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Preface 

The subject of optimization is a fascinating blend of heuristics and rigour, of 
theory and experiment. It can be studied as a branch of pure mathematics, yet 
has applications in almost every branch of science and technology. This book 
aims to present those aspects of optimization methods which are currently of 
foremost importance in solving real life problems. I strongly believe that it is 
not possible to do this without a background of practical experience into how 
methods behave, and I have tried to keep practicality as my central theme. 
Thus basic methods are described in conjunction with those heuristics which 
can be valuable in making the methods perform more reliably and efficiently. 
In fact I have gone so far as to present comparative numerical studies, to give 
the feel for what is possible, and to show the importance (and difficulty) of 
assessing such evidence. Yet one cannot exclude the role of theoretical studies 
in optimization, and the scientist will always be in a better position to use 
numerical techniques effectively if he understands some of the basic theoretical 
background. I have tried to present such theory as shows how methods are 
derived, or gives insight into how they perform, whilst avoiding theory for 
theory's sake. 

Some people will approach this book looking for a suitable text for under­
graduate and postgraduate classes. I have used this material (or a selection 
from it) at both levels, in introductory engineering courses, in Honours 
mathematics lectures, and in lecturing to M.Sc. and Ph.D. students. In an 
attempt to cater for this diversity, I have used a Jekyll and Hyde style in the 
book, in which the more straightforward material is presented in simple terms, 
whilst some of the more difficult theoretical material is nonetheless presented 
rigorously, but can be avoided if need be. I have also tried to present worked 
examples for most of the basic methods. One observation of my own which I 
pass on for what it is worth is that the students gain far more from a course if 
they can be provided with computer subroutines for a few of the standard 
methods, with which they can perform simple experiments for themselves, to 
see for example how badly the steepest descent method handles Rosenbrock's 
problem, and so on. 

In addition to the worked examples, each chapter is terminated by a set of 
questions which aim to not only illustrate but also extend the material in the 
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text. Many of the questions I have used in tutorial classes or examination 
papers. The reader may find a calculator (and possibly a programmable 
calculator) helpful in some cases. A few of the questions are taken from the 
Dundee Numerical Analysis M.Sc. examination, and are open book questions 
in the nature of a one day mini research project. 

The second edition of the book combines the material in Volumes 1 and 2 
of the first edition. Thus unconstrained optimization is the subject of Part 1 
and covers the basic theoretical background and standard techniques such as 
line search methods, Newton and quasi-Newton methods and conjugate 
direction methods. A feature not common in the literature is a comprehensive 
treatment of restricted step or trust region methods, which have very strong 
theoretical properties and are now preferred in a number of situations. The 
very important field of nonlinear equations and nonlinear least squares (for 
data fitting applications) is also treated thoroughly. Part 2 covers constrained 
optimization which overall has a greater degree of complexity on account of 
the presence of the constraints. I have covered the theory of constrained 
optimization in a general (albeit standard) way, looking at the effect of first and 
second order perturbations at the solution. Some books prefer to emphasize 
the part played by convex analysis and duality in optimization problems. I also 
describe these features (in what I hope is a straightforward way) but give them 
lesser priority on account of their lack of generality. 

Most finite dimensional problems of a continuous nature have been included 
in the book but I have generally kept away from problems of a discrete or 
combinatorial nature since they have an entirely different character and the 
choice of method can be very specialized. In this case the nearest thing to a 
general purpose method is the branch and bound method, and since this is a 
transformation to a sequence of continuous problems of the type covered in 
this volume, I have included a straightforward description of the technique. 
A feature of this book which I think is lacking in the literature is a treatment 
of non-differentiable optimization which is reasonably comprehensive and covers 
both theoretical and practical aspects adequately. I hope that the final chapter 
meets this need. The subject of geometric programming is also included in the 
book because I think that it is potentially valuable, and again I hope that this 
treatment will turn out to be more straightforward and appealing than others 
in the literature. The subject of nonlinear programming is covered in some 
detail but there are difficulties in that this is a very active research area. To 
some extent therefore the presentation mirrors my assessment and prejudice as 
to how things will turn out, in the absence of a generally agreed point of view. 
However, I have also tried to present various alternative approaches and their 
merits and demerits. Linear constraint programming, on the other hand, is now 
well developed and here the difficulty is that there are two distinct points of 
view. One is the traditional approach in which algorithms are presented as 
generalizations of early linear programming methods which carry out pivoting 
in a tableau. The other is a more recent approach in terms of active set strategies: 
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I regard this as more intuitive and flexible and have therefore emphasized it, 
although both methods are presented and their relationship is explored. 

