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PREFACE

Lagrangian modeling, particularly in the form of mean wind
trajectories, has a long tradition in the atmospheric sciences as
well as other fields of geosciences, such as oceanography.
However, it has experienced explosive growth in the past few
decades, thanks to theoretical advances converging with
expanded computational power and increased bandwidth,
which enables researchers to access three-dimensional meteor-
ological fields from numerical weather prediction centers with
which to drive the models.
As a result, Lagrangian models are playing an increas-

ingly important role in different areas of research. Some
examples include hydrometeorology, air quality, greenhouse
gases, and emergency responses to volcanic eruptions and
nuclear releases.
The AGU Chapman Conference “Advances in Lagrangian

Modeling of the Atmosphere” was a unique opportunity for a
diverse range of atmospheric researchers engaged in Lagran-
gian modeling, including theoreticians, developers, users, and
observationalists, to congregate in the same room over 5 days
in October 2011, surrounded by the beautiful scenery of
Grindelwald, Switzerland.
The monograph you are holding was inspired by this

Chapman Conference, as the presentations and discussions
made abundantly clear the growing sophistication of Lagran-
gian modeling and the myriad ways in which Lagrangian
approaches have been applied to yield insights into a variety of
geophysical phenomena. Furthermore, participants recognized
the lack of a comprehensive volume summarizing advances in
Lagrangian modeling that would help a researcher starting in
this field to quickly get up to speed. The few existing books on
Lagrangian modeling are more focused on a single technical
area or a specific application.
We hope this volume captures many of the advances in

this important field and the excitement that was palpable
among participants at the meeting. The reader can learn
about the theoretical advances and outstanding problems, as
well as the many applications in different fields written by
their respective experts. It is our wish that this monograph
can help graduate students and new researchers “see the

forest,” while providing enough description of individual
“trees.”
We owe an explanation to our oceanography colleagues.

The decision was made during the planning of the Chapman
Conference and the monograph to not focus on oceanic
applications. This decision was due not to a lack of
appreciation for the importance of Lagrangian approaches in
oceanography but due to the simple realization that the
number of papers would be overwhelming for a single
meeting or book. In other words, to do justice to the
important applications of Lagrangian models to the oceans,
a separate monograph is necessary! That being said, some
papers in the current volume explicitly tie together the ocean
and the atmosphere through a Lagrangian perspective.
We would like to especially acknowledge the efforts of our

fellow editors: Ashok Luhar, Andreas Stohl, and Peter
Webley. We are grateful to the invaluable help from Carole
Delemont and Stephan Henne during the conference.
Financial support for the conference came from the European
Science Foundation’s TTORCH Research Networking Pro-
gramme, the Swiss Academy of Sciences, the Center for
Climate Systems Modeling at Swiss Federal Institute of
Technology Zurich (ETH Zurich), and the International
Foundation High Altitude Research Stations Jungfraujoch
and Gornergrat.
Last, but definitely not least, for making this monograph

possible, thanks go to AGU Meetings Department staff
during the lead-up to the Chapman Conference and to
Books Department staff during the preparation of the book.

John C. Lin
University of Utah

Dominik Brunner
Swiss Federal Laboratories for

Materials Science and Technology, Empa

Christoph Gerbig
Max-Planck-Institut für Biogeochemie
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© 2012. American Geophysical Union. All Rights Reserved.
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Lagrangian Modeling of the Atmosphre: An Introduction

John C. Lin

Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, USA

Trajectory-based (“Lagrangian”) atmospheric transport and dispersion modeling
has gained in popularity and sophistication over the previous several decades. The
objectives of this paper are twofold: (1) to provide a primer in Lagrangian modeling
for readers of this AGU monograph and (2) to set the stage for the more technical
and specialized papers that make up the rest of this monograph. Different types of
Lagrangian modeling approaches (mean trajectory, box, Gaussian plume, and
stochastic particle) are introduced; in addition, the advantages and disadvantages
of Lagrangian models are discussed. Finally, linkages are made between the
fundamentals of Lagrangian modeling and the content of this monograph.

1. INTRODUCTION

We spend our entire lives bathed in the atmosphere, yet
most of us look right through it as if it were not even there.
We are reminded of its importance, when we are hit by a cool
breeze, soaked by a thunderstorm, choked by smoke, or gasp
for breath in exhaustion. We breathe in and out molecules that
make up the atmosphere, mostly nitrogen (N2) and oxygen
(O2), with small quantities of argon (Ar), water (H2O), carbon
dioxide (CO2), and other trace species. As these molecules
move, interact, and modify radiant energy, the atmosphere
gives rise to the bewildering array of phenomena that we are
familiar with: wind, clouds, rainfall, and thunderstorms.
The state of the atmosphere dictates the physical condi-

tions in which society is built, so the pursuit for a deeper
understanding of the atmosphere has significant societal im-
plications, in addition to scientific interest [Crutzen and
Ramanathan, 2000]. This endeavor takes on added urgency,
since humans are now understood to affect the atmosphere in
numerous ways [Intergovernmental Panel on Climate
Change, 2007], whether increasing the amount of green-
house gases, altering the climate, or degrading air quality.

A central requirement for understanding the atmosphere is
the capacity to model its flow. There are two basic types of
reference frames when thinking about the fluid: Lagrangian
and Eulerian. Put simply, a Lagrangian perspective follows
an “air parcel” (see section 2.1) around, as if one receives
information from imaginary sensors, which monitor a fluid
parcel’s state as it moves (Figure 1a). This is contrasted with
the Eulerian perspective, which is fixed in location and ob-
serves changes in fluid properties as the parcels are trans-
ported past the location (Figure 1b). The Lagrangian and
Eulerian perspectives present complementary information.
The Eulerian framework yields changes at a fixed location,
which is natural for typical ground-based measurements or
when stationary grid cells are adopted in modeling. The
Lagrangian perspective follows the air parcel and so is inti-
mately connected to the underlying flow.
The Lagrangian and Eulerian perspectives can be formally

interchanged, as often discussed in textbooks on dynamic
meteorology [Holton, 1992] and geophysical fluid dynamics
[Marshall and Plumb, 2007]. If ψ represents any state vari-
able associated with the air parcel (i.e., velocity, temperature,
humidity, or pollutant concentration) and S is a generic
source term, then the change in ψ in the Lagrangian reference
frame can be written as:

Dψ
Dt

¼ S; ð1aÞ

Lagrangian Modeling of the Atmosphere
Geophysical Monograph Series 200
© 2012. American Geophysical Union. All Rights Reserved.
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where D(. . .)/Dt represents the rate of change following the
air parcel and is a special derivative given several names:
the Lagrangian, total, substantial, or material derivative.
For instance, if ψ is the temperature, then S denotes the
sources/sinks such as diabatic heating or radiative cooling.
In the case when ψ represents the velocity u, S stands for
forces due to pressure gradients or rotation (such as
Coriolis).
The Lagrangian perspective in equation (1a) can be trans-

formed to the Eulerian reference frame with the nonlinear
advection term u · ∇ψ:

∂ψ
∂t

þ u ⋅ ∇ψ ¼ S; ð1bÞ

where ∂(. . .)/∂t represents the rate of change at a fixed
position, and ∇ is the spatial gradient operator at the same
position.
Since following an air parcel’s position, x, traces out its

trajectory, Lagrangian modeling is often referred to as “tra-
jectory modeling.” Using the definition Dx/Dt = u, the ve-
locity u can be integrated over time to yield the position of

the air parcel, x, at various time steps. The reader is encour-
aged to read the detailed review on trajectory modeling by
Stohl [1998], which focused especially on sources of error
that affect the accuracy of the trajectories.
Integrating the equation Dx/Dt = u, the following is the

simplest first-order (“zero acceleration”) solution [Stohl,
1998]:

xðt0 þ ΔtÞ ¼ xðt0Þ þ uðt0Þ ⋅ Δt þ⋯; ð2Þ
where “. . .” indicates higher-order terms. Stated simply, La-
grangian modeling consists of determining the trajectory, x(t),
and the values of different ψ at the different locations x and
times t. The specific ψ of interest depends on the application
at hand (see section 5): for instance, ψ = q (specific humidity)
when tracking sources of moisture, whereas ψ = C (trace gas
concentration) when tracking greenhouse gases.
Owing to the versatility and numerous advantages of

Lagrangian models that will be discussed later, it has been
applied to study a large variety of atmospheric phenomena
and has grown in popularity and prominence over the
previous two decades, with over a hundred papers cur-
rently published in the scientific literature every year
(Figure 2).
In this introductory paper, the different types of Lagrang-

ian models (section 2) are presented. Advantages and dis-
advantages of Lagrangian modeling versus its Eulerian
counterpart follow in section 3. The particular importance of
the underlying driver wind fields is also examined (section 4).
Finally, the reader is introduced to the applications of La-
grangian models found within the contents of this mono-
graph (section 5).

2. TYPES OF LAGRANGIAN
ATMOSPHERIC MODELS

Different types of Lagrangian models are distinguished by
their representations of air parcels. To illustrate the differ-
ences between models, let us begin by examining what
exactly is an air parcel.

2.1. What Is an Air Parcel?

An air parcel is a concept often employed in atmospheric
science. It is a “chunk” of the atmosphere that is large
enough to encompass enough molecules to possess well-
defined properties such as density, temperature, humidity,
and pollutant concentration. On the other hand, it is small
enough such that the parcel can be thought of as occupying
an infinitesimal location in space. It is similar to the point
mass or frictionless billiard ball commonly encountered by
students in introductory physics.

Figure 1. Comparison between the (a) Lagrangian and (b) Eulerian
perspectives. In the Lagrangian perspective, the observer tracks the
state variable(s) ψ of the air parcel as it moves in the atmosphere,
while in the Eulerian perspective the observer remains stationary at
fixed grid points and tracks the changes in ψ as the air parcel moves
by. Note that the air parcel is often found in between grid locations
(position is subgrid scale).

2 INTRODUCTION



The boundaries of an air parcel are fuzzy [Bohren and
Albrecht, 1998], and a material surface originally encompassing
the initial molecules constantly deforms due to molecular and
turbulent diffusion, thereby losing their identities. The fact that
individual parcels may lose their identities leads to treatment of
many parcels in aggregate: as a box or a puff. Alternatively,
numerous parcels can be handled more explicitly: as an ensem-
ble of particles.

2.2. Mean Trajectories, Boxes, Puffs, and Particles

The mean trajectory modeling approach assumes that an
air parcel retains its identity, and a single line is sufficient
to describe its motion (Figure 3a). As indicated above,
however, in order for the parcel to preserve its identity,
both molecular and turbulent diffusion have to be ne-
glected. The effect of molecular diffusion is small relative
to turbulent diffusion throughout the atmosphere, except
within a thin layer of a few centimeters near the ground
surface [Stull, 1988]. Thus, the absence of turbulence is the
main simplification to be considered in mean trajectories,
whose name is based on the fact that the air parcel trajec-
tory is derived by solely considering the mean velocity
component ū and neglecting the turbulent, stochastic com-

ponent u′ in the Reynolds decomposition of u [Reynolds,
1895]:

u ¼ ūþ u′: ð3Þ

By neglecting turbulence, mean trajectories are the simplest
representation and, thus, adopted for the longest time among
all of the types of Lagrangian models.Wiin-Nielsen [1959] and
Danielsen [1961] provide early examples of mean trajectory
models. Such models would be more valid in atmospheric
regimes where the flow is laminar or simply less turbulent
(e.g., in the stratosphere). However, mean trajectories are poor
indicators of average transport within the planetary boundary
layer (PBL), where turbulence is strong [Stohl and Wotawa,
1993]. In this region of the atmosphere, an air parcel loses its
identity as turbulent mixing and wind shear cause the

Figure 2. Estimates of the number of papers published per year
relating to Lagrangian modeling of the atmosphere, between the
years 1980 and 2011. “LPDM” papers refer to the number of
published works applying or directly contributing to the develop-
ment of Lagrangian particle dispersion models. “Other” papers
show the number of works published on other topics such as mean
trajectory modeling, Lagrangian box modeling, Gaussian puff mod-
eling, and Lagrangian coherent structures. The literature search was
carried out using Thomson Reuters’s Web of Knowledge (http://
apps.webofknowledge.com). While the retrieved papers from the
search were manually checked to ensure no spurious papers were
included, the possibility remains that a small number of papers may
have been omitted. This figure, therefore, represents a lower bound
on the number of works published.

Figure 3. Schematic illustrating four types of Lagrangian models:
(a) mean trajectories; (b) box models; (c) Gaussian puffs; and
(d) Lagrangian particle dispersion models (LPDMs). The gray
points or volumes represent air parcels, whether individual ones or
in aggregate. Each black circle refers to the center of mass of air
parcels at each time step. See main text for details.
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molecules originally found within the air parcel to be dis-
persed, and a single trajectory no longer suffices.
Lagrangian box models (Figure 3b) treat numerous parcels

in aggregate, as boxes whose volumes are described by the
extent of mixing. Movement of the box is simulated by either
single or multiple mean wind trajectories, initialized at differ-
ent locations. Often the box is an atmospheric column whose
top is matched to the top of the PBL [Eliassen et al., 1982], in
order to capture the effect of strong mixing within the
PBL. Examples of Lagrangian box models include the single
trajectory-based ELMO-2 model [Strong et al., 2010] and the
multiple trajectory-based CiTTYCAT model [Pugh et al.,
2012], both of which are applied to simulate atmospheric
chemistry. While the multiple trajectory box approach better
represents the effects on dispersion of flow deformation than a
single trajectory method, the fact that the simulations are still
based on mean wind trajectories translates into difficulties in
modeling interactions between u′ and wind shear that deter-
mine atmospheric dispersion in the lower troposphere. Fur-
thermore, strong wind shear distorts the box and introduces
large uncertainties to this approach [Seaman, 2000].
Puff models (Figure 3c) attempt to account for the effects of

turbulent dispersion by representing air parcels as puffs that
grow in size. The puffs usually take on Gaussian distributions
in all three dimensions, following the classical work by G.I.
Taylor [Taylor, 1920] describing plume dispersion in station-
ary, homogeneous turbulence. An example of a Gaussian puff
model is CALPUFF [Scire et al., 2000], which has been
applied widely for air quality regulatory purposes.
Puff models work best when the turbulence and mean

winds remain relatively constant. Puff models have diffi-
culties capturing the interaction between turbulence and
shear in mean winds in the PBL and lower troposphere,
which distort plumes into non-Gaussian shapes, potentially
introducing large biases into the peak concentrations and
the plume area, thereby requiring ad hoc parameterizations
such as puff splitting [Walcek, 2002]. Moreover, when
multiple puffs interact, assumptions about puff merging are
necessary.
Particle models (Figure 3d), often referred to as “Lagrang-

ian particle dispersion models” (LPDMs), represent air par-
cels as particles of equal mass that are transported with
random velocities generated by a Markov process [Thomson
and Wilson, this volume] as a way to simulate u′ and thus the
effects of turbulence. An ensemble of particles is simulated
by LPDMs to capture the stochastic effects of turbulence.
Owing to the randomness introduced in the particle motion,
the numerous particles disperse even when initialized at
identical starting locations.
The particles in LPDMs possess special properties: they

