of a traumatic author with patience and

understanding.

4 October 1988

ROGER BARLOW

Manchester



‘It’s not the figures themselves,’, she said finally, ‘it’s what

you do with them that matters’

—K.A.C. Manderville



CHAPTER 1

Using Statistics

Statistics is a tool. In experimental science you plan and

carry out experiments, and then analyse and interpret the

results. To do this you use statistical arguments and

calculations. Like any other tool—an oscilloscope, for

example, or a spectrometer, or even a humble spanner—

you can use it delicately or clumsily, skilfully or ineptly. The

more you know about it and understand how it works, the

better you will be able to use it and the more useful it will

be.

The fundamental laws of classical science do not deal with

statistics or errors. Newton’s law of gravitation, for example,

reads in pure and beautiful simplicity. The figure in the

denominator is given as 2—exactly 2, not 2.000 ± 0.012 or

anything messy like that. This can lead people to the idea

that statistics has nothing to do with ‘real’ scientific

knowledge.

But where do the laws come from? Newton’s justification

came from the many detailed and accurate astronomical

observations of Tycho Brahe and others. Likewise Ohm’s law

which appears so straightforward and elementary to us

today, was based on Ohm’s many careful measurements

with primitive apparatus. When you are studying science

you may find no use for statistics—until you meet quantum



mechanics, but that is another story—but as soon as you

begin doing science, and want to know what measurements

really mean, it becomes a matter of vital importance.

This is a textbook on statistics for the physical sciences. It

treats the subject from the basic level up to a point where it

can be usefully applied in analysing real experiments. It

aims to cover most situations that are likely to be met with,

and also provide a grasp of statistical ideas, terminology,

and language, so that more advanced works can be

consulted and understood should the need arise. It is thus

intended to be usable both as a textbook for students taking

a course in the subject, and also as a handbook and

reference manual for research workers and others when

they need statistical tools to extract their experimental

results.

These two modes of use give rise to requirements in the

ordering of the material which are not always happily

reconcilable. For reference use one wants to group all

material on a given topic together, but for teaching

purposes this would be like learning a language from a

dictionary. The solution adopted is that the unstarred

sections cover the material roughly appropriate to a first

year undergraduate course. They can sensibly be taken in

order, with no anticipation of later material. The starred

sections fill in the gaps; they may require knowledge of

material in later sections, but when this occurs it is explicitly

pointed out. Most of the basic material is in the early

chapters, and Chapters 7, 9, and 10 contain entirely higher-

level material. First-time-through readers should not be

scared or put off by any apparent mathematical complexity

they observe in some of the starred sections: these can (and

should) be skipped over with a clean conscience, as they

are not needed for later unstarred sections of the course.



‘Data! Data! Data!’, he cried impatiently.

‘I can’t make bricks without clay’.

—Sir Arthur Conan Doyle



CHAPTER 2

Describing the Data

It all starts with the data. You may call them a set of results,

or a sample or the events, but whatever the name, they

consist of a set of basic measurements from which you’re

trying to extract some meaningful information.

To make your data mean something, particularly to an

outside audience, you need to display them pictorially, or to

extract one or two important numbers. There are many such

numbers and ways of presenting the data in graphic form,

and this chapter is devoted to methods of describing the

data in a useful and meaningful way, without attempting

any deeper analysis or inference. This is known as

descriptive statistics.

2.1 TYPES OF DATA

Data †  are called quantitative or numeric if they can be

written down as numbers, and qualitative or non-numeric if

they cannot. Qualitative data are rather hard to work with as

they do not offer much scope for mathematical treatment,

so most of the subject of statistics, and likewise most of this

book, deals with quantitative, numerical measurements.

Quantitative measurements divide further into two types.

Some, by their very nature, have to be integers and these

are called discrete data. Others are not constrained in this

way and their values are real numbers. These are called

continuous data. Continuous data cannot be recorded

exactly, as you cannot write down an infinite number of



decimal places. Some sort of rounding and loss of precision

has to occur.

For example, if you were to examine a sample of motor

cars and record their colours, these would be qualitative

data. The number of seats in each car has to be an integer,

and would be discrete numeric data, as would the number

of wheels. The lengths and the weights of the cars would be

continuous numeric data.

Usually one of the first things to do in making sense of the

data (which is just a pile of raw results) is to divide them

into bins (also called groups or classes or blocks). For

example, the results of tossing 20 coins, each of which

comes down either heads (H) or tails (T)

can be written as {11H,9T}. This conveys the same

information much more clearly and concisely.

For continuous numeric data it is not quite so simple, as

your values are (almost certainly) all different, if you use

enough decimal places. You have to group together adjacent

numbers, using a range of values to define each bin. This

means further rounding of values and throwing away

precision information, which is the price you pay for

rendering the data comprehensible. Usually the bins are

chosen to be all the same uniform size, but in some cases it

makes sense to use non-uniform bins of different sizes.