This second edition has given me the opportunity to improve the presentation 
of some parts of the book and to introduce new developments and a certain 
amount of new material. In Part 1 the description of line searches is improved 
and some new results are included. The variational properties of the BFGS and 
DFP methods are now described in some detail. More simple proofs of the 
properties of trust region methods are given. Recent developments in hybrid 
methods for nonlinear least squares are described. A thorough treatment of the 
Dennis~ More theorem characterizing superlinear convergence in nonlinear 
systems is given and its significance is discussed. In Part 2 the treatment of 
linear programming has been extended considerably and includes new methods 
for stable updating of L U factors and the reliable treatment of degeneracy. Also, 
important recent developments in polynomial time algorithms are described 
and discussed, including ellipsoid algorithms and Karmarkar's method. The 
treatment of quadratic programming now includes a description of range space 
and dual active set methods. For general linear constraint programming some 
new theorems are given, including convergence proofs for a trust region method. 
The chapter on nonlinear programming now includes an extra section giving 
a direct treatment of the L 1 exact penalty function not requiring any convex 
analysis. New developments in sequential quadratic programming (SQP) are 
described, particularly for the case that only the reduced Hessian matrix is used. 
A completely new section on network programming is given relating numerical 
linear algebraic and graph theoretic concepts and showing their application in 
various types of optimization problem. For non-smooth optimization, Osborne's 
concept of structure functionals is used to unify the treatment of regularity for 
second order conditions and to show the equivalence to nonlinear programming. 
It is also used to demonstrate the second order convergence of a non-smooth 
SQP algorithm. The Maratos effect and the use of second order corrections 
are described. Finally a new section giving optimality conditions for constrained 
composite non-smooth optimization is included. A considerable number of new 
exercises is also given. 

It is a great pleasure to me to acknowledge those many people who have 
influenced my thinking and contributed to my often inadequate knowledge. 
Amongst many I must single out the assistance and encouragement given to 
me by Professor M. J. D. Powell, my former colleague at AERE Harwell, and 
one whose contributions to the subject are unsurpassed. I am also indebted to 
Professor A. R. Mitchell and other members of the University of Dundee for 
providing the stimulating and yet relaxed environment in which this book was 
prepared. I also wish to thank Professor D. S. Jones for his interest and 
encouragement in publishing the book, and Drs M.P. Jackson, G. A. Watson 
and R. S. W omersley for their constructive advice on the contents. I gratefully 
acknowledge those various people who have taken the trouble to write or 
otherwise inform me of errors, misconceptions, etc., in text. Whilst this new 
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edition has given me the opportunity to correct previous errors, it has also 
inevitably enabled me to introduce many new ones for which I apologise in 
advance. I am also grateful for the invaluable secretarial help that I have received 
over the years in preparing various drafts of this book. 

Last, but foremost, I wish to dedicate this book to my parents and family as 
some small acknowledgement of their unfailing love and affection. 

Dundee, December 1986 R. Fletcher 
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UNCONSTRAINED OPTIMIZATION 





Chapter 1 

Introduction 

1.1 HISTORY AND APPLICATIONS 

Optimization might be defined as the science of determining the 'best' solutions 
to certain mathematically defined problems, which are often models of physical 
reality. It involves the study of optimality criteria for problems, the determination 
of algorithmic methods of solution, the study of the structure of such methods, 
and computer experimentation with methods both under trial conditions and 
on real life problems. There is an extremely diverse range of practical 
applications. Yet the subject can be studied (not here) as a branch of pure 
mathematics. 

