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Preface

The subject of optimization is a fascinating blend of

heuristics and rigour, of theory and experiment. It can be

studied as a branch of pure mathematics, yet has

applications in almost every branch of science and

technology. This book aims to present those aspects of

optimization methods which are currently of foremost

importance in solving real life problems. I strongly believe

that it is not possible to do this without a background of

practical experience into how methods behave, and I have

tried to keep practicality as my central theme. Thus basic

methods are described in conjunction with those heuristics

which can be valuable in making the methods perform more

reliably and efficiently. In fact I have gone so far as to

present comparative numerical studies, to give the feel for

what is possible, and to show the importance (and difficulty)

of assessing such evidence. Yet one cannot exclude the role

of theoretical studies in optimization, and the scientist will

always be in a better position to use numerical techniques

effectively if he understands some of the basic theoretical

background. I have tried to present such theory as shows

how methods are derived, or gives insight into how they

perform, whilst avoiding theory for theory’s sake.

Some people will approach this book looking for a suitable

text for undergraduate and postgraduate classes. I have

used this material (or a selection from it) at both levels, in

introductory engineering courses, in Honours mathematics

lectures, and in lecturing to M.Sc. and Ph.D. students. In an

attempt to cater for this diversity, I have used a Jekyll and

Hyde style in the book, in which the more straightforward

material is presented in simple terms, whilst some of the

more difficult theoretical material is nonetheless presented

rigorously, but can be avoided if need be. I have also tried



to present worked examples for most of the basic methods.

One observation of my own which I pass on for what it is

worth is that the students gain far more from a course if

they can be provided with computer subroutines for a few of

the standard methods, with which they can perform simple

experiments for themselves, to see for example how badly

the steepest descent method handles Rosenbrock’s

problem, and so on.

In addition to the worked examples, each chapter is

terminated by a set of questions which aim to not only

illustrate but also extend the material in the text. Many of

the questions I have used in tutorial classes or examination

papers. The reader may find a calculator (and possibly a

programmable calculator) helpful in some cases. A few of

the questions are taken from the Dundee Numerical Analysis

M.Sc. examination, and are open book questions in the

nature of a one day mini research project.

The second edition of the book combines the material in

Volumes 1 and 2 of the first edition. Thus unconstrained

optimization is the subject of Part 1 and covers the basic

theoretical background and standard techniques such as

line search methods, Newton and quasi-Newton methods

and conjugate direction methods. A feature not common in

the literature is a comprehensive treatment of restricted

step or trust region methods, which have very strong

theoretical properties and are now preferred in a number of

situations. The very important field of nonlinear equations

and nonlinear least squares (for data fitting applications) is

also treated thoroughly. Part 2 covers constrained

optimization which overall has a greater degree of

complexity on account of the presence of the constraints. I

have covered the theory of constrained optimization in a

general (albeit standard) way, looking at the effect of first

and second order perturbations at the solution. Some books

prefer to emphasize the part played by convex analysis and



duality in optimization problems. I also describe these

features (in what I hope is a straightforward way) but give

them lesser priority on account of their lack of generality.

Most finite dimensional problems of a continuous nature

have been included in the book but I have generally kept

away from problems of a discrete or combinatorial nature

since they have an entirely different character and the

choice of method can be very specialized. In this case the

nearest thing to a general purpose method is the branch

and bound method, and since this is a transformation to a

sequence of continuous problems of the type covered in this

volume, I have included a straightforward description of the

technique. A feature of this book which I think is lacking in

the literature is a treatment of non-differentiable

optimization which is reasonably comprehensive and covers

both theoretical and practical aspects adequately. I hope

that the final chapter meets this need. The subject of

geometric programming is also included in the book

because I think that it is potentially valuable, and again I

hope that this treatment will turn out to be more

straightforward and appealing than others in the literature.

The subject of nonlinear programming is covered in some

detail but there are difficulties in that this is a very active

research area. To some extent therefore the presentation

mirrors my assessment and prejudice as to how things will

turn out, in the absence of a generally agreed point of view.