For discrete numeric data this grouping together of

adjacent values is not compulsory, but it may be desirable

when the numbers of data points with any particular value

are small.



2.2 BAR CHARTS AND

HISTOGRAMS
The numbers of events in the bins can be used to draw bar

charts (see Figure 2.1) and histograms.

There is a technical difference between a bar chart and a

histogram in that the number represented is proportional to

the length of bar in the former and the area in the latter.

This matters if non-uniform binning is used. Bar charts can

be used for qualitative or quantitative data, whereas

histograms can only be used for quantitative data, as no

meaning can be attached to the width of the bins if the data

are qualitative.

For quantitative, numeric, data, you have to choose the

width of the bins to be used in the display (see Figures 2.2).

This requires thought. If the bins chosen are too narrow,

then there are very few events in each bin, and the numbers

are dominated by fluctuations. Ideally there should be at

least ten events in each bin, and the more the better. If they

are too wide, then real detail can be obscured if the bin

stretches over genuine variations in the distribution. Ideally,

the difference between contents of adjacent bins should be

small. The choice is yours—it is a matter of personal

judgement. It may well be, particularly if the number of

events is small, that there is no way of satisfying both ideal

requirements. In this case you just have to do the best you

can with the data available.

Fig. 2.1. A bar chart displaying the data in the previous

section.



There are other ways of representing the data using

pictures: ideographs, frequency polygons, pie charts,

prismograms, scatter plots, and many more. However, it is

not necessary to give you all the details. They are designed

to be straightforward to understand, and are therefore

straightforward to use. Some people become very excited

about ‘right’ and ‘wrong’ ways of doing things, and come

almost to blows over whether gaps between bars in a bar

chart are compulsory or optional, and similar trivial matters.

Such details are not really important. It is very much a

matter of your own taste as to how you display your data,

and the scales and axes you use. The object of any

description is to convey an idea of your data to your

audience in a way that is effective, easy to grasp, and

honest. That is all that really matters. (For examples of

dishonest methods, consult How to Lie with Statistics by

Darrell Huff (see Bibliography) or any daily newspaper.)

Fig. 2.2. The ages (in years) of a group of second year

students, showing the effects of choosing different bin sizes

for the same data.



2.3 AVERAGES

2.3.1 The Arithmetic Mean

If you want to describe your data with just one number, the

best and most meaningful one to use is almost certainly the

arithmetic mean. This is denoted by an upper bar over the

quantity concerned: thus if there are N elements in the set

of data

then the mean value of x is

(2.1) 

In the same way you can calculate the mean value of any

function f(x):

(2.2) 

If the data have been binned, and bin j corresponds to a

value Xj and contains nj, data elements, then these means

can be written

(2.3) 



(2.4) 

Note carefully the apparent difference between these

formulae and the ones above. Which you use depends on

whether you are summing over elements of the data set or

over bins. If rounding has occurred then the average from

the bins is less accurate than the average over the

unrounded elements, so it is better to use the unrounded

data if you can.

Example Weights of foils

The weights of 5 metal foils are 25g, 24g, 27g, 29g, and

25g.

Example Occupancy of cars

In a survey of 100 cars passing a checkpoint, 72 contained

only 1 occupant (the driver), 23 had 2, 2 had 3, and 3 had 4.

2.3.2 Alternatives to the

Arithmetic Mean

The geometric mean of two numbers is the length of the

side of a square of area equal to the product of the two

numbers. For N numbers it is defined as

The harmonic mean is the reciprocal of the arithmetic

mean of the reciprocals:



Pythagoras discovered that notes from strings whose

lengths were in the ratio  were pleasing or ‘harmonic’.

Hence for two numbers the harmonic mean is the

intermediate value such that the three reciprocals are in

arithmetic progression and the numbers belong to the

sequence.

The root mean square is just what it says, i.e.

All of these are less common than the arithmetic mean, so

that if the ‘mean’ is mentioned without a qualifying

adjective, this refers to the arithmetic mean.

The mode is the most popular value in a set of data. It is

easy to find, but it can be a misleadingly unrepresentative

number to quote.

The median is the halfway point, in the sense that half the

data elements fall below it, and half above. It is preferable

to the mean in describing data where the order or rank in

the variable is more important than the numerical value.

Actually, although the median is generally defined as the

point with half the data below and half above, it is not really

quite so simple. If the data have an odd number of

elements, all with different values, then the median is taken

as the middle one. This therefore has (N – l)/2 values above

it and (N – l)/2 below, so there are in fact slightly less than

half below and above. If there are several data points with

the same value, perhaps because the data have been

binned, then the best one can do to define a ‘central’ bin is

to state that not more than half lie below it, and not more

than half above, i.e. there will also be some at that value—

and the numbers above and below may be different. If the

number of elements is even there is a further complication if

the two midmost points have different values, as then any

number between them would satisfy the definition; the



median is, by convention, taken as halfway between the

two.

2.4 MEASURING THE

SPREAD

2.4.1 The Variance

The mean  describes all your data with just one number.

