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Introduction

This book will present basic stochastic processes for building models in
insurance, especially in life and non-life insurance as well as credit risk for
insurance companies. Of course, stochastic methods are quite numerous; so we
have deliberately chosen to consider to use those induced by two big families of
stochastic processes: stochastic calculus including Lévy processes and Markov
and semi-Markov models. From the financial point of view, essential concepts
such as the Black and Scholes model, VaR indicators, actuarial evaluation, market
values and fair pricing play a key role, and they will be presented in this volume.

This book is organized into seven chapters. Chapter 1 presents the essential
probability tools for the understanding of stochastic models in insurance. The next
three chapters are, respectively, devoted to renewal processes (Chapter 2), Markov
chains (Chapter 3) and semi-Markov processes both homogeneous and
non-time homogeneous (Chapter 4) in time. This fact is important as new non-
homogeneous time models are now becoming more and more used to build realistic
models for insurance problems.

Chapter 5 gives the bases of stochastic calculus including stochastic
differential equations, diffusion processes and changes of probability measures,
therefore giving results that will be used in Chapter 6 devoted to Lévy processes.
Chapter 6 is devoted to Lévy processes. This chapter also presents an alternative
to basic stochastic models using Brownian motion as Lévy processes keep the
properties of independent and stationary increments but without the normality
assumption.

Finally, Chapter 7 presents a summary of Solvency II rules, actuarial evaluation,
using stochastic instantaneous interest rate models, and VaR methodology in risk
management.
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Our main audience is formed by actuaries and particularly those specialized in
entreprise risk management, insurance risk managers, Master’s degree students in
mathematics or economics, and people involved in Solvency II for insurance
companies and in Basel II and III for banks. Let us finally add that this book can
also be used as a standard reference for the basic information in stochastic processes
for students in actuarial science.



Basic Probabilistic Tools for
Stochastic Modeling

In this chapter, the readers will find a brief summary of the basic probability
tools intensively used in this book. A more detailed version including proofs can be
found in [JAN 06].

1.1. Probability space and random variables

Given a sample space €2, the set of all possible events will be denoted by 3,
which is assumed to have the structure of a O -field or a O -algebra. P will
represent a probability measure.

DEFINITION 1.1.— A random variable (r.v.) with values in a topological space
(E,y) is an application X from € to E such that:

VBey:X'(B)e 3, [1.1]
where X/ (B) is called the inverse image of the set B defined by:
X'(B)={w: X(w)e B}, X '(B)e 3. [1.2]

Particular cases:

a)If (E,w)=(R,3), Xis called a real random variable.

Basic Stochastic Processes, First Edition. Pierre Devolder, Jacques Janssen and Raimondo Manca.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.



2 Basic Stochastic Processes

b) If (E,w):(ﬁ,ﬁ), where R is the extended real line defined by
RU{+ootU{—oc}and f is the extended Borel o -field of R , that is the minimal

o -field containing all the elements of # and the extended intervals:

[—00,a),(—00,al,]—00,a],(—00,a),

la,+00),(a,+00|,[a,+c],(a,+0), a € R, [1.3]

X is called a real extended value random variable.

¢)If E=R"(n>1)with the product o -field A" of B, X is called an

n-dimensional real random variable.

d)If E=R™ (n>1) with the product o+ -field B of 8, X is called a real

extended n-dimensional real random variable.

A random variable X is called discrete or continuous accordingly as X takes at
most a denumerable or a non-denumerable infinite set of values.

DEFINITION 1.2.— The distribution function of the r.v. X, represented by F, , is the
function from R — [0, 1] defined by:

Fy(x)=P({o: X(w) < x}). [1.4]
Briefly, we write:
Fo(x)=P(X <x). [1.5]

This last definition can be extended to the multi-dimensional case with a r.v. X
being an n-dimensional real vector: X =(X,...,X,), a measurable application from

(Q,3,P) to(R",3").

DEFINITION 1.3.— The distribution function of the r.v. X =(X,,...,X,), represented
by F, , is the function from R" to [0,1} defined by:

Fy(x,x,)=P({@: X (@) < x,,.., X, (@) < x,}). [1.6]
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Briefly, we write:
Fo(x,...x,)=P(X, <x,..,X, <x,). [1.7]

Each component X; (i = 1,...,n) is itself a one-dimensional real r.v. whose d.f.,
called the marginal d.f., is given by:

Fy (%) = Fy (400,00, x,,Foo,..., F00) . [1.8]

The concept of random variable is stable under a lot of mathematical operations;
so any Borel function of ar.v. X'is also a r.v.

Moreover, if X and Y are two r.v., so are:

inf{X,Y},sup{X,Y},X+Y,X—Y,X-Y,%, [1.9]

provided, in the last case, that ¥ does not vanish.