However, I have also tried to present various alternative

approaches and their merits and demerits. Linear constraint

programming, on the other hand, is now well developed and

here the difficulty is that there are two distinct points of

view. One is the traditional approach in which algorithms are

presented as generalizations of early linear programming

methods which carry out pivoting in a tableau. The other is

a more recent approach in terms of active set strategies: I

regard this as more intuitive and flexible and have therefore



emphasized it, although both methods are presented and

their relationship is explored.

This second edition has given me the opportunity to

improve the presentation of some parts of the book and to

introduce new developments and a certain amount of new

material. In Part 1 the description of line searches is

improved and some new results are included. The

variational properties of the BFGS and DFP methods are now

described in some detail. More simple proofs of the

properties of trust region methods are given. Recent

developments in hybrid methods for nonlinear least squares

are described. A thorough treatment of the Dennis–Moré

theorem characterizing superlinear convergence in

nonlinear systems is given and its significance is discussed.

In Part 2 the treatment of linear programming has been

extended considerably and includes new methods for stable

updating of LU factors and the reliable treatment of

degeneracy. Also, important recent developments in

polynomial time algorithms are described and discussed,

including ellipsoid algorithms and Karmarkar’s method. The

treatment of quadratic programming now includes a

description of range space and dual active set methods. For

general linear constraint programming some new theorems

are given, including convergence proofs for a trust region

method. The chapter on nonlinear programming now

includes an extra section giving a direct treatment of the L1

exact penalty function not requiring any convex analysis.

New developments in sequential quadratic programming

(SQP) are described, particularly for the case that only the

reduced Hessian matrix is used. A completely new section

on network programming is given relating numerical linear

algebraic and graph theoretic concepts and showing their

application in various types of optimization problem. For

non-smooth optimization, Osborne’s concept of structure

functionals is used to unify the treatment of regularity for



second order conditions and to show the equivalence to

nonlinear programming. It is also used to demonstrate the

second order convergence of a non-smooth SQP algorithm.

The Maratos effect and the use of second order corrections

are described. Finally a new section giving optimality

conditions for constrained composite non-smooth

optimization is included. A considerable number of new

exercises is also given.

It is a great pleasure to me to acknowledge those many

people who have influenced my thinking and contributed to

my often inadequate knowledge. Amongst many I must

single out the assistance and encouragement given to me

by Professor M. J. D. Powell, my former colleague at AERE

Harwell, and one whose contributions to the subject are

unsurpassed. I am also indebted to Professor A. R. Mitchell

and other members of the University of Dundee for

providing the stimulating and yet relaxed environment in

which this book was prepared. I also wish to thank Professor

D. S. Jones for his interest and encouragement in publishing

the book, and Drs M. P. Jackson, G. A. Watson and R. S.

Womersley for their constructive advice on the contents. I

gratefully acknowledge those various people who have

taken the trouble to write or otherwise inform me of errors,

misconceptions, etc., in text. Whilst this new edition has

given me the opportunity to correct previous errors, it has

also inevitably enabled me to introduce many new ones for

which I apologise in advance. I am also grateful for the

invaluable secretarial help that I have received over the

years in preparing various drafts of this book.

Last, but foremost, I wish to dedicate this book to my

parents and family as some small acknowledgement of their

unfailing love and affection.

Dundee, December 1986

R. Fletcher
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UNCONSTRAINED

OPTIMIZATION



Chapter 1

Introduction

1.1 HISTORY AND

APPLICATIONS
Optimization might be defined as the science of determining

the ‘best’ solutions to certain mathematically defined

problems, which are often models of physical reality. It

involves the study of optimality criteria for problems, the

determination of algorithmic methods of solution, the study

of the structure of such methods, and computer

experimentation with methods both under trial conditions

and on real life problems. There is an extremely diverse

range of practical applications. Yet the subject can be

studied (not here) as a branch of pure mathematics.