This can be useful, but it can also be misleading. Consider

the two sets of (fictitious) data in Figure 2.3.

Both sets of marks have a mean of 7.0, but they differ

greatly. The first assessor departs from the average only

when the student is outstandingly good or bad, and then

only by a small amount, but the second marks over a wider

range. They are distributed very differently, and we need a

number to express the spread or dispersion of the data

about the mean.

The average deviation from the mean is not a useful

quantity, as the positive and negative deviations cancel and

the sum is automatically zero.

However, you can stop the contributions from different

elements cancelling by squaring them, which forces them to

be positive. Thus the average squared deviation from the

mean is a sensible measure of the spread of the data. It is

called the variance of x as it expresses how much x is liable

to vary from its mean value , and is written V(x):



Fig. 2.3. Histograms showing the marks awarded by two

demonstrators in assessing the performances of 80 students

in the laboratory.

(2.5)

In the same way, any function of x has a variance too:

(2.6) 

The definition of V(x) can be manipulated to give a simpler

formula for it. This type of manipulation is used so often that

this time we will go through it in detail.

Starting from 

multiply out the square 

separate into three sums 

extract some factors to get 

which reduces to 

and finally 

So the fundamental formula is obtained

(2.7a) 

or, equivalently,



(2.7b)

or, in words, the variance is the mean square minus the

squared mean.

2.4.2 The Standard Deviation

The root mean squared deviation is called the standard

deviation and given the symbol σ. It is just the square root

of the variance (see previous section) and can be expressed

in various equivalent forms (using equations 2.5 or 2.7):

(2.8a)

(2.8b)

(2.8c)

(2.8d)

σ represents a reasonable amount for a particular data

point to differ from the mean. The exact numerical details

depend on the case, but usually one is not surprised by data

points one or two standard deviations from the mean,

whereas a data point three or more σ away would cause a

few raised eyebrows.

Broadly speaking, practical scientists like to work with σ

rather than V, as it has the same units and dimensions as x.

Statisticians, on the other hand, tend to use V as it is easier

to manipulate. It does not really matter which you use, as it

is trivial to translate from one to the other.

Example Laboratory marks

The narrow histogram in Figure 2.3 has 10 cases of 6

marks, 60 of 7 marks, and 10 of 8 marks. The gives a mean

of 7, a variance of 0.25, and thus a standard deviation of



0.50 marks. The broad one has a standard deviation of 1.46

marks, nearly three times larger.

Example Monitoring

A company produces ball-bearings whose mean mass is 30

grams, with a standard deviation of 0.1 gram. Quality

control inspectors check the production line by weighing a

ball-bearing every morning. If its mass lies between 29.8

and 30.2 grams they assume all is well. If it is outside these

2σ limits—the ‘warning level’—but within 29.7 and 30.3

grams they weigh some more ball-bearings. If it is outside

the 3σ limits of 29.7 and 30.3 grams—the ‘action level’—

they halt the production line.

2.4.3 Different Definitions of

the Standard Deviation

The definition of σ is a minefield of alternatives, and to call

it the ‘standard’ deviation is something of a sick joke. It is

important to face up to this, for when people are unaware of

the differences between the definitions they get confused

and dismayed by factors of  that appear apparently

out of nowhere. This leads to a tendency to insert such

factors at random and generally incorrect moments.

Equation 2.8 defined the standard deviation of a data

sample as

So far so good. However, our data are presumably taken

as a sample from a parent distribution,† which has a mean

and a standard deviation, denoted μ and σ. In terms of

expectation values:

(2.9)



There is thus a clear distinction between , the mean of the

sample, and μ, that of the parent, and complete confusion

between σ, the standard deviation of the sample, and σ,

that of the parent.

This is not really too bad, as it is generally clear which is

meant. However, it gets worse. Some authors define the

term ‘standard deviation’ as the r.m.s. deviation of the data

points from the ‘true’ mean μ, rather than the sample mean 

:

(2.10)

This is felt to be a more fundamental and ‘truer’ quantity

than that defined in equation 2.8, but it is not much use if

you do not know the value of μ. However, an estimate of

this, which (when squared) gives an unbiased estimate of σ2

of the parent, is given by

(2.11)

This is fair enough, and is considered in detail in Chapter

5, but we now have four definitions of ‘standard deviation’,

three of which (equations 2.8, 2.10, and 2.11) are to some

extent rivals.

The reason for all this regrettable mess is a chicken- and -

egg argument as to which comes first (i.e. is more

fundamental), equation 2.8 or 2.9. One school of thought

says that there is a real, true, ideal distribution with a

standard deviation defined by 2.9, which is best measured

by 2.10 or, failing that, 2.11, and the standard deviation of

your sample, as defined by 2.8, has no real significance. The

opposing view, to which I incline myself, is that equation 2.8

is what you actually measure, and from a descriptive point

of view that is that; any further developments towards

properties of the parent distribution come under the