are small enough such that they “follow all turbulent eddies

of the flow without being deformed” but are “large compared
to the average distance between molecules” and are “so close
in density to the surrounding fluid that neither their gravita-
tional settling nor their buoyancy is significant” [Luhar, this
volume].
LPDMs are the most sophisticated and computationally

expensive, often tracking many thousands of particles in
three dimensions. Whereas a single Gaussian puff sufficed
to describe a plume of pollutants, many particles need to be
tracked in order to characterize the plume. However, the
computational cost is often outweighed by the benefit that
LPDMs can bring, since they naturally deal with turbulent
dispersion and its interaction with mean wind shear without
ad hoc assumptions to split puffs.
Owing to the rapid rise in the availability of computa-

tional resources, full 3-D LPDM simulations that were
expensive to run just a decade ago are now routinely
carried out. Figure 2 shows the increase in papers published
employing the LPDM method being particularly marked in
the 1990s. Some examples of widely used particle models
include FLEXPART [Stohl et al., 2005], HYPACT [Walko
et al., 2001], and STILT [Lin et al., 2003]. Some models
even have hybrid capabilities that combine puff and particle
characteristics. These models include HYSPLIT [Draxler
and Hess, 1997], NAME [Jones et al., 2007], and TAPM
[Hurley et al., 2005].
Most of the Lagrangian models focusing on tropospheric

applications in this monograph are LPDMs. Furthermore,
important theoretical advances have been made involving
proper treatment of heterogeneous turbulence profiles (i.e.,
the “well-mixed criterion”) [Thomson, 1987] and handling of
boundaries [Wilson and Flesch, 1993].
The focus of the first part in this monograph is on proper

formulation of LPDMs. This part includes a historical per-
spective [Thomson and Wilson, this volume], starting from
the classical work by Taylor [1920] and extending all the
way to recent advances, almost 100 years later. This part
includes a specific case of Lagrangian modeling under low
wind speed conditions [Luhar, this volume] and a diagnosis
of a potential numerical issue within LPDMs, in which u′
adopts unphysical values (“rogue velocity”) [Wilson, this
volume]. A specific parameterization for u′ when turbulence
is highly inhomogeneous, within the PBL and at its top, is
also found [Lin and Gerbig, this volume].

2.3. Backward-Time Lagrangian Simulations

The trajectories of air parcels can be derived in a time-
reversed manner by integrating equation (2) backward in time:

xðt0 − ΔtÞ ¼ xðt0Þ − uðt0Þ ⋅ Δt þ⋯ ð4Þ
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Because the simulations proceed backward in time from a
location of interest (the “receptor”), time-reversed simula-
tions are also referred to as “receptor-oriented” [Gerbig et
al., 2003]. Such backward-time Lagrangian simulations can
be used to address different questions than their forward-time
counterparts (Table 1).
An example of backward Lagrangian simulations long

adopted by the atmospheric science community is the “back
trajectory” approach, which makes use of backward-time
mean wind trajectories [e.g., Blifford and Gillette, 1972; Fox
and Ludwick, 1976; Sykes and Hatton, 1976]. Typically,
backward-time mean wind trajectories are almost perfectly
time reversible: a mean back trajectory followed by a for-
ward run retrieves the same starting position, assuming small
enough time steps are adopted to minimize the numerical
truncation and interpolation errors.
As discussed in section 2.1, mean wind trajectories are

applicable in regions of the atmosphere experiencing mini-
mal turbulence. However, they are subject to significant
errors in the lower troposphere, in the vicinity of surface
emissions. Yet time-reversed Lagrangian modeling is neces-
sary precisely in the lower troposphere to understand surface
emissions. Toward this end, LPDM models that run back-
ward in time have been developed and are increasingly
applied over the past decade. Because LPDMs incorporate
the stochastic velocity u′, time-reversibility in LPDMs is
more difficult to ensure than in mean trajectories. It has been
pointed out that time reversibility of LPDM simulations
requires attention to the well-mixed criterion, as well as
several other physical criteria [Lin et al., 2003].
The types of information yielded by backward-time

LPDM simulations take on different forms. The “retro-
plume” [Stohl et al., 2003] refers to the ensemble of La-
grangian particles transported backward in time. From
“touchdown velocities” of time-reversed particles, the source

region of emissions at micrometeorological scales can be
determined [Flesch et al., 1995; Wilson et al., this volume].
The “footprint” of an atmospheric concentration is its sensi-
tivity to a unit emission in upwind source regions and is
derived from the locations and times of particles found close
to the ground [Lin et al., 2003].
If a LPDM is constructed to be time-reversible, why would

a researcher carry out a backward-time rather than a forward-
time simulation? The answer comes down to the number of
receptors (Nr) in relation to the number of upwind (Nu) ele-
ments which are resolved [Lin et al., 2003; Seibert and Frank,
2004]. The ratio Nr:Nu yields the relative computational effort
necessary for the backward simulation versus the forward
simulation (Figure 4). When Nr << Nu, the backward-time
LPDM approach is much more computationally efficient than

Table 1. Some Examples of Questions That Can Be Addressed by
Forward-Time Versus Backward-Time Lagrangian Simulations

Forward Backward

Where does the air go? Where does the air come
from?

What is the downwind impact of
air originating from a location
of interest (source)?

What are the upwind influ-
ences on the location of

interest (receptor)?
Where do tracers get transported? Where are the source regions

of tracers?
How much is the concentration
of a passive tracer at
downwind locations affected by a
unit emission from the source?

How strong is the sensitivity
of the receptor to a particular

upwind source region?

Figure 4. Contrast between instances that call for Lagrangian
particle dispersion models that run (a) forward in time versus
(b) backward in time. The relative computational effort necessary
for backward-time versus forward-time simulations depends on the
ratio between the number of receptors (Nr) in relation to the number
of resolved upwind (Nu) elements. In Figure 4a, the forward-time
approach is more computationally expedient because the air from a
single source (Nu = 1) is observed by numerous receptors (Nr = 8).
In contrast, in the case of Figure 4b, the backward-time method is
more efficient because a single receptor (Nr = 1) is sampling air
from 16 upwind source elements (Nu = 16).
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its forward-time counterpart. For instance, Figure 4b shows an
example in which Nr = 1 and Nr << Nu. In this case, a single
backward-time simulation can reveal the upwind source re-
gion. In contrast, the forward-time approach requires many
simulations starting at all Nu potential source region elements,
entailing a significantly larger computational effort.
An example of a research field in which backward-time

LPDM models have made widespread contributions is in
inverse analyses for diagnosing emissions of trace gases
from atmospheric concentrations. Here a common issue is
that the number of measurement locations (Nr) is signifi-
cantly smaller than the number of regions where the emis-
sions need to be solved for (Nu). The backward LPDM runs
efficiently to provide the sensitivity of receptor concentra-
tions to upwind source regions (i.e., the Jacobian matrix)
[Seibert and Frank, 2004] that is an essential part of the
inverse analysis. The interested reader can refer to part 3 of
this volume for examples of backward LPDMs applied in the
context of inverse analyses. Backward-time LPDM models
can also be constructed to simulate sources/sinks of water
vapor [Stohl and James, 2004] or chemical transformations
of atmospheric compounds [Wen et al., 2012]. Parts 2 and 4
of this monograph contain papers applying backward-time
LPDM models to water vapor and atmospheric chemistry,
respectively.

3. ADVANTAGES AND DISADVANTAGES
OF LAGRANGIAN MODELING

In this section, the advantages and disadvantages of La-
grangian modeling are examined.