Before 1940 relatively little was known about methods for numerical 
optimization of functions of many variables. There had been some least squares 
calculations carried out, and steepest descent type methods had been applied 
in some physics problems. The Newton method in many variables was known, 
and more sophisticated methods were being attempted such as the self-consistent 
field method for variational problems in theoretical chemistry. Nonetheless any­
thing of any complexity demanded armies of assistants operating desk calculating 
machines. There is no doubt therefore that the advent of the computer was 
paramount in the development of optimization methods and indeed in the 
whole of numerical analysis. The 1940s and 1950s saw the introduction and 
development of the very important branch of the subject known as linear 
programming. (The term 'programming' by the way is synonymous with 
'optimization' and was originally used to mean optimization in the sense of 
optimal planning.) All these methods however had a fairly restricted range of 
application, and again in the post-war period the development of 'hill-climbing' 
methods took place-methods of wide applicability which did not rely on any 
special structure in the problem. The latter methods were at first very crude 
and inefficient, but the subject was again revolutionized in 1959 with the 
publication of a report by W. C. Davidon which led to the introduction of 
variable metric methods. My friend and colleague M. J. D. Powell describes a 
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meeting he attended in 1961 in which the speakers were telling of the difficulty 
of minimizing functions of ten variables, whereas he had just programmed a 
method based on Davidon's ideas which had solved problems of 100 variables 
in a short time. Since that time the development of the subject has proceeded 
apace and has included methods for a wide variety of problems. This book 
describes these developments in what is hoped will be a systematic and 
comprehensive way. 

The applicability of optimization methods is widespread, reaching into almost 
every activity in which numerical information is processed (Science, Engineering, 
Mathematics, Economics, Commerce, etc.). To provide a comprehensive account 
of all these applications would therefore be unrealistic, but a selection might 
include: 

(a) chemical reactor design; 
(b) aero-engine or aero-frame design; 
(c) structural design-buildings, bridges, etc.; 
(d) commerce-resource allocation, scheduling, blending; 

and applications to other branches of numerical analysis: 

(e) data fitting; 
(f) variational principles in p.d.e.s; 
(g) nonlinear equations in o.d.e.s; and 
(h) penalty functions. 

More such applications can be found in the proceedings of a conference on 
'Optimization in Action' (Dixon, 1976), and many more of course in the 
specialized technical literature. However to give some idea of what is involved 
consider the optimum design of a distillation column, which can be modelled 
in an idealized way as in Figure 1.1.1. The aim of such a column is to separate 
out a more volatile component from a mixture of components in the input 

Condenser 

}----_.- Product 

Input 

Reboiler 
>------.-Waste 

Heat 

Figure 1.1.1 A model distillation column 
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stream. An objective function to be optimized might therefore be the quantity 
of the product or the profit from operating the system. The variables would be 
the rate of flow in the input, the heat rates applied and on each plate the liquid 
and vapour compositions of each component, and the temperature and vapour 
pressure. The variables are subject to restrictions or interrelations of many 
kinds, which are referred to as constraints. For instance compositions and flows 
mu-st be non-negative (x; ~ 0) and temperatures must not exceed certain upper 
bounds (T; ~ Tmax). Relationships such as the unit sum of percentage 
compositions must be included explicitly (L;x; = 1). More complicated 
constraints state how components interact physically, for instance vapour and 
liquid compositions are related by v; = 1;(/J(T;), where ¢(T;) is a given but highly 
nonlinear function of temperature. A more difficult situation arises if the number 
of plates in the column is allowed to vary, and this is an example of an integer 
variable which can take on only integer values. 

This book however is not concerned with applications, except insofar as 
they indicate the different types of optimization problem which arise. It is 
possible to categorize these into a relatively small number of standard problems 
and to state algorithms for each one. The user's task is to discover into what 
category his problem fits, and then to call up the appropriate optimization 
subroutine on a computer. This subroutine will specify to the user how the 
problem data is to be presented, for example nonlinear functions usually have 
to be programmed in a user-written subroutine in a certain standard format. 
It is also as well to remember that in practice the solution of an optimization 
problem is not the only information that the user might need. He will often be 
interested in the sensitivity of the solution to changes in the parameters, especially 
so if the mathematical model is not a close approximation to reality, or if he 
cannot build his design to the same accuracy as the solution. He may indeed 
be interested in the variation of the solution obtained by varying some 
parameters over wide ranges, and it is often possible to provide this information 
without re-solving the problem numerous times. 

This book therefore is concerned with some of the various standard 
optimization problems which can arise. In fact the material is divided into Part 1 
and Part 2. Part 1 is devoted to the subject of unconstrained optimization, in 
which the optimum value is sought of an objective function of many variables, 
without any constraints. This problem is important in its own right and also 
as a major tool in solving some constrained problems. Also many of the ideas 
carry over into constrained optimization. The special case of sums of squares 
functions, which arise in data fitting problems, is also considered. This also 
includes the solution of sets of simultaneous nonlinear equations, which is an 
important problem in its own right, but which is often solved by optimization 
methods. Part 2 is devoted to constrained optimization in which the additional 
complication arises of the various types of constraint referred to above. An 
overview of constrained optimization is given in Section 7. 