Before 1940 relatively little was known about methods for

numerical optimization of functions of many variables. There

had been some least squares calculations carried out, and

steepest descent type methods had been applied in some

physics problems. The Newton method in many variables

was known, and more sophisticated methods were being

attempted such as the self-consistent field method for

variational problems in theoretical chemistry. Nonetheless

anything of any complexity demanded armies of assistants

operating desk calculating machines. There is no doubt

therefore that the advent of the computer was paramount in

the development of optimization methods and indeed in the

whole of numerical analysis. The 1940s and 1950s saw the



introduction and development of the very important branch

of the subject known as linear programming. (The term

‘programming’ by the way is synonymous with

‘optimization’ and was originally used to mean optimization

in the sense of optimal planning.) All these methods

however had a fairly restricted range of application, and

again in the post-war period the development of ‘hill-

climbing’ methods took place—methods of wide applicability

which did not rely on any special structure in the problem.

The latter methods were at first very crude and inefficient,

but the subject was again revolutionized in 1959 with the

publication of a report by W. C. Davidon which led to the

introduction of variable metric methods. My friend and

colleague M. J. D. Powell describes a meeting he attended in

1961 in which the speakers were telling of the difficulty of

minimizing functions of ten variables, whereas he had just

programmed a method based on Davidon’s ideas which had

solved problems of 100 variables in a short time. Since that

time the development of the subject has proceeded apace

and has included methods for a wide variety of problems.

This book describes these developments in what is hoped

will be a systematic and comprehensive way.

The applicability of optimization methods is widespread,

reaching into almost every activity in which numerical

information is processed (Science, Engineering,

Mathematics, Economics, Commerce, etc.). To provide a

comprehensive account of all these applications would

therefore be unrealistic, but a selection might include:

(a) chemical reactor design;

(b) aero-engine or aero-frame design;

(c) structural design—buildings, bridges, etc.;

(d) commerce—resource allocation, scheduling, blending;

and applications to other branches of numerical analysis:

(e) data fitting;

(f) variational principles in p.d.e.s;



(g) nonlinear equations in o.d.e.s; and

(h) penalty functions.

More such applications can be found in the proceedings of a

conference on ‘Optimization in Action’ (Dixon, 1976), and

many more of course in the specialized technical literature.

However to give some idea of what is involved consider the

optimum design of a distillation column, which can be

modelled in an idealized way as in Figure 1.1.1. The aim of

such a column is to separate out a more volatile component

from a mixture of components in the input stream. An

objective function to be optimized might therefore be the

quantity of the product or the profit from operating the

system. The variables would be the rate of flow in the input,

the heat rates applied and on each plate the liquid and

vapour compositions of each component, and the

temperature and vapour pressure. The variables are subject

to restrictions or interrelations of many kinds, which are

referred to as constraints. For instance compositions and

flows must be non-negative (xi  0) and temperatures must

not exceed certain upper bounds (Ti  Tmax). Relationships

such as the unit sum of percentage compositions must be

included explicitly (Σixi = 1). More complicated constraints

state how components interact physically, for instance

vapour and liquid compositions are related by υi = liϕ(Ti),

where ϕ(Ti) is a given but highly nonlinear function of

temperature. A more difficult situation arises if the number

of plates in the column is allowed to vary, and this is an

example of an integer variable which can take on only

integer values.

Figure 1.1.1 A model distillation column



This book however is not concerned with applications,

except insofar as they indicate the different types of

optimization problem which arise. It is possible to categorize

these into a relatively small number of standard problems

and to state algorithms for each one. The user’s task is to

discover into what category his problem fits, and then to call

up the appropriate optimization subroutine on a computer.

This subroutine will specify to the user how the problem

data is to be presented, for example nonlinear functions

usually have to be programmed in a user-written subroutine

in a certain standard format. It is also as well to remember

that in practice the solution of an optimization problem is

not the only information that the user might need. He will

often be interested in the sensitivity of the solution to

changes in the parameters, especially so if the

mathematical model is not a close approximation to reality,

or if he cannot build his design to the same accuracy as the

solution. He may indeed be interested in the variation of the

solution obtained by varying some parameters over wide

ranges, and it is often possible to provide this information

without re-solving the problem numerous times.