3.1. Advantages of Lagrangian Modeling

3.1.1. Availability of trajectory information. Lagrangian
simulations provide trajectory information (either forward or
backward in time) that is lacking from Eulerian simulations.
The knowledge of air parcel trajectories serves as powerful
information to answer scientific questions, as the many pa-
pers in this monograph will illustrate.

3.1.2. Physical realism. The Lagrangian approach is a
closer analog to atmospheric flows by simulating air parcels.
At its essence, the atmosphere is Lagrangian: air is com-
prised of molecules, and atmospheric flow consists of mole-
cules being transported. Thus, the Lagrangian approach
possesses the potential to better approximate phenomena that
exist in atmospheric flows such as mixing [Konopka et al.,
this volume], transport barriers [Sulman et al., this volume],
turbulent eddies [Thomson and Wilson, this volume], and
convection [Haertel, this volume].

3.1.3. Capability of describing nondiffusive near-field to
sources. LPDMs, in particular, can capture the physics of
turbulent transport in the “near-field” regime close to the
sources, where turbulence is nondiffusive (or countergradi-
ent). See the work of Thomson and Wilson [this volume] for
more details.

3.1.4. Numerical stability. Owing to the absence of the
nonlinear advection term in Eulerian models (equation (1b))
and the resulting linearity of Lagrangian advection (equation
(1a)), integration of the Lagrangian equations is numerically
stable, even when time steps are taken, which are larger than
specified by the Courant-Friedrichs-Lewy criterion [Stani-
forth and Cote, 1991; Wohltmann and Rex, 2009].

3.1.5. Lack of numerical diffusion. Eulerian advection is
known to smear out scalar gradients due to nonphysical numer-
ical diffusion, whose strength is larger than that of atmospheric
diffusion [Shin and Reich, 2009; Smolarkiewicz and Pudykie-
wicz, 1992]. In contrast, Lagrangian advection is subject to
minimal numerical diffusion and preserves scalar distributions
where sharp gradients exist in the atmosphere, e.g., the polar
vortex [McKenna et al., 2002b]. This enables Lagrangian mod-
els to parameterize mixing processes that exhibit stronger fidel-
ity to actual atmospheric mixing [McKenna et al., 2002a;
Wohltmann and Rex, 2009; Konopka et al., this volume].

3.1.6. Conservation properties. The Lagrangian frame-
work is a natural way to express conservation properties:
conservation of energy, mass, and momentum follows
straightforwardly when one considers the same air parcel and
follows its movement. While Eulerian advection schemes may
not conserve mass [Brasseur et al., 1999] and may produce
spurious negative mixing ratios [Rood, 1987], no such diffi-
culties are encountered when one simply tags a parcel with a
tracer concentration and follows it along, as is the case for
Lagrangian advection [Henne et al., this volume].

3.1.7. Resolving subgrid scale variability. The positions of
Lagrangian air parcels are not tied to regular grid cells
(Figure 1). This means that the air parcels can carry subgrid-
scale information, helping to resolving the finer-scale hetero-
geneity not resolved by Eulerian grid cells [Lin et al., 2003].
This is particularly important in the areas immediately upwind
of the receptor site for backward-time models or directly
downwind of a source region.

3.2. Disadvantages of Lagrangian Modeling

3.2.1. Computational cost. Lagrangian models are often
computationally cheap to run in comparison to Eulerian
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models, in large part because they do not solve the atmo-
sphere’s equations of motions, but instead rely on output
from Eulerian models (section 4). However, depending on
the specific application, the computational cost of Lagrang-
ian models can be significant. This is particularly so for
LPDMs that simulate large particle ensembles and adopt
small time steps to resolve turbulent velocity fluctuations
[Thomson and Wilson, this volume]. With the widespread
availability of computational resources, however, the disad-
vantage associated with computational cost is being over-
come. Also, for applications in which the air parcels need not
interact with one another, Lagrangian simulations are “em-
barrassingly parallel” and can be parallelized with minimal
effort, in which different parcels can be simulated using
separate computational nodes. An example of such a simu-
lation is Lagrangian modeling of a chemically inert trace gas
like CO2 [Zeng et al., this volume].

3.2.2. Irregularity of “grids”. The fact that Lagrangian air
parcel positions are not fixed at regular intervals like grid
cells in Eulerian models means that the “grid” comprised by
the ensemble of trajectories would be irregular, even if the
parcels were initialized at regular intervals. This requires an
additional procedure of parcel insertion or merging [McKen-
na et al., 2002a], parcel counting within regular grid cells
[Stein et al., 2000; Tinarelli et al., this volume], kernel
density estimators [Song et al., 2003], or parcels representing
dynamic volume [Haertel, this volume].

3.2.3. Inconsistencies with Eulerian driving meteorologi-
cal fields. Most Lagrangian models require gridded output
from another Eulerian model to simulate air parcel trajec-
tories. See section 4 for a discussion on this point. The two
models can be inconsistent with one another, especially if
variables are omitted in the output or interpolated from
internal model coordinates to common pressure levels. A
new development in Lagrangian modeling is overcoming
such inconsistencies by having the Lagrangian model sim-
ulate atmospheric dynamics, thereby bypassing the Euler-
ian model entirely [Alam and Lin, 2008; Haertel, this
volume].

4. METEOROLOGICAL FIELDS TO DRIVE
LAGRANGIAN ATMOSPHERIC MODELS

For the vast majority of Lagrangian models, equation (1a)
is not solved for ψ = u. Instead, the u field (along with other
meteorological variables) is generated by an Eulerian model:
either an operational numerical weather prediction model, a
general circulation model, or a mesoscale model. The u field
from the output is then interpolated to the air parcel location

and then integrated in time to determine the trajectory (equa-
tion (2)).
The “garbage in, garbage out” principle holds for Lagrang-

ian modeling: the quality of Lagrangian simulations can
hardly be enhanced if the input meteorological fields are not
improved [e.g., Davis and Dacre, 2009; Kretschmer et al.,
this volume; Webley and Steensen, this volume]. This means
that the driver meteorological fields require as much atten-
tion as the Lagrangian model itself.
Other than u, another important quantity provided by the

driving meteorology is the mixing height: i.e., the vertical
extent and intensity of mixing within the PBL. Applications
in trace gas transport are strongly dependent on the mixing
height [Gerbig et al., 2008]; yet methods to diagnose these
properties from meteorological fields are still unsatisfactory
in many cases [Seibert et al., 2000]. This has led to efforts to
directly assimilate mixing height observations within the
Lagrangian simulations [Kretschmer et al., this volume].
Owing to storage limitations, the Eulerian output is often

degraded in temporal (and sometimes in spatial) resolution
[Stohl et al., 1995] and interpolated to pressure levels [Hoer-
ling and Sanford, 1993]. One symptom of the degradation in
the driving meteorological fields is violation of mass conser-
vation, which has been shown to affect simulated trajectories
in a way that forward and backward LPDM simulations
yield inconsistent results (nonreversibility) [Lin et al.,
2003]. Utilization of assimilated meteorological data from
different assimilation cycles, which is required to cover
transport periods longer than the forecast period, causes
dynamical inconsistencies, with dramatic effects on strato-
sphere-troposphere exchange fluxes [Stohl et al., 2004].
Owing to the same reason, spurious changes in specific
humidity and equivalent potential temperature were observed
along Lagrangian trajectories, indicating inconsistencies in
the humidity and heat budgets [Stohl et al., 2004].
To minimize inconsistencies between the Eulerian output

and the Lagrangian models, efforts have been undertaken to
closely couple the two kinds of models, with an eye toward
conservation properties [Brioude et al., 2012; Nehrkorn
et al., 2010].