In this book a selection has had to be made amongst the extensive literature 
about optimization methods. I have been concerned to present practical methods 
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(and associated theory) which have been implemented and for which a body of 
satisfactory numerical experience exists. I am equally concerned about reliability 
of algorithms and whether there is proof or good reason to think that 
convergence to a solution will occur at a reasonably rapid rate. However, I 
shall also be trying to point out which new ideas in the subject I feel are 
significant and which might lead to future developments. Many people may 
read this book seeking a particular algorithm which best solves their specific 
problem. Such advice is not easy to give, especially in that the decision is not 
as clear-cut as it may seem. There are many special cases which should be taken 
into account, for instance the relative ease of computing the function and its 
derivatives. Similarly, considerations of how best to pose the problem in the 
first instance are relevant to the choice of method. Finally, and of most 
importance, the decision is subject to the availability of computer subroutines 
or packages which implement the methods. However some program libraries 
now give a decision tree in the documentation to help the user choose his 
method. Whilst these are valuable, they should only be used as a rough guide, 
and never as a substitute for common sense or the advice of a specialist in 
optimization techniques. 

1.2 MATHEMATICAL BACKGROUND 

The book relies heavily on the concepts and techniques of matrix algebra and 
numerical linear algebra, which are not set out here (see Broyden, 1975, for 
example), although brief explanations are given in passing in certain cases. A 
vector is represented by a lower case bold letter (e.g. a) and usually refers to a 
column vector. A matrix is referred to by a bold upper case letter (e.g. B). That is 

··· B 1J 
••• B2s 

B,. 

Sometimes bii is used for elements of B in place of B;i· Transposition is referred 
to by superscript T so that aT is a row vector and aTz for instance is the scalar 
product a Tz = zTa = L;a;z;. 

The ideas of vector spaces are also used, although often only in a simple 
minded way. A point x in n-dimensional space (!Rn) is the vector {x1, x2, ... , xn)T, 
where x1 is the component in the first coordinate direction, and so on. Most 
of the methods to be described are iterative methods which generate a sequence 
of points, x<ll, x<2>, x(3), ... say, or { x<kl} (the superscripts denoting iteration 
number), hopefully converging to a fixed point x* which is the solution of the 
problem (see Figure 1.2.2). The idea of a line is important, and is the set of points 

x( = x(a)) = x' +as (1.2.1) 

for all a (sometimes for all a ;;:::: 0; this is strictly a half-line), in which x' is a fixed 



Mathematical Background 

x, 

Line x'+ as 
for all a 

Figure 1.2.1 A line in two dimensions 

7 

point along the line (corresponding to ex= 0), and sis the direction of the line. 

For instance in Figure 1.2.1 x' is the point ( ~) and s the direction G). The 

vector s is indicated by the arrow. Sometimes it is convenient to normalize s so 
that for instance sTs = L,;st = 1; this does not change the line, but only the 
value of ex associated with any point. 

The calculus of any function of many variables, f(x) say, is clearly important. 
Some pictorial intuition for two variable problems is often gained by drawing 
contours (surfaces along which f(x) is constant). A well-known test function for 
optimization methods is Rosenbrock's function 

(1.2.2) 

the contours for which are shown in Figure 1.2.2. Some other contours are 

Figure 1.2.2 Contours for Rosenbrock's function, equation (1.2.2) 
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illustrated in Figure 6.2.2 in Chapter 6. In general it will be assumed that the 
problem functions which arise are smooth, that is continuous and continuously 
(Frechet) differentiable (C 1). Therefore for a function f(x) at any point x there 
is a vector of first partial derivatives, or gradient vector 

(1.2.3) 

where V denotes the gradient operator (o/ox 1, ... ,(Jjoxn)T. If f(x) is twice 
continuously differentiable (C2 ) then there exists a matrix of second partial 
derivatives or Hessian matrix, written V2 f(x), for which the i, jth element is 
o2 f /(ox;oxi). This matrix is square and symmetric. Since any column (the jth, 
say) is V(o flox), the matrix can strictly be written as V(V fT). For example, in 
(1.2.2) 

V f(x) _ (- 400x 1 (x2 - xi)- 2(1- x 1)) 

- 200(x2 - xi) 

2f _ [1200xi- 400x2 + 2 - 400x1 ] 

V (x)- - 400x 1 200 

(1.2.4) 

and this illustrates that V f and V2 f will in general depend upon x, and vary from 

point to point. Thus at x' = (~). V f(x') = ( -~) and V2 f(x') = [~ 20~] 
by substitution into (1.2.4). 

These expressions can be used to determine the derivatives of f along any 
line x(a) in (1.2.1). By the chain rule 

i_= L i_x;(IX)_i_= 2:s;~=sTV 
da ; da ox; ; ox; 

so the slope off(= f(x(a)) along the line at any point x(a) is 

:~ = STV f = V fTs. 

Likewise the curvature along the line is 

d2f d df - =--= sTV(V fTs) = sTV2 fs 
da2 da da 

(1.2.5) 

(1.2.6) 

(1.2.7) 

where V f and V2 f are evaluated at x(a). Note that, writing G = V2 f, then Gs 
is the vector for which (Gs); = L,p;h, and sTGs is the scalar product of s and 

Gs. For example, for (1.2.2) at x' =(~).the slope along the line generated by 
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s = ( ~) (the x 1-axis in Figure 1.2.2) is s TV f = - 2 and the curvature is s T Gs = 2 

(since Gs =G)). 
These definitions of slope and curvature depend on the size of s, and this 

ambiguity can be resolved by requiring that II s II = 1. (Note: the norm II s II is 
just a measure of the size of s; one common norm is the L 2 norm II s 11 2 = .J(sTs).) 
Denoting V f(x') by g', then ± g' I II g' 11 2 are the directions of greatest and least 
slope at x', over all directions for which II s 11 2 = 1, and are orthogonal to the 
contour and tangent plane of f(x) at x' (see Figure 1.2.3 and Question 1.4). 

Special cases of many variable functions include the general linear function 
which can be written 

n 

l(x)= L a;x;+b=aTx+b (1.2.8) 
;; 1 

where a and b are constant. (Strictly this should be described as an affine function 
on account of the existence of the constant b. However, the use of linear to 
describe a function whose graph is a line (or a hyperplane) is common in 
optimization. I do not intent to depart from this usage, but apologise to the 
erudite reader.) If the coordinate vector 

0 
0 

1 +-- ith position 

0 

is defined, then the identity Vx; = e; gives 

VxT = V(x1, x2, ... 'Xn) = [e1, e2, ... 'enJ =I 

(1.2.9) 

(1.2.10) 

since the vectors e; are the columns of the unit matrix I. Thus for (1.2.8), Vl =a 

f(x)> f(x') Tangent plane 

Contour f( x l = f( x') 

f(x) < f(x') 

Figure 1.2.3 Properties of the gradient vector 
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is a constant vector, and V 2l = 0 is the zero matrix. A general quadratic function 
can be written 

q(x) = !xTGx + bTx + c 

where G, b, and c are constant and G is symmetric, or as 

q(x) = !(x- x')TG(x- x') + c' 

(1.2.11) 

(1.2.12) 

where Gx' = - b and c' = c- !x'TGx'. From the rule for differentiating a 
product, it can be verified that 

(1.2.13) 

ifu and v depend upon x. It therefore follows from (1.2.11) (using u = x, v = Gx) 
that 

Vq(x) =!(G + GT)x + b = Gx + b (1.2.14) 

using the symmetry of G. Likewise V 2q = G can be established. Thus q(x) has 
a constant Hessian matrix G and its gradient is a linear function of x. A 
consequence of (1.2.14) is that ifx' and x" are two given points and if g' = Vq(x') 
and g" = V q(x") then 

g" - g' = G(x" - x') (1.2.15) 

that is the Hessian matrix maps differences in position into differences in gradient. 
This result is used widely. 