This book therefore is concerned with some of the various

standard optimization problems which can arise. In fact the

material is divided into Part 1 and Part 2. Part 1 is devoted

to the subject of unconstrained optimization, in which the

optimum value is sought of an objective function of many



variables, without any constraints. This problem is important

in its own right and also as a major tool in solving some

constrained problems. Also many of the ideas carry over

into constrained optimization. The special case of sums of

squares functions, which arise in data fitting problems, is

also considered. This also includes the solution of sets of

simultaneous nonlinear equations, which is an important

problem in its own right, but which is often solved by

optimization methods. Part 2 is devoted to constrained

optimization in which the additional complication arises of

the various types of constraint referred to above. An

overview of constrained optimization is given in Section 7.

In this book a selection has had to be made amongst the

extensive literature about optimization methods. I have

been concerned to present practical methods (and

associated theory) which have been implemented and for

which a body of satisfactory numerical experience exists. I

am equally concerned about reliability of algorithms and

whether there is proof or good reason to think that

convergence to a solution will occur at a reasonably rapid

rate. However, I shall also be trying to point out which new

ideas in the subject I feel are significant and which might

lead to future developments. Many people may read this

book seeking a particular algorithm which best solves their

specific problem. Such advice is not easy to give, especially

in that the decision is not as clear-cut as it may seem. There

are many special cases which should be taken into account,

for instance the relative ease of computing the function and

its derivatives. Similarly, considerations of how best to pose

the problem in the first instance are relevant to the choice

of method. Finally, and of most importance, the decision is

subject to the availability of computer subroutines or

packages which implement the methods. However some

program libraries now give a decision tree in the

documentation to help the user choose his method. Whilst



these are valuable, they should only be used as a rough

guide, and never as a substitute for common sense or the

advice of a specialist in optimization techniques.

1.2 MATHEMATICAL

BACKGROUND
The book relies heavily on the concepts and techniques of

matrix algebra and numerical linear algebra, which are not

set out here (see Broyden, 1975, for example), although

brief explanations are given in passing in certain cases. A

vector is represented by a lower case bold letter (e.g. a) and

usually refers to a column vector. A matrix is referred to by

a bold upper case letter (e.g. B). That is

Sometimes bij is used for elements of B in place of Bij.

Transposition is referred to by superscript T so that aT is a

row vector and aTz for instance is the scalar product aTz =

zTa = Σiaizi.

The ideas of vector spaces are also used, although often

only in a simple minded way. A point x in n-dimensional

space ( n) is the vector (x1, x2,…, xn)T, where x1 is the

component in the first coordinate direction, and so on. Most

of the methods to be described are iterative methods which

generate a sequence of points, x(1), x(2), x(3),… say, or

{x(k)} (the superscripts denoting iteration number),

hopefully converging to a fixed point x* which is the solution



of the problem (see Figure 1.2.2). The idea of a line is

important, and is the set of points

(1.2.1) 

for all a (sometimes for all α ≥ 0; this is strictly a half-line),

in which x′ is a fixed

Figure 1.2.1 A line in two dimensions

point along the line (corresponding to α = 0), and s is the

direction of the line. For instance in Figure 1.2.1 x′ is the

point  and s the direction . The vector s is indicated by

the arrow. Sometimes it is convenient to normalize s so that

for instance sTs =  this does not change the line, but

only the value of α associated with any point.

The calculus of any function of many variables, f(x) say, is

clearly important. Some pictorial intuition for two variable

problems is often gained by drawing contours (surfaces

along which f(x) is constant). A well-known test function for

optimization methods is Rosenbrock’s function

(1.2.2)

the contours for which are shown in Figure 1.2.2. Some

other contours are

Figure 1.2.2 Contours for Rosenbrock’s function, equation

(1.2.2)



illustrated in Figure 6.2.2 in Chapter 6. In general it will be

assumed that the problem functions which arise are smooth,

that is continuous and continuously (Fréchet) differentiable 

 Therefore for a function f(x) at any point x there is a

vector of first partial derivatives, or gradient vector

(1.2.3) 

where  denotes the gradient operator (∂/∂x1,…,∂/∂xn)T. If

f(x) is twice continuously differentiable ( 2) then there exists

a matrix of second partial derivatives or Hessian matrix,

written 2f(x), for which the i, jth element is ∂2f/(∂xi∂xj). This

matrix is square and symmetric. Since any column (the jth,

say) is (∂f/∂xi), the matrix can strictly be written as ( fT).