Concerning the convergence properties, we must mention the property that, if
(X,,n=1) is a convergent sequence of r.v. — that is, for allwe Q, the sequence
(X,(w)) converges to X(w) — then the limit X is also a r.v. on €. This

convergence, which may be called the sure convergence, can be weakened to give
the concept of almost sure (a.s.) convergence of the given sequence.

DEFINITION 1.4.— The sequence (X, (w)) converges a.s. to X (@) if:
P({w:limX, (0) = X(w)}) =1 [1.10]

This last notion means that the possible set where the given sequence does not
converge is a null set, that is, a set N belonging to 3 such that:

P(N)=0. [1.11]

In general, let us remark that, given a null set, it is not true that every subset of it
belongs to 3 but of course if it belongs to 3, it is clearly a null set. To avoid
unnecessary complications, we will assume from here onward that any considered
probability space is complete, i.c. all the subsets of a null set also belong to 3 and
thus their probability is zero.
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1.2. Expectation and independence

Using the concept of integral, it is possible to define the expectation of a random
variable X represented by:

E(X)=[ XdP(= [ xaP), [1.12]

provided that this integral exists. The computation of the integral:

deP(: IXdPJ [1.13]

can be done using the induced measure ¢ on (R,(3), defined by [1.4] and then
using the distribution function F of X.

Indeed, we can write:
E(X)(:IXdP], [1.14]
Q

and if Fy is the d.f. of X it can be shown that:

E(X) = [ xdF (x). [1.15]

The last integral is a Lebesgue—Stieltjes integral.

Moreover, if Fy is absolutely continuous with fy as density, we obtain:

E(X)szﬂ[(x)dx. [1.16]

—oo

If g is a Borel function, then we also have (see, e.g. [CHU 00]
and [LOE 63]):

E(g(X)) = [ g(x)dF, [1.17)
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and with a density for X:
E(g(X)) = f g(x) fy (x)dx . [1.18]

It is clear that the expectation is a linear operator on integrable functions.

DEFINITION 1.5.— Let a be a real number and r be a positive real number, then the
expectation:

E(|X-a

) [1.19]

is called the absolute moment of X, of order r, centered on a.

The moments are said to be centered moments of order 7 if a=FE(X). In particular,
for r = 2, we get the variance of X represented by o~ (var(X)):

o’ =E(|x-m["). [1.20]

REMARK 1.1.— From the linearity of the expectation, it is easy to prove that:

o’ =E(X*)—(E(X)), [1.21]
and so:

o’ <E(X?), [1.22]

and, more generally, it can be proved that the variance is the smallest moment of
order 2, whatever the number « is.

The set of all real r.v. such that the moment of order r exists is represented
by L.

The last fundamental concept that we will now introduce in this section is
stochastic independence, or more simply independence.

DEFINITION 1.6.— The events A,...,A,,(n>1)are stochastically independent or
independent iff:

m

Vm=2,.,n,Nn, =1,..,n:n #n, #--#n, :P(ﬂ%]:HP(Aﬂk ). [1.23]
k=1 k=1
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For n = 2, relation [1.23] reduces to:
P(4, N A4)=P(4)P(4,). [1.24]

Let us remark that piecewise independence of the events 4,,...,4,,(n >1) does

not necessarily imply the independence of these sets and, thus, not the stochastic
independence of these n events.

From relation [1.23], we find that:
PX, <x,..X, <x)=PX, <x)---PX, <x,),V(x,...,x, ) ER". [1.25]

If the functions F,,F, ,..,F, are the distribution functions of the r.v.

X!t
X=X, X)X, we can write the preceding relation as follows:

Fy(xppex,) = Fy (%) Fy (x,),V(x,,...,x,) €ER". [1.26]

It can be shown that this last condition is also sufficient for the independence of
X =(X,...X,), X,,... X, . If these d.f. have densities f, f} ..., f, , relation [1.24]

is equivalent to:
S (s x,) = fio () fy (%), Y(x,.0x,) ER [1.27]

In case of the integrability of the n real r.v X}, X;,...,X,, a direct consequence of
relation [1.26] is that we have a very important property for the expectation of the
product of n independent r.v.:

E(ﬁij:ﬁE(Xk). [1.28]

The notion of independence gives the possibility of proving the result called the
strong law of large numbers, which states that if (X,,n=1)is a sequence of

integrable independent and identically distributed r.v., then:

LS X, —e s B, [1.29]
n

k=1

The next section will present the most useful distribution functions for stochastic
modeling.
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DEFINITION 1.7 (SKEWNESS AND KURTOSIS COEFFICIENTS).—

a) The skewness coefficient of Fisher is defined as follows:

- E[(X-E(X))]

1
0.3

From the odd value of this exponent, it follows that:

—%,>0 gives a left dissymmetry giving a maximum of the density function
situated to the left and a distribution with a right heavy queue, y,= 0 gives
symmetric distribution with respect to the mean;

—%,<0 gives a right dissymmetry giving a maximum of the density function
situated to the right and a distribution with a left heavy queue.

b) The kurtosis coefficient also due to Fisher is defined as follows:

- E[(X-E(X))']

2 0_4

Its interpretation refers to the normal distribution for which its value is 3. Also some
authors refer to the excess of kurtosis given by y,-3 of course null in the normal case.