An indispensable technique for handling more general smooth functions of 
many variables is the Taylor series. For functions of one variable the infinite 
series is 

f(a) = f(O) + af'(O) + !a2 f"(O) + ... (1.2.16) 

although the series may be truncated after the term in aP, replacing j<Pl(O) by 
j<P>(e) where eE[O, a]. An integral form of the remainder can also be used. Now 
let f(a) = f(x(a)) be the value of a function of many variables along the line 
x(a) (see (1.2.1)). Then using (1.2.6) and (1.2.7) in (1.2.16) 

f(x' +as)= f(x') +as TV f(x') + !a2sT[V2 f(x')]s + · · · 

or by writing h = as 

f(x' +h)= f(x') + hTV f(x') + !hT[V2 f(x')]h + · ·· 

(1.2.17) 

(1.2.18) 

These are two forms of the many variable Taylor series. Furthermore, consider 
applying (1.2.18) to the function of(x)jox;. Since V(of(x)/ox;) is the ith column 
of the Hessian matrix V2 J, it follows that 

V f(x' +h)= V f(x') + [V2 f(x')]h + ... (1.2.19) 

which is a Taylor series expansion for the gradient of f. Neglecting the higher 
terms in the limit h-+0, then this reduces to (1.2.15) showing that a general 
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function behaves like a quadratic function in a sufficiently small neighbourhood 
ofx'. 

It is hoped that a grasp of simple mathematical concepts such as these will 
enable the reader to follow most of the developments in the book. In certain 
places more complicated mathematics is used without detailed explanation. This_ 

is usually in an attempt to establish important results rigorously; however they 
often can be skipped over without losing the thread of the explanation. A 
summary of the notations used in the book is given immediately following the 
Preface. 

QUESTIONS FOR CHAPTER 1 

1.1. Obtain expressions for the gradient vector and Hessian matrix for the 
functions of n variables: 

(i) aTx: a constant; 
(ii) xT Ax: A unsymmetric and constant; 

(iii) txT Ax+ bTx: A symmetric, A, b constant; 
(iv) rrr: f is an m-vector depending on X and vrr is denoted by A which is 
not constant. 

1.2. Write down the Taylor expansion for the gradient g(x' + t5) about x', 
neglecting terms of order II 611 2 • Hence show that if f(x) is a quadratic 
function with Hessian G, then r = Gt5, where t5 is the difference between any 
two points and r is the corresponding difference in gradients. 

1.3. Write down the Taylor expansion for them-vector f(x) about x', where V{f is 
denoted by A. 

1.4. At a point x' for which g' # 0, show that the direction vectors = g' I II g' 11 2 has 
the greatest slope, over all vectors for which sTs = 1. (The steepest ascent 
vector.) 

1.5. At a point x' for which g' # 0, show that the direction vectors ± g' are 
orthogonal to the contour and the tangent plane surface at x'. 

1.6. If x(IX) is any twice differentiable arc, if f(x(IX}} is regarded as j(IX}, and if 
dx(1X0}/d1X =sand d2 x(1X0}/d1X2 = t, use the chain rule to obtain expressions 
for dj(1X0}/d1X and d2 f(1X0}/d1X2 in terms of s, t and the derivatives of f(x) 
evaluated at x(1X0}. 

(Some other questions which partly refer to the material of Section 1.2 are given at 
the end of Chapter 2.) 



Chapter 2 

Structure of Methods 

2.1 CONDITIONS FOR LOCAL MINIMA 

In the following chapters the problem of finding a local solution to the problem 

minimize f(x), xe!R" (2.1.1) 

is considered. f(x) is referred to as the objective function, and the minimizing 
point or minimizer is denoted by x*. Optimization problems also exist which 
are maximization problems and these can be cast in the form of (2.1.1) through 
the simple transformation 

maxf(x) = -min-f(x). (2.1.2) 
X X 

Usually one approaches an optimization problem presupposing that x* exists, 
is unique, and is located by the method to be used. Whilst this is often the case, 
it is important to realize that there are a number of ways in which this ideal 
situation may fail to hold, and some of these are described, together with some 
simple examples. First of all x* might not exist when f is unbounded below 
(f = x3), or even (unusually) when f is bounded below (f =e-x). If x* does 
exist it may not be unique(!= max(- x -1,0,x- 1) or f = cosx). Of particular 
importance is that it is only generally practicable to locate a local minimizer 
and this may not be a global minimizer. An example in which local minima 
exist that are not global minimizers of f(x) is f = x 2 -cos x (see also Figures 2.1.1 
and 6.2.2). Local minimizers can exist and be of interest even if f(x) is unbounded 
below (f = x3 - 3x). There is a considerable literature on finding global minima, 
see Dixon and Szego (1975) for example, and also Section 6.2. However, the 
difficulties in guaranteeing to find global solutions are considerable. The only 
simple advice in practice (not guaranteed to work) is to solve the problem from 
a number of different starting points and take the best local solution that is 
obtained. Even the definition of a local minimum has its pitfalls. A convenient 
working definition is that f(x) ~ f(x*) for all x sufficiently close to x* (i.e. for 
all x in some neighbourhood of x*). This nonetheless allows situations that 
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f f v.::ooth 
m1mmum 