5. APPLICATIONS OF LAGRANGIAN MODELS

This monograph includes numerous papers that take ad-
vantage of the strengths of Lagrangian models mentioned in
section 3 to address geophysical questions of interest.
Part 1 of this volume focuses on the formulation of LPDMs

and has already been mentioned above in section 2.1.
Part 2 examines the application of Lagrangian models to

study geophysical flows. Trajectories can be used to con-
struct “Lagrangian coherent structures” that reveal transport
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pathways and mixing characteristics of geophysical flows,
both in the atmosphere and the ocean [Sulman et al., this
volume]. The geophysical flow can be solved in a Lagrang-
ian frame, taking advantage of its numerical strengths (sec-
tion 3.1) to build Lagrangian dynamical models of both the
atmosphere and the ocean [Haertel, this volume]. Konopka
et al. [this volume] examine the issue of numerical diffusion
in particular, showing how the strength of numerical diffu-
sion can be controlled explicitly in Lagrangian (irregular)
grids to mimic actual atmospheric diffusion. The role of
geophysical flows in transporting water, the all-important
ingredient of weather and climate, is investigated by Liber-
ato et al. [this volume], who combine Lagrangian investiga-
tion of moisture sources and a storm-tracking methodology
to study an extreme flood event in Portugal. Orza et al. [this
volume] examine the transport pathways in Europe and their
association with the North Atlantic Oscillation by adopting a
back-trajectory clustering technique.
Part 3 is a compendium of several papers applying La-

grangian models to understand greenhouse gases (GHG).
The target species is CO2 in most of the papers, and one
paper focuses on halocarbons [Brunner et al., this volume],
but the framework and discussion in this part is relevant for
most other GHGs (e.g., methane (CH4) or nitrous oxide
(N2O)). The framework involves tagging particles in LPDMs
with concentrations of GHGs and comparing against mea-
sured concentrations to derive regional-scale surface fluxes
as part of a formal inverse framework [Brunner et al., this
volume; Kretschmer et al., this volume; Oda et al., this
volume; Zeng et al., this volume]. The LPDMs are run
backward in time, due to the smaller number of GHG obser-
vational sites versus the number of source elements (section
2.3). An application of backward-time Lagrangian models
to determine micrometeorological (local)-scale emissions is
also presented [Wilson et al., this volume].
Part 4 examines species in the atmosphere, which undergo

chemical transformations and deposition, unlike many
GHGs, which are relatively inert in the atmosphere. An
approach is to leverage the myriad advantages for simulating
tracer transport in Lagrangian models and combine them
with linearized chemistry [Henne et al., this volume]. A
related linear approach is to first simulate atmospheric trans-
port backward in time, using a Lagrangian model, and then
carry out a regression analysis to solve for coefficients con-
trolling both the rates of chemical mechanisms as well as
emission strengths [Benmergui et al., this volume].
Part 5 examines the role of Lagrangian models as a central

component of emergency warning systems that predict the
transport and dispersion of materials that could pose imme-
diate societal risks, which unfortunately have been amply
borne out by two events in recent memory. As demonstrated

by the 2010 eruption of Eyjafjallajökull in Iceland, one threat
includes volcanic ash [Denlinger et al., this volume; Webley
and Steenson, this volume]. Second, the meltdown at Japan’s
Fukushima Daiichi nuclear power plant following the 2011
earthquake showed the continuing risk of accidental releases
of radioactive species from nuclear sites [Arnold et al., this
volume]. This part of the volume also includes an example of
a sophisticated LPDM and illustrates its application in sim-
ulating accidental releases and urban pollution dispersion
[Tinarelli et al., this volume].
In conclusion, the numerous applications discussed

throughout this monograph underscore the fact that Lagrang-
ian models play a critical role in helping scientists under-
stand phenomena in the geosciences and assisting human
society to grapple with several hazards, either natural or
anthropogenic in origin. It is my belief that Lagrangian
models will continue to grow in significance as a tool in the
researcher’s arsenal (Figure 2) and follow its own “upward
trajectory” in sophistication and usefulness.

Acknowledgments. I am grateful to Joshua Benmergui for com-
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fellow editors of this monograph is also acknowledged.
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The Lagrangian stochastic modeling approach for describing dispersion is based
on the study of the random motion of particles as they travel in a given turbulent
flow. It has its origins in the theory of Brownian motion, particularly the Langevin
equation. This section concerns developments in the theory and application of this
approach. A brief introduction to the theme of the present section is followed by an
overview of its four chapters. They present the following: a lucid, up-to-date
account of the history of Lagrangian stochastic models and the current use of the
“well-mixed condition” for model derivation; an application of the approach with
varying model formulations for dispersion in light winds under different atmo-
spheric stabilities; the issue of unrealistically large magnitudes of particle velocity
in numerical schemes used for solving stochastic model equations; and how to
ensure the well-mixed state of particles in cases where the input flow and turbu-
lence quantities may have sharp gradients.

The basis of the Lagrangian approach of dispersion is the
study of the stochastic motion of particles (or marked fluid
elements) as they travel in a given turbulent flow. The statis-
tical theory of Brownian motion developed by Einstein,
Langevin, Ornstein and Uhlenbeck, and others in the early
years of the last century and summarized in a fundamental
paper by Chandrasekhar [1943], provides a useful back-
ground to tackling the more difficult problem of turbulent
dispersion. In Brownian motion, a particle of colloidal size
(called a Brownian particle) undergoes random collisions
in succession (~1021 collisions per second) with the mole-
cules of the surrounding fluid, which is assumed to be
uniform and steady (or stationary). Each collision produces
a random change in the particle velocity. In addition, the
Brownian particle experiences a viscous resistance in the
fluid, which damps its velocity. The time scale (τB) at which
the particle ceases to “remember” its initial velocity due to
this viscous resistance is very small, typically of the order of

one-hundredth of a microsecond [Csanady, 1973]. The quan-
tity τB can also be thought of as the time scale on which the
Brownian particle exchanges momentum with the fluid and is
referred to as the relaxation or dissipation time. Because τB is
very small, and the time intervals of interest are generally
larger than τB, it can be assumed that the velocity of the
particle changes with random jumps after every time interval.
This suggests that the particle velocity can be modeled by a
white-noise process. However, if the time intervals of interest
are smaller than τB, a better model for Brownian motion is the
Langevin equation, in which the change in particle velocity
(i.e., particle acceleration) is modeled as a sum of two com-
ponents: a systematic (or deterministic) part, representing the
viscous resistance experienced by the particle, and a random
part, which represents the change in the particle velocity due
to its collision with the molecules of the surrounding fluid.
In turbulent dispersion, the motion of particles on a mac-

roscopic scale is considered, whereby a particle undergoes
random impacts in a field of turbulence (which is character-
ized by ambient fluid parcels, or eddies, of diverse shapes and
sizes undergoing irregular movements). Particle displace-
ments due to Brownian forces at the molecular scale continue
to occur, but are statistically independent and negligibly
small compared to those due to turbulent impacts (see the
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work of Csanady [1973] for a detailed introduction to turbu-
lent dispersion). In the case of turbulent flows, the analog of
τB is τL, the Lagrangian integral time scale; the latter can be a
function of time and space depending on the complexity of
the turbulent flow under consideration. Typically, the magni-
tude of τL is tens of seconds to a few minutes in the atmo-
spheric boundary layer. For these flows, we are often
interested in time intervals smaller than τL, and therefore, the
Langevin concept of particle velocity increment is taken as
the starting point for constructing Lagrangian stochastic
models of turbulent dispersion [see Thomson and Wilson,
this volume, equation (1)].
Before the Langevin model was adopted as a framework