For example, in (1.2.2)

(1.2.4) 



and this illustrates that f and 2f will in general depend

upon x, and vary from point to point. Thus at 

 and  by substitution into

(1.2.4).

These expressions can be used to determine the

derivatives of f along any line x(α) in (1.2.1). By the chain

rule

(1.2.5) 

so the slope of f(= f(x(α)) along the line at any point x(α) is

(1.2.6) 

Likewise the curvature along the line is

(1.2.7) 

where f and 2f are evaluated at x(α). Note that, writing G

= 2f, then Gs is the vector for which (Gs)i = ΣjGijsj, and

sTGs is the scalar product of s and Gs. For example, for

(1.2.2) at x′ = , the slope along the line generated by 

 (the x1-axis in Figure 1.2.2) is sT f = – 2 and the

curvature is sTGs = 2 

These definitions of slope and curvature depend on the

size of s, and this ambiguity can be resolved by requiring

that ||s|| = 1. (Note: the norm ||s|| is just a measure of the

size of s; one common norm is the L2 norm ||s||2 = √(sTs).)

Denoting f(x′) by g′, then ± g′/||g′||2 are the directions of

greatest and least slope at x′, over all directions for which

||s||2 = 1, and are orthogonal to the contour and tangent

plane of f(x) at x′ (see Figure 1.2.3 and Question 1.4).



Special cases of many variable functions include the

general linear function which can be written

(1.2.8) 

where a and b are constant. (Strictly this should be

described as an affine function on account of the existence

of the constant b. However, the use of linear to describe a

function whose graph is a line (or a hyperplane) is common

in optimization. I do not intent to depart from this usage, but

apologise to the erudite reader.) If the coordinate vector

(1.2.9) 

is defined, then the identity xi = ei gives

(1.2.10) 

since the vectors ei are the columns of the unit matrix I.

Thus for (1.2.8), l = a

Figure 1.2.3 Properties of the gradient vector

is a constant vector, and 2l = 0 is the zero matrix. A

general quadratic function can be written

(1.2.11) 

where G, b, and c are constant and G is symmetric, or as



(1.2.12) 

where Gx′ = – b and c′ = c – x′TGx′. From the rule for

differentiating a product, it can be verified that

(1.2.13) 

if u and v depend upon x. It therefore follows from (1.2.11)

(using u = x, v = Gx) that

(1.2.14) 

using the symmetry of G. Likewise 2q = G can be

established. Thus q(x) has a constant Hessian matrix G and

its gradient is a linear function of x. A consequence of

(1.2.14) is that if x′ and x″ are two given points and if g′ = 

q(x′) and g″ = q(x″) then

(1.2.15) 

that is the Hessian matrix maps differences in position into

differences in gradient. This result is used widely.

An indispensable technique for handling more general

smooth functions of many variables is the Taylor series. For

functions of one variable the infinite series is

(1.2.16) 

although the series may be truncated after the term in αp,

replacing f(p)(0) by f(p)(ξ) where ξ∈[0, α]. An integral form

of the remainder can also be used. Now let f(α)= f(x(α)) be

the value of a function of many variables along the line x(α)

(see (1.2.1)). Then using (1.2.6) and (1.2.7) in (1.2.16)

(1.2.17) 

or by writing h = αs

(1.2.18) 

These are two forms of the many variable Taylor series.

Furthermore, consider applying (1.2.18) to the function



∂f(x)/∂xi. Since (∂f(x)/∂xi) is the ith column of the Hessian

matrix 2f, it follows that

(1.2.19) 

which is a Taylor series expansion for the gradient of f.

Neglecting the higher terms in the limit h→0, then this

reduces to (1.2.15) showing that a general function behaves

like a quadratic function in a sufficiently small

neighbourhood of x′.

It is hoped that a grasp of simple mathematical concepts

such as these will enable the reader to follow most of the

developments in the book. In certain places more

complicated mathematics is used without detailed

explanation. This-is usually in an attempt to establish

important results rigorously; however they often can be

skipped over without losing the thread of the explanation. A

summary of the notations used in the book is given

immediately following the Preface.