Global min1mum X 

Figure 2.1.1 Types of minima 

are hardly typical of a local minimizer, for example, x = 0 is a local minimizer 
of f =min (1 + x, 0, 1 - x) and also a global maximizer! This situation is 
eliminated by the definition of a strict local minimizer in which f(x) > f(x*) for 
all xi= x* sufficiently close to x*. A stronger definition is that of an isolated 
local minimizer in which x* is the only local minimizer in a neighbourhood of 
x*. For the function f = x2(1 + x 2 +sin (1/x)) (with f(O) = 0), x = 0 is a strict 
local minimizer but is not isolated. This example is fairly pathological, however, 
and stronger statements can be made for special classes of function, e.g. quadratic 
functions (see Question 2.19), smooth functions (Theorem 2.1.1), or convex 
functions (see Section 9.4). 

Other difficulties are caused when f(x) is a non-smooth function because 
non-smooth minima (see Figure 2.1.1) do not satisfy the same conditions as 
smooth minima. However, non-smooth optimization is an important practical 
study, and is considered in some detail in Chapter 14. Subsequently, however, 
in Part 1 it is assumed that first and also second derivatives exist and are 
continuous, so as to eliminate these possibilities. These derivatives are referred 
to by g(x) = V f(x) and G(x) = V2 f(x) respectively. The notation f* = f(x*), 
g* = g(x*), etc, is used for quantities derived from x*, likewise J<k> = f(x<k>), 
g<k> = g(x<k>) and so on. 

The main aim of this section is to state and discuss some simple conditions 
which hold at a local minimizer x*. These arise from the observation that along 
any line x(a) = x* +as through x*, then f( = f(x(a))) has both zero slope and 
non-negative curvature at x*. This is illustrated in Figure 2.1.2 and is the usual 

0 a: 

Figure 2.1.2 Zero slope and non-negative curvature 
at a=O 
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condition derived from a Taylor series for a local minimum of a function of 
one variable. From (1.2.6) and (1.2.7) it follows for all s that both sTg* = 0 and 
sTG*s ~ 0. It is easy to see (for example by considering s = e1, s = e2 , etc. in 
turn) that the first condition is equivalent to 

g* =0 (2.1.3) 

and the second condition can be written as 

Vs. (2.1.4) 

Because these conditions are implied by x* being a local minimizer, they are 
necessary conditions for a local solution. Condition (2.1.3) is referred to as a 
first order necessary condition since it is based on first order variations in f and 
therefore first derivatives. Condition (2.1.4) is a second order necessary condition, 
and is the condition that G* is a positive semi-definite matrix, by definition of 
this property. 

It is also possible to derive sufficient conditions (those which imply that x* 
is a local minimizer) as follows. 

Theorem 2.1.1 

Sufficient conditions for a strict and isolated local minimizer x* are that (2.1.3) holds 
and that G* is positive definite, that is 

(2.1.5) 

Proof 

Consider any point x* + o, (j =1- 0. A Taylor series about x* and (2.1.3) imply that 

f(x* + 0) = f* + !oTG*(j + o((jT(j) 

(see the list of notation for a definition of o( ·)).Now (2.1.5) implies that there exists 
an a> 0 such that oTG*o ~ aoTo (a is the smallest eigenvalue of G*) and hence 
that 

f(x* + 0) ~ f* + (ta + o(1))0T0. 

As o~o, o(l)~O and a> 0 is fixed, so it follows that f(x* + o) > f*, and 
hence x* is a strict local minimizer. Now consider a sequence of points x* + o, 
(j ~ 0, which are local minimizers. By a Taylor series for g, 

(jTg(x* + o) = (jTg* + (jTG*o + o( II (j 11 2). 

But (jTG*o ~ aoT(j which contradicts the fact that g* = g(x* + o) = 0. Thus x* is 
also an isolated local minimizer. D 

These sufficient conditions are convenient in that they are readily checked 
numerically. For instance, if f(x) is given by (1.2.2), then at x* = (1, W, g* = (0, O)T 