for turbulent dispersion, Taylor [1921] published his land-
mark paper, presenting an analytical Lagrangian analysis of
the continuous motion of particles released from a single
point in homogeneous, stationary turbulence. His analysis
showed that the near-field (or small-time) behavior of the
root-mean-square particle displacement is proportional to
travel time (t), whereas the far-field (or large-time) behavior
is proportional to

ffiffi

t
p

. The latter represents the diffusive
phase in which the size of the plume (or puff) is larger than
the size of the dominant turbulent eddies. The time of
transition between the near field and far field depends on
the properties of the turbulent flow as well as the initial
source characteristics. Traditional eddy-diffusion (or gradi-
ent-transfer) models based on the Fickian theory of molec-
ular diffusion are able to represent the far field, but not the
near field in which the plume size is small compared to the
size of the dominant turbulent eddies (hence, these eddies
transport the initial plume instead of diffusing it). In con-
trast, the basic Langevin model for an idealized field of
homogeneous and stationary turbulence reproduces the an-
alytical forms of both near- and far-field behaviors of tracer
dispersion.
The theme of the present section is Lagrangian stochastic

modeling of mean dispersion in a turbulent flow. This ap-
proach normally involves releasing a large number of parti-
cles corresponding to different flow realizations with suitable
initial conditions, such as a point source. The motion of each
particle is treated as completely independent of that of other
particles and is determined via a set of stochastic differential
equations for velocity and position increments. The calculated
trajectory distribution simulates the source plume and can be
used to compute mean dispersion quantities, such as the
average concentration, mean plume height, or plume spread.
Increasing the number of particles reduces the statistical
uncertainty in the dispersion calculations. With the present-
day computational resources, it is feasible to release particles
numbering hundreds of thousands to a few million for short-
range dispersion studies. This type of modeling for mean

dispersion is also referred to as one- or single-particle mod-
eling because the motion of each particle is independent.
While Taylor’s [1921] analysis provided a solid founda-

tion for understanding diffusion and developing parameter-
izations of diffusion coefficients in applied Gaussian models,
its scope for application to complex, real-world flows was
limited. The first paper in this section, by Thomson and
Wilson [this volume], provides a lucid account of the history
of Lagrangian stochastic models for turbulent dispersion,
involving the differing ways in which the deterministic and
random terms were constructed. These authors discuss early
heuristic Lagrangian stochastic models when the Langevin
framework involving a Gaussian random forcing started to
be extended to nonidealized flows in the lower atmosphere.
This required numerical computations as the flow complex-
ity made derivation of any analytical solutions impossible.
Models were formulated for inhomogeneous flows by vary-
ing τL with space, by varying both τL and the Eulerian
velocity variance with space, by considering particle velocity
scaled by its standard deviation, and by considering a skewed
random forcing for application to non-Gaussian turbulence.
Their applications ranged from small-scale canopy turbu-
lence to the full convective boundary layer dominated by
large-scale thermals and downdrafts. As Thomson and Wil-
son [this volume] report, some of these applications demon-
strated a remarkable degree of success of the Lagrangian
stochastic approach, but there were several problems, some
fundamental (such as the use of a skewed random forcing,
which is strictly unrealizable and may lead to negative
probabilities).
In his seminal paper, Thomson [1987] developed a gen-

eralized Lagrangian stochastic framework by considering
particle motion as a continuous Markov process in velocity-
position phase space. He demonstrated that the random forc-
ing term must be Gaussian and developed a set of rigorous
criteria that a Lagrangian stochastic model needs to meet.
Moreover, Thomson [1987] showed that if one of the criteria,
the so-called well-mixed condition, is satisfied, the rest will
be satisfied, too. In simple terms, the well-mixed criterion
states that in a bounded region away from the source, if the
distribution of particles becomes well mixed, then it should
remain so for all subsequent times. It is equivalent to the
second law of thermodynamics and is mathematically repre-
sented by the Fokker-Plank equation for the evolution of the
probability density function of particle velocity and position.
The Thomson well-mixed condition now serves as the basis
for the derivation of the deterministic term of a Lagrangian
stochastic model and for checking model consistency. It
leads to a unique model in one dimension, and a unique 3-D
model can be constructed if variables in one dimension are
assumed to be independent of those in the other dimensions.
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However, if there is a dimensional interdependence of vari-
ables (e.g., the velocity covariances in the neutral surface
layer), the well-mixed condition does not lead to a unique
solution, and different models satisfying the well-mixed cri-
terion can yield different dispersion estimates. As pointed out
by Thomson and Wilson [this volume], there remains room
for progress on further selection criteria for the multidimen-
sional case.
Several specialized stochastic model formulations and ap-

plications have followed the work of Thomson [1987] in
atmospheric dispersion areas such as the atmospheric bound-
ary layer under different stability conditions, urban and veg-
etation canopies, complex terrain and coastal dispersion
processes, nonpassive tracers (e.g., buoyant plumes, heavy
gases, and heavy particles), chemically interactive particles,
concentration fluctuations (e.g., through micromixing tech-
niques). Lagrangian stochastic models have also been devel-
oped in an inverse framework for estimating source strength
based on ambient concentration measurements and for deter-
mining flux footprint of upwind sources at a measurement
point. These models are also being used in operational air
pollution modeling systems, sometimes in a hybrid manner
(for example, through coupling with a Gaussian puff model
and/or an Eulerian gradient-transfer model) for improved
computational efficiency.
The second paper by Luhar [this volume] presents an

application of the Lagrangian stochastic approach to disper-
sion in light winds, which are characterized by horizontal
plume meandering and significant upwind diffusion. In sta-
ble atmospheric conditions, two model formulations in the
horizontal plane are considered: one in which the Lagrangian
velocity autocorrelation is oscillatory and the other, a more
traditional one, with an exponential Lagrangian velocity
autocorrelation. The turbulence is axisymmetric along the
vertical direction. This is a simple case of model nonunique-
ness where both models satisfy the Thomson well-mixed
condition, but the first one is known to lead to significant
reduction of dispersion and spiraling particle trajectories
compared to the second. Luhar [this volume] finds that the
first model performs slightly better; its use of an oscillatory
velocity autocorrelation is supported by the light wind data
considered. (This indicates that how well a particular model
represents the flow is not fully determined by the well-mixed
condition, and additional conformities are needed.) It is
emphasized that regardless of which model formulation is
used, the time scales and the turbulent kinetic energy must
include the low-frequency meander component in the hori-
zontal. Luhar’s [this volume] subsequent modeling of dis-
persion in the convective boundary exemplifies the
increasing importance of the effects of upwind diffusion and
of the time elapsed since the start of the release as the wind

becomes lighter. He also quantifies the decrease in the max-
imum ground-level concentration and the increase in the
ground area impacted by a given concentration level, with
decreasing wind speed.
Lagrangian models for real-world flows employ numerical

methods to calculate particle velocity. Occasionally, the mag-
nitude of particle velocities can take unrealistically large
values, sometimes even beyond the possible computational
bounds. The third paper, byWilson [this volume], terms these
“rogue velocities” and examines if one reason for their oc-
currence is the use of an insufficiently small time step (Δt) in
the numerical scheme. An artificial case of 1-D inhomoge-
neous Gaussian turbulence, in which two spatial regimes of
differing constant velocity variance are joined by a linear
ramp, is considered. In this, the gradient in the velocity
variance is discontinuous at the two ends of the ramp region.
The tracer distribution is initially well mixed, and its evolu-
tion is computed by numerically integrating the Chapman-
Kolmogorov equation. For comparison, the evolution is also
computed using a Lagrangian stochastic model. The selected
field of Eulerian velocity statistics implies an inhomogeneity
time scale (τD) that is an order of magnitude smaller than τL
(it is more appropriate to term the latter as a Lagrangian
decorrelation time scale in inhomogeneous turbulence). It is
shown that when Δt is much smaller than both τD and τL, the
particles remain well mixed. However, when Δt ≈ τD << τL
the well-mixed condition is violated, and rogue velocities
occur. In practical applications, it is generally not feasible to
decrease the time step sufficiently to eliminate rogue veloc-
ities, and researchers use various fixes to deal with the
problem. Wilson [this volume] concludes that rogue veloci-
ties may be tolerable when one is only interested in the mean
concentration, but they may pose difficulties when comput-
ing higher-order moments of concentration via techniques
involving the one-particle Lagrangian stochastic approach.
Lagrangian stochastic models have traditionally been driven

by semiempirical parameterizations of flow and turbulence
quantities, often involving similarity relationships. Such
parameterizations are constantly under development based
on new/better observational studies. For common flows,
these are scattered among research papers and books on the
atmospheric boundary layer [e.g., Stull, 1988], but a compi-
lation with suggested generalized forms can be found in the
work of Rodean [1996]. In these parameterizations, the ver-
tical variation of flow and turbulence quantities and their
gradients is continuous, and it is often assumed that the
turbulent flow is horizontally homogeneous. However, La-
grangian stochastic models are increasingly being coupled to
atmospheric flow models for real-world applications at a
range of scales. Unlike the parameterized forms, the pre-
dicted flow and turbulence quantities are discrete in time,
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spatially gridded, nonstationary, and may have sharp hori-
zontal and vertical gradients. The last paper, by Lin and
Gerbig [this volume], emphasizes that in such a complex
flow field, the particle distribution can deviate from the
well-mixed state. They consider an example case in which
vertical turbulence at discrete altitudes is treated as step
functions. Hence, the turbulence is homogeneous in each
vertical layer, but discontinuous at the interface between two
layers. Lin and Gerbig [this volume] devise a practical re-
flection/transmission algorithm for handling the particle
behavior at the interface. Its application for a number of in-
creasingly complex turbulence cases shows that it preserves
the well-mixed condition. One advantage of this scheme is
that because the turbulence is homogeneous within layers, the
computational time step is not restricted by the relatively
small value of the time scale implied by the turbulence inho-
mogeneity. The reflection/transmission scheme was not test-
ed within a flow model at regional or global scale, but the
scheme has potential for use in operational modeling.
The present-day Lagrangian stochastic models find their

use in transport and dispersion applications ranging from
micrometeorological to global scales. The success of the
Lagrangian approach in addressing a wide range of disper-
sion processes has also led to its further development, in-
cluding in areas such as source determination and nonpassive
sources. Hybrid techniques, taking advantage of the capabil-
ities of both Lagrangian and Eulerian approaches, have also
been formulated to enhance computational efficiency in op-
erational modeling systems. However, as illustrated by the
papers in this section, there is always scope for further
developments, including research on aspects such as theory,
numerics, and parameterizations, as well as new applications
including higher-order concentration statistics and formula-
tions for operational use.
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This article briefly summarizes the historical evolution of the modern Lagrangian
stochastic (LS) class of models for the calculation of fluid element (or particle)
paths in turbulence. The fundamental advantages of a “first-order” LS model
relative to alternative descriptions of turbulent dispersion are (1) its ability to
correctly describe the concentration field even in the nondiffusive “near field” of
sources and (2) its ability to rationally incorporate all available statistical informa-
tion on the velocity field, even in the case that the latter is nonstationary and
inhomogeneous in all directions. There are also advantages of convenience: for
example, being grid free, LS models are easy to implement; and because particle
paths are computed independently, they are amenable to easy parallelization. LS
models are presently used to treat atmospheric transport and dispersion problems
on scales ranging from the intercontinental (for which case typically they are
“driven” by motion fields from numerical weather models) down to the scale of
the atmospheric surface layer (meters to hundreds of meters). Papers at the Chap-
man Conference on Langrangian modeling, from which this chapter was derived,
exhibited many interesting applications.

1. INTRODUCTION

The aim of a Lagrangian stochastic (LS) model is to com-
pute an ensemble of random paths of marked fluid elements
through a turbulent flow, based on knowledge of velocity
statistics. The simplest class of LS model is the random
displacement model (RDM, or zeroth-order LS model), which
represents a particle trajectory by a sequence of random incre-
ments in position. The more sophisticated “generalized Lan-
gevin approach” or first-order LS model (which draws ideas
from Langevin’s 1908 work on Brownian motion) creates the

particle path by integrating a sequence of (damped) random
increments in velocity, such that the particle position X and
velocity U together constitute a Markovian state variable. To
be more specific, the general form of the first-order model is

dUi ¼ ai dt þ bij dξj; ð1Þ

dXi ¼ Ui dt ð2Þ
where t is time, ai = ai(X, U, t) is the systematic part of the
acceleration, and bij (normally diagonal) is another coefficient
scaling the random Gaussian forcing dξj. Equations (1) and (2)
can be integrated numerically by replacing the infinitesimal dt
with a finite time step Δt, whose magnitude may vary along
the trajectory in proportion to a local turbulence time scale.
Heuristic arguments for the validity of equation (1) as an
approximation to the Navier-Stokes equations can be made
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[e.g., van Dop et al., 1985], and specification of the coeffi-
cients ai, bij is the selection problem for LS models. Many
interesting and useful models are known, applying to diverse
regimes of turbulence spanning from the ideal (unbounded
homogeneous, isotropic turbulence) through the everyday
(stratified atmospheric surface layer in a horizontally homo-
geneous state; convective boundary layer (CBL)) to the exotic
(three-dimensionally inhomogeneous urban flow with build-
ings resolved).
However, this article is not intended as a thorough review

of the science of modern Lagrangian models, which may be
sought elsewhere [Sawford, 1985; Thomson, 1987; Wilson
and Sawford, 1996; Rodean, 1996]. Rather, its intent is to
capture some of the broad trends and developments that
have brought us to where we now are. We give some flavor
of the antecedent models and of the diverse disciplines,
backgrounds, motivations, and styles of early contributors;
we illustrate the range and impact of contributions driven
by intuition and by rigor; and we note a chronological
evolution in the specificity of the turbulence regime ad-
dressed and in the degree of connection with (or discon-
nection from) observations of dispersion. We restrict the
focus to LS models where the particles are (conceptually)
sampled independently from an ensemble of turbulent flows
and so move independently (so called one-particle models),
and to nonbuoyant and nonreactive (“passive”) particles, in
flows for which the turbulence prescription is limited to
single-point statistics. Meteorological applications are
emphasized.

2. EARLY DEVELOPMENT OF THE LAGRANGIAN
PERSPECTIVE ON TURBULENT DISPERSION

Taylor [1921] provided an exact Lagrangian solution for
the rate of spread of tracer in unbounded, stationary homo-
geneous turbulence. Let us take the case where particles are
independently released into such a flow at z = 0 (here, and
generally when we consider dispersion in one dimension
only, we take the direction to be the vertical axis). For each
realization, i.e., for each trajectory, the clock is reset (t = 0)
upon release. Taylor showed that the rate of increase in time
of the ensemble mean spread (as measured by the variance
z̄′2 ≡ σ2z of displacement along the z axis) is given exactly by
(Taylor’s equation 17)

dσ2z
dt

¼ 2∫
t

0

w̄ðt′Þwðt′ þ ξÞ dξ ≡ 2σ2w∫
t

0

RwwðξÞ dξ; ð3Þ

where Rww(ξ) is the Lagrangian velocity autocorrelation
function, first introduced by Taylor, and σw

2 the velocity
variance. (In terms of the eddy diffusion paradigm, the left-

hand side of equation (3) is twice the eddy diffusivity).
Integrating this result gives

z̄′2 ¼ 2σ2w∫
t

0
∫
t′

0

RwwðξÞ dξ dt′

¼ 2σ2w∫
t

0

ðt − ξÞ RwwðξÞ dξ:

ð4Þ

Let τ ¼ ∫
∞

0
RwwðξÞ dξ be the Lagrangian integral time scale.

Equation (4) has asymptotic “near-field” and “far-field”
limits

z̄′2 ¼ σ2w t2; t ≪ τ
2σ2w τt; t ≫ τ

�

ð5Þ

corresponding to a nondiffusive regime of “memory-dominated”
spread during which the release velocity is preserved (t ≪ τ),
and a long time regime in which the turbulent convection of
tracer may legitimately be represented as “diffusion,” with
effective far-field eddy diffusivity K∞ = σw

2τ. Taylor’s result
proves, then, that the classic “eddy diffusion” paradigm for
the evolution of the particle concentration p = p(z,t) in this
1-D (z-) space, namely,

∂p
∂t

¼ −
∂
∂z

−K
∂p
∂z

� �

¼ K
∂2p
∂z2

; ð6Þ

(constant eddy diffusivity K, Fickian diffusion equation) is
insufficiently general. Being equivalent to the eddy diffusion
treatment (not shown, but see Monin and Yaglom [1977,
section 10.3] and Boughton et al. [1987]), a zeroth-order LS
model (i.e., random displacement model or “random walk in
position”) cannot represent the near field. Conversely, the
first-order LS model gives the correct small and large time
behavior and, indeed, agrees exactly with Taylor’s result at
intermediate times in the case where Rww decays exponen-
tially. This represents the fundamental advantage of the (first-
order) LS models over simpler models, though in practice,
this capability is decisive only for a restricted range of pro-
blems involving the near field of sources (we expand on this
in section 5).
Ever since its derivation, Taylor’s result has served to

guide turbulent dispersion modeling, and with suitable re-
striction as to the domain occupied by a puff or plume of
dispersing tracer, it can be used in an approximate way for
sources in real flows. However, its adequate extension to
inhomogeneous and nonstationary turbulence, in the form of
today’s Lagrangian stochastic models, occurred only after
newfound access to computers spurred heuristic experiments
in the numerical simulation of particle trajectories and after
these experiments, in turn, stimulated the development
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during the 1980s of guidance in formulating the models for
general flows (see section 4). Of course, there were many
ingenious and illuminating developments, both theoretical
and experimental, in the period between Taylor’s work and
the advent of (accessible) computers: for example, Batche-
lor’s [1949] reexpression of Taylor’s result in terms of a
weighted integral

z̄′2 ¼ σ2w t2∫
∞

0

SðLÞw ð f Þ sin
2ðπftÞ

ðπftÞ2 df ð7Þ

of the Lagrangian velocity spectrum ( f representing fre-
quency). The transformation from equation (4) to equation
(7) is straightforward (the Lagrangian spectrum and the
Lagrangian autocorrelation function constituting a Fourier
transform pair). The low-pass spectral filter sin2(π ft)/(π ft)2

expresses the (intuitive) fact that for small travel times t, all
eddies contribute to spread, while, with increasing t, increas-
ingly only “slow” (small f ) eddies dominate.
As already noted, and as testified by its prominence in text-

books [e.g. Sutton, 1953; Pasquill and Smith, 1983], Taylor’s
Lagrangian paradigm proved preeminent, either explicitly or
indirectly, in subsequent efforts to deepen the theoretical frame-
work and provide useable real-world dispersion models, one
example of the latter being Sutton’s [1953, equation 8.31]
model for dispersion from a continuous ground-level point
source in the atmospheric surface layer [see also Monin and
Yaglom, 1977, section 10.5]. For several decades one of the
influences of Taylor’s work could be found in theoretical papers
that attempted to interrelate Eulerian and Lagrangian statistics
in idealized flow regimes, for “the relation between Lagrangian
and Eulerian correlation functions is basic to the understanding
of turbulent diffusion” [Weinstock, 1976]. Summing up a sym-
posium at Oxford University, Sutton [1959, p. 438] stated:

It is most appropriate that, with Sir Geoffrey Taylor in our midst, so
much of the work has been founded on his famous paper of 1921 on
the random walk. I have given up counting the number of times that
celebrated equation connecting the Lagrangian correlation coefficient
with the standard deviation of the particles has been written out on the
blackboard.

Many influential scientists (including S. Corrsin, J. L. Lum-
ley, R. H. Kraichnan, J. R. Philip, and P. G. Saffman) partic-
ipated in this prolonged effort to relate Lagrangian to
Eulerian statistical properties, and following a widely cited
contribution by Hay and Pasquill [1959] delivered at the
above-mentioned symposium, namely, a practicable method
for short-range air pollution calculations involving the ratio β
of Lagrangian to Eulerian integral time scales, a particular
focus was the provision of theoretical values for that ratio
[e.g., Corrsin, 1963; Philip, 1967; Smith, 1968]. It is inter-
esting to remark that a modern LS model, if it respects the

well-mixed condition [Thomson, 1987] for a given regime of
flow having a specific (postulated) Eulerian velocity pdf,
must “produce” the long sought for Lagrangian statistics,
though in numerical rather than analytic form, and with the
time scales determined using turbulence phenomenological
relations (e.g., a parameterization of the energy dissipation
rate) and hinging on the specified value of a dimensionless
constant “C0” (that we define and discuss later). Thus, the LS
model can be said to “solve” the problem of relating
Lagrangian to Eulerian statistics, albeit in a restricted sense:
for the LS approach achieves this outcome by virtue of
adopting the (plausible, but nonrigorous) Markovian frame-
work that (possibly) these scientists might have considered a
too sweeping simplification.
Taylor’s result may easily be obtained by an analysis of

Langevin’s [1908] equation, which had been developed to
describe Brownian motion and represents “the first example
of a stochastic differential equation” [Lemons, 2002; Gardi-
ner, 2004]; indeed, as a precursor to his main result, Taylor
himself gave an alternative analysis breaking a trajectory
into a sequence of discrete steps whose magnitudes were
correlated from one to the next. Representing Lagrangian
variables in upper case, and translating Langevin’s coeffi-
cients into a notation appropriate to our ends, Langevin’s
equation may be written

dW ¼ −
W

τ
dt þ

ffiffiffiffiffiffiffiffi

2σ2w
τ

r

dξ; ð8Þ

where dξ represents an uncorrelated sequence of Gaussian
random numbers having vanishing mean and variance dt.
Increments in velocity over intervals dt comprise a determin-
istic component (usually, as here, having the effect of damp-
ing the excursions in W on a time scale τ) and a purely
random component. In stationary homogeneous turbulence,
equation (8) reproduces Taylor’s result for the special case of
an exponential correlation function.
In modern parlance, a generalized Langevin equation is

taken as the framework for developing Lagrangian models
and typically is written

dUi ¼ aiðX;U; tÞ dt þ bijðX;U; tÞ dξj; ð9Þ

where the random forcing dξi is Gaussian, with d̄ξi ¼ 0 and
d̄ξidξj ¼ dt δij. The selection problem for first-order LS
models amounts to the prescription of the systematic part of
the acceleration ai and the scaling coefficient bij, and we
return to this later.
For the comprehensibility of what is to follow, this is an

appropriate point to introduce the Fokker-Planck (FP) equa-
tion corresponding to equation (9). Let p(x,u,t) represent the
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