For y,<3, distributions are called leptokurtic, being more plated around the

mean than in the normal case and with heavy queues.

For y,>3, distributions are less plated around the mean than in the normal case
and with heavy queues.
1.3. Main distribution probabilities

In this section, we will restrict ourselves to presenting the principal distribution
probabilities related to real random variables.

1.3.1. Binomial distribution

Let X be a discrete random variable, whose distribution (p,,i =0,...,n) with:

p=P(X=i),i=1,..n [1.30]
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is called a binomial distribution with parameters (#,p) if:

pi :(aniqn_i:izoa'“anr [131]

i
a result from which we get:
E(X)=np,var(X) =npq. [1.32]

The characteristic function and the generating function, when the latter exists, of
X, respectively, defined by:

o (1) = E(eitX ),

[1.33]
gy (1) =E(e™)

are given by:

o, () =(pe" +q)", [1.34]
gy () =(pe' +q)".

1.3.2. Negative exponential distribution

This is defined by:

Pr[XSx]:
l-e? x20

E[X]=5, [1.35]
variance[ X | = §°,

¥, =2,%=9.

1.3.3. Normal (or Laplace—Gauss) distribution

The real r.v. X has a normal (or Laplace—Gauss) distribution of parameters
(it,07), ;n € R, 0 >0, if its density function is given by:
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)’

e ¥ ,xeR. [1.36]

19 ==

From now on, we will use the notation X < N(u,07).

The main parameters of this distribution are:
E(X)=pu, var(X)=0",

2,2

. ot

o’t’ [1.37]
>k

Ifu=0, o’ =1, the distribution of X is called a reduced or standard normal

distribution. In fact, if X has a normal distribution (#,0°), 1€ R,0” >0, then the
so-called reduced r.v. Y defined by:

Yy=—"%- [1.38]
has a standard normal distribution, thus from [1.36] with mean 0 and variance 1.

Let 3k >0: limﬂ
x=e ] — F(ux)

standard normal distribution; it is possible to express the distribution function of any

=u* forallu >0 be the distribution function of the

normal r.v. X of parameters (i, o? ), L € R,02>0 , as follows:

FX(x):P(XSx):P(X_’uSx_'uj:d{x_'uj. [1.39]
(o2 o o

In addition, from the numerical point of view, it is sufficient to know the
numerical values for the standard distribution.

From relation [1.38], we also deduce that:

fX(X)=id>'(ﬂj, [1.40]
o

o
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where, of course, from [1.35]:

XZ

J%ze'ﬁ [1.41]

From the definition of @, we have:

®'(x) =

e
P(x)=— | e ?dy,xeR 1.42
(x) m{ y [1.42]
and so:
D(—x) =1-D(x),x >0, [1.43]

and consequently, for X normally distributed with parameters (0,1), we obtain:
P(|X|< x) = ®(x) - D(—x) =2P(x) -1, x> 0. [1.44]

In particular, let us mention the following numerical results:

P[|X —m|< %aj =0.4972(= 50%),
P(|X —m| < 0)=0.6826(= 68%), [1.45]
P(|X —m| <20) =0.9544(= 95%),
P(|X —m|<30)=0.9974(= 99%).

The normal distribution is one of the most often used distributions by virtue of
the central limit theorem, which states that if (X ,n=1) is a sequence of

independent and identically distributed (i.i.d.) r.v. with mean m and variance o7,
then the sequence of r.v. is defined by:

S —nm
4 [1.46]
on
with:
S =X +-+X, n>0 [1.47]

converging in law to a standard normal distribution.
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This means that the sequence of the distribution functions of the variables
defined by [3.20] converges to @ .

This theorem was used by the Nobel Prize winner H. Markowitz [MAR 159] to
justify that the return of a diversified portfolio of assets has a normal distribution. As
a particular case of the central limit theorem, let us mention the de Moivre’s theorem
starting with:

1, with prob. p,

X, = . [1.48]
0, with prob. 1— p,

so that, for each #, the r.v. defined by relation [1.47] has a binomial distribution with
parameters (n,p).

Now by applying the central limit theorem, we get the following result:

S, 700w oy, [1.49]

Jnp(l—=p) "7

which is called de Moivre’s result.

1.3.4. Poisson distribution

This is a discrete distribution with the following characteristics:

n

P(cf:n):e'i/i—',n =0,1,...
n!

m=o® =1, [1.50]
1 1
% =ﬁ:7z =z+3~

This is one of the most important distributions for all applications. For example,
if we consider an insurance company looking at the total number of claims in one
year, this variable may often be considered to be a Poisson variable.

1.3.5. Lognormal distribution

This is a continuous distribution on the positive half line with the following
characteristics:
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Pr[lnX <x|= e %
2ro
E[x]=¢"7,
variance[ X | = e+ (e”2 —1), [1.51]

7= +20(e ~1)

2
7, =0 +20 +30° -3, 0=¢" .

Let us say that the lognormal distribution has no generating function and that the
characteristic function has no explicit form. When o <0.3, some authors

recommend a normal approximation with parameters (4,07) .

The normal distribution is stable under the addition of independent random
variables; this property means that the sum of » independent normal r.v. is still
normal. This is no longer the case with the lognormal distribution which is stable
under multiplication, which means that for two independent lognormal r.v. X;,X;, we
have

X, <LN(u,0,),i=12= X xX, <sz(;1l +1,,\Jot + 02 ) . [1.52]

1.3.6. Gamma distribution

This is a continuous distribution on the positive half line having the following
characteristics:
HV

(v-1)!

Pr[x <X<x+ Ax] = X e " Ax

Variance[X]:%, [1.53]
% =2/,

Vs :§+3.
1%



Basic Probabilistic Tools for Stochastic Modeling 13

For the gamma law with parameters (v, @) denoted y(v,6) , an additivity property

exists:

y(v,0)+y(v'.,0)=y(v+v'6).

1.3.7. Pareto distribution

The non-negative r.v. X has a Pareto distribution if its distribution function is
given by:

FX(x):l—(Ej , x>k; k>0, a>0. [1.54]
X

Its support is (k,+oo).

The corresponding density function is given by:
o

fX(x)=kaH,x2k. [1.55]

The Pareto distribution has centered moments of order  provided that » < &;
and in this case:

r

. a
E|l X" |= ,r<a
=05
and so:
E[x]=2% a5,
a—1
2
VarX:+,a>2.
(a-1) (ax-2)
1 2 - 2
%:ﬂ 1__’0(>3;7/2:3(0( 2)(Bo +a+2),a>4.
a-3 o a(a=3)a—-4)

These values explain why this distribution is considered to be dangerous as for
some values of the parameters it is not excluded to observe large values of X in a
random experiment.
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For oz <1, the mean is infinite, and for 1< & <2, although the mean is finite, the
variance is not.

The problem of this distribution also comes from the fact that the function 1-F(x)
decreases in a polynomial way for large x (distribution with heavy queue) and no

longer exponentially like the other presented distributions, except, of course, for the
Cauchy distribution.

In non-life insurance, it is used for modeling large claims and catastrophic
events.

REMARK 1.2.— We also have:

1n(1-FX(x))=1n[f] L x>k k>0, >0,
X

ou
In(1-F, (x)) =a(lnk—Inx).

REMARK 1.3.— If we compare the form:
k o
Fo(x)=1-|—| , x>k; k>0, 2>0. [1.56]
X
with:

0
1I-(—)?, x>0,
(x+6’)

Fo(x)= [1.57]

0, x<0,

we have another form of the Pareto distribution with as support all the positive half
line. This is possible with the change of variable:

Y=X+k
Of course, the variances remain the same but not the means.

_ ok 0
mX_a—l(a>1)’ mX,_ﬂ_l(,B>1) [1.58]
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2 o°p
2 Oy = —=—(£>2)
o2 = azk (@>2), B-D"(f-2)
(@-D(x-2) _myp
-2

Here are two graphs of the distribution function showing the impact of the
dangerous parameters.

1.2 -

1 !

0.8 +

0.6 +

04

0.2

Figure 1.1. Pareto distribution function with ©=1,8=1

a2

0 2 4 6 8 10 12

Figure 1.2. Pareto distribution with 3=3,6=1
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REMARK 1.4.— As we have:

1n(1—FX(x))=1n(5) ,x>k k>0, >0,
X

or [1.59]
In(1-F, (x))=a(nk—Inx).

The proportion of claims larger than x is a linear function of x in a double
logarithmic scale with ¢ as slope.
1.3.8. Uniform distribution

Its support is [a,b] on which the density is constant with the value 1/(b-a).

For basic parameters, we have:

2
b—a,o_2 _ (b—-a)
2 12
7, =0,7,=18.

1.3.9. Gumbel distribution

This is related to a non-negative random variable with the following
characteristics:
F(x)=e*,

fx) =™,
E(X)=0,57722..., [1.60]
2

var(X) = %,

¥, =1,29857,y, =5,4.

1.3.10. Weibull distribution

This is related to a non-negative random variable with the following
characteristics:



