


Introduction

This book will present basic stochastic processes for

building models in insurance, especially in life and non-life

insurance as well as credit risk for insurance companies. Of

course, stochastic methods are quite numerous; so we have

deliberately chosen to consider to use those induced by two

big families of stochastic processes: stochastic calculus

including Lévy processes and Markov and semi-Markov

models. From the financial point of view, essential concepts

such as the Black and Scholes model, VaR indicators,

actuarial evaluation, market values and fair pricing play a

key role, and they will be presented in this volume.

This book is organized into seven chapters. Chapter 1

presents the essential probability tools for the

understanding of stochastic models in insurance. The next

three chapters are, respectively, devoted to renewal

processes (Chapter 2), Markov chains (Chapter 3) and

semi-Markov processes both homogeneous and non-time

homogeneous (Chapter 4) in time. This fact is important as

new non-homogeneous time models are now becoming

more and more used to build realistic models for insurance

problems.

Chapter 5 gives the bases of stochastic calculus including

stochastic differential equations, diffusion processes and

changes of probability measures, therefore giving results

that will be used in Chapter 6 devoted to Lévy processes.

Chapter 6 is devoted to Lévy processes. This chapter also

presents an alternative to basic stochastic models using

Brownian motion as Lévy processes keep the properties of

independent and stationary increments but without the

normality assumption.



Finally, Chapter 7 presents a summary of Solvency II rules,

actuarial evaluation, using stochastic instantaneous

interest rate models, and VaR methodology in risk

management.

Our main audience is formed by actuaries and particularly

those specialized in entreprise risk management, insurance

risk managers, Master’s degree students in mathematics or

economics, and people involved in Solvency II for insurance

companies and in Basel II and III for banks. Let us finally

add that this book can also be used as a standard reference

for the basic information in stochastic processes for

students in actuarial science.
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Basic Probabilistic Tools for

Stochastic Modeling

In this chapter, the readers will find a brief summary of the

basic probability tools intensively used in this book. A more

detailed version including proofs can be found in [JAN 06].

1.1. Probability space and random

variables

Given a sample space Ω, the set of all possible events will

be denoted by , which is assumed to have the structure of

a σ -field or a σ -algebra. P will represent a probability

measure.

DEFINITION 1.1.– A random variable (r.v.) with values in a

topological space (E,ψ) is an application X from Ω to E such

that:

where X-1(B) is called the inverse image of the set B

defined by:

Particular cases:

a) If (E,ψ) = ( , β), X is called a real random variable.

b) If (E, ψ) = , where  is the extended real line

defined by  and  is the extended Borel σ -
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field of , that is the minimal σ -field containing all the

elements of β and the extended intervals:

X is called a real extended value random variable.

c) If E =  (n>1) with the product σ -field β(n) of β, X is

called an n-dimensional real random variable.

d) If E =  (n>1) with the product σ -field β(n) of β, X is

called a real extended n-dimensional real random variable.

A random variable X is called discrete or continuous

accordingly as X takes at most a denumerable or a non-

denumerable infinite set of values.

DEFINITION 1.2.– The distribution function of the r.v. X,

represented by FX, is the function from  →[0,1] defined

by:

Briefly, we write:

This last definition can be extended to the multi-

dimensional case with a r.v. X being an n-dimensional real

vector: X = (X1,…, Xn), a measurable application from (Ω, 

, P) to .

DEFINITION 1.3.– The distribution function of the r.v. X =

(X1,…, Xn) , represented by FX, is the function from  to

[0,1] defined by:



[1.6]

[1.7]

[1.8]

[1.9]

[1.10]

Briefly, we write:

Each component Xi (i = 1,…,n) is itself a one-dimensional

real r.v. whose d.f., called the marginal d.f., is given by:

The concept of random variable is stable under a lot of

mathematical operations; so any Borel function of a r.v. X is

also a r.v.

Moreover, if X and Y are two r.v., so are:

provided, in the last case, that Y does not vanish.

Concerning the convergence properties, we must mention

the property that, if (Xn, n ≥ 1) is a convergent sequence of

r.v. – that is, for all ω∈Ω, the sequence (Xn (ω)) converges to

X (ω) – then the limit X is also a r.v. on Ω. This convergence,

which may be called the sure convergence, can be

weakened to give the concept of almost sure (a.s.)

convergence of the given sequence.

DEFINITION 1.4.– The sequence (Xn (ω)) converges a.s. to

X (ω) if:

This last notion means that the possible set where the

given sequence does not converge is a null set, that is, a set

N belonging to  such that:
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In general, let us remark that, given a null set, it is not true

that every subset of it belongs to  but of course if it

belongs to , it is clearly a null set. To avoid unnecessary

complications, we will assume from here onward that any

considered probability space is complete, i.e. all the

subsets of a null set also belong to  and thus their

probability is zero.

1.2. Expectation and independence

Using the concept of integral, it is possible to define the

expectation of a random variable X represented by:

provided that this integral exists. The computation of the

integral:

can be done using the induced measure μ on ( , β),

defined by [1.4] and then using the distribution function F

of X.

Indeed, we can write:

and if FX is the d.f. of X, it can be shown that:
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The last integral is a Lebesgue–Stieltjes integral.

Moreover, if FX is absolutely continuous with fX as density,

we obtain:

If g is a Borel function, then we also have (see, e.g. [CHU

00] and [LOÈ 63]):

and with a density for X:

It is clear that the expectation is a linear operator on

integrable functions.

DEFINITION 1.5.– Let a be a real number and r be a

positive real number, then the expectation:

is called the absolute moment of X, of order r, centered on

a.

The moments are said to be centered moments of order r if

a=E(X). In particular, for r = 2, we get the variance of X

represented by σ2 (var(X)) :
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REMARK 1.1.– From the linearity of the expectation, it is

easy to prove that:

and so:

and, more generally, it can be proved that the variance is

the smallest moment of order 2, whatever the number a is.

The set of all real r.v. such that the moment of order r exists

is represented by Lr.

The last fundamental concept that we will now introduce in

this section is stochastic independence, or more simply

independence.

DEFINITION 1.6.– The events A1,…, An, (n > 1) are

stochastically independent or independent iff:

For n = 2, relation [1.23] reduces to:

Let us remark that piecewise independence of the events

A1,…, An, (n > 1) does not necessarily imply the

independence of these sets and, thus, not the stochastic

independence of these n events.

From relation [1.23], we find that:
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If the functions FX, FX1
,…, FX n

 are the distribution

functions of the r.v. X = (X1,…, Xn), X1,…, Xn, we can write

the preceding relation as follows:

It can be shown that this last condition is also sufficient for

the independence of X = (X1,…, Xn), X1,…, Xn. If these d.f.

have densities fX, fX1
,…, fXn

, relation [1.24]is equivalent to:

In case of the integrability of the n real r.v X1,X2,…,Xn,, a

direct consequence of relation [1.26] is that we have a very

important property for the expectation of the product of n

independent r.v.:

The notion of independence gives the possibility of proving

the result called the strong law of large numbers, which

states that if (Xn, n ≥ 1) is a sequence of integrable

independent and identically distributed r.v., then:

The next section will present the most useful distribution

functions for stochastic modeling.

DEFINITION 1.7 (SKEWNESS AND KURTOSIS

COEFFICIENTS).–



a) The skewness coefficient of Fisher is defined as follows:

From the odd value of this exponent, it follows that:

−γ1>0 gives a left dissymmetry giving a maximum of the

density function situated to the left and a distribution with

a right heavy queue, γ1 = 0 gives symmetric distribution

with respect to the mean;

−γ1<0 gives a right dissymmetry giving a maximum of the

density function situated to the right and a distribution

with a left heavy queue.

b) The kurtosis coefficient also due to Fisher is defined as

follows:

Its interpretation refers to the normal distribution for

which its value is 3. Also some authors refer to the excess

of kurtosis given by γ1-3 of course null in the normal case.

For γ2<3, distributions are called leptokurtic, being more

plated around the mean than in the normal case and with

heavy queues.

For γ2>3, distributions are less plated around the mean

than in the normal case and with heavy queues.

1.3. Main distribution probabilities

In this section, we will restrict ourselves to presenting the

principal distribution probabilities related to real random



[1.30]

[1.31]

[1.32]

[1.33]

[1.34]

variables.

1.3.1. Binomial distribution

Let X be a discrete random variable, whose distribution ( pi,

i = 0,…, n) with:

is called a binomial distribution with parameters (n,p) if:

a result from which we get:

The characteristic function and the generating function,

when the latter exists, of X, respectively, defined by:

are given by:

1.3.2. Negative exponential distribution

This is defined by:
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1.3.3. Normal (or Laplace–Gauss) distribution

The real r.v. X has a normal (or Laplace–Gauss) distribution

of parameters(μ,σ2),μ∈ ,σ2>0, if its density function is

given by:

From now on, we will use the notation X  N(μ,σ2 ).

The main parameters of this distribution are:

If μ = 0, σ2 =1, the distribution of X is called a reduced or

standard normal distribution. In fact, if X has a normal

distribution (μ,σ2), μ∈R,σ2 > 0, then the so-called reduced

r.v. Y defined by:

has a standard normal distribution, thus from [1.36] with

mean 0 and variance 1.
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Let , for all u >0 be the distribution

function of the standard normal distribution; it is possible

to express the distribution function of anynormal r.v. X of

parameters (μ,σ2), μ∈ , σ2>0, as follows:

In addition, from the numerical point of view, it is sufficient

to know the numerical values for the standard distribution.

From relation [1.38], we also deduce that:

where, of course, from [1.35]:

From the definition of Φ, we have:

and so:

and consequently, for X normally distributed with

parameters (0, 1), we obtain:
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In particular, let us mention the following numerical

results:

The normal distribution is one of the most often used

distributions by virtue of the central limit theorem, which

states that if (Xn, n ≥ 1) is a sequence of independent and

identically distributed (i.i.d.) r.v. with mean m and variance

σ2, then the sequence of r.v. is defined by:

with:

converging in law to a standard normal distribution.

This means that the sequence of the distribution functions

of the variables defined by [3.20] converges to Φ.

This theorem was used by the Nobel Prize winner H.

Markowitz [MAR 159] to justify that the return of a

diversified portfolio of assets has a normal distribution. As

a particular case of the central limit theorem, let us

mention the de Moivre’s theorem starting with:
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so that, for each n, the r.v. defined by relation [1.47] has a

binomial distribution with parameters (n,p).

Now by applying the central limit theorem, we get the

following result:

which is called de Moivre’s result.

1.3.4. Poisson distribution

This is a discrete distribution with the following

characteristics:

This is one of the most important distributions for all

applications. For example, if we consider an insurance

company looking at the total number of claims in one year,

this variable may often be considered to be a Poisson

variable.

1.3.5. Lognormal distribution

This is a continuous distribution on the positive half line

with the following characteristics:
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Let us say that the lognormal distribution has no

generating function and that the characteristic function has

no explicit form. When σ < 0.3, some authors recommend a

normal approximation with parameters (μ,σ2 ).

The normal distribution is stable under the addition of

independent random variables; this property means that

the sum of n independent normal r.v. is still normal. This is

no longer the case with the lognormal distribution which is

stable under multiplication, which means that for two

independent lognormal r.v. X1,X2, we have

1.3.6. Gamma distribution

This is a continuous distribution on the positive half line

having the following characteristics:
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For the gamma law with parameters (ν,θ) denoted γ (ν, θ),

an additivity property exists:

1.3.7. Pareto distribution

The non-negative r.v. X has a Pareto distribution if its

distribution function is given by:

Its support is (k, +∞).

The corresponding density function is given by:

The Pareto distribution has centered moments of order r

provided that r < α; and in this case:



and so:

These values explain why this distribution is considered to

be dangerous as for some values of the parameters it is not

excluded to observe large values of X in a random

experiment.

For α < 1, the mean is infinite, and for 1<α < 2, although

the mean is finite, the variance is not.

The problem of this distribution also comes from the fact

that the function 1-F(x) decreases in a polynomial way for

large x (distribution with heavy queue) and no longer

exponentially like the other presented distributions, except,

of course, for the Cauchy distribution.

In non-life insurance, it is used for modeling large claims

and catastrophic events.

REMARK 1.2.– We also have:

REMARK 1.3.– If we compare the form:
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with:

we have another form of the Pareto distribution with as

support all the positive half line. This is possible with the

change of variable:

Of course, the variances remain the same but not the

means.

Here are two graphs of the distribution function showing

the impact of the dangerous parameters.



Figure 1.1. Pareto distribution function with Θ=1,β=1

Figure 1.2. Pareto distribution with β=3,θ=1

REMARK 1.4.– As we have:
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The proportion of claims larger than x is a linear function of

x in a double logarithmic scale with α as slope.

1.3.8. Uniform distribution

Its support is [a,b] on which the density is constant with the

value 1/(b-a).

For basic parameters, we have:

1.3.9. Gumbel distribution

This is related to a non-negative random variable with the

following characteristics:

1.3.10. Weibull distribution

This is related to a non-negative random variable with the

following characteristics:
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1.3.11. Multi-dimensional normal distribution

Let us consider an n-dimensional real r.v. X represented as

a column vector of its n components X = (X1,…, Xn)'. Its d.f.

is given by:

If the density function of X exists, the relations between the

d.f. and the density function are:

For the principal parameters, we will use the following

notation:
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The parameters σkl are called the covariances between the

r.v. Xk and Xl and the parameters ρkl are called the

correlation coefficients between the r.v. Xk and Xl.

It is well known that the correlation coefficient ρkl

measures a certain linear dependence between the two r.v.

Xk and Xl. More precisely, if it is equal to 0, then there is no

such dependence and the two variables are called

uncorrelated; for the values +1 and –1, this dependence is

certain.

With matrix notation, the following σ matrix:

is called the variance–covariance matrix of X.

The characteristic function of X is defined as:

Let μ,Σ be, respectively, an n-dimensional real vector and

an n × n positive definite matrix. The n-dimensional real r.v.

X has a non-degenerated n-dimensional normal distribution

with parameters μ,Σ if its density function is given by:

Then, it can be shown by integration that parameters μ,Σ

are indeed, respectively, the mean vector and the variance–

covariance matrix of X.

As usual, we will use the notation X  Nn (μ,Σ).

The characteristic function of X is given by:
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The main fundamental properties of the n-dimensional

normal distribution are:

– every subset of k r.v. of the set {X1,…,Xn} also has a k-

dimensional distribution which is also normal;

– the multi-dimensional normal distribution is stable under

linear transformations of X and for the addition, we have

that if Xk  Nn (μk, Σk ), k = 1,…, m and if these m random

vectors are independent, then:

In the particular case of the two-dimensional normal

distribution, we have:

From the first main fundamental properties of the n-

dimensional normal distribution given above, we deduce

that:

For the special degenerated case |ρ| = 1, it can be proved

that:
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relations meaning that, in this case, the entire probability

mass in the plan lies on a straight line so that the two

random variables X1 and X2 are perfectly dependent, i.e.

relations [1.72] are true with probability one.

To conclude this section, let us recall the well-known

property saying that two independent r.v. are uncorrelated

but the converse is not true except for the normal

distribution.

1.3.12. Extreme value distribution

In this section, we present basic results on the theory of

extreme values [EMB 08], well adapted for the large claims

designing risks which can take large values even with small

probabilities but far from the mean value.

1.3.12.1. Definition

Let X1…. Xn be the independent realizations of the

considered risk X and the risk of this sample can be

measured by the largest claim value that is:

If F is the distribution function of the r.v. X, we have from

the independence assumption:

As this probability tends to 0 with n →∞ and for all x, it is

necessary to find asymptotic results giving a more precise
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view of what could happen for large n and that is, in fact,

the aim of extreme theory.

1.3.12.2. Asymptotic results

Fisher [FIS 28] and Gnedenko [GNE 43] proved that if

there exist two sequences of real numbers (cn),(dn) with

X1,…, Xn > 0 for all n, such that the distribution of the

following r.v.:

is not degenerated, then the limit distribution of Yn must

have one of the three following forms:

If we introduce the function

(  for Fréchet,  for Weinbull and τ = 0 for

Gumbel),

the preceding characterizations of the three attractions

domains can be given as follows:
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To verify this result, for example, for the Fréchet law, we

introduce z and k defined as:

with τ < 0 as k is positive and y >  as x > 0. Moreover, as

from [1.77], we obtain well:

For the Weibull case, we have to define x and β as:

And for the Gumbel case, we have:

REMARK 1.5.–



[1.82]

[1.83]

[1.84]

[1.85]

i) By Taylor expansion, we have for the Fréchet law:

and so the tail of Φβ decreases like a power law.

ii) We have the following equivalences:

The parameter  can be seen as a dispersion

parameter and dn as a localization parameter tending

toward the mode, i.e. the maximum of the density function

of the limit distribution. Gnedenko [GNE 43] characterized

the three classes of the distribution function F of the

considered risk called attraction domains; so if a risk has

its distribution function in one of these three domains, we

know what the limit distribution for this risk is.

To characterize these three attraction domains, let us

introduce the concept of slowly varying function L.

Such a function with support (0, ∞) is slowly varying type

iff:

Moreover, if:

L is called regularly varying at index α.

We can now give the following characterization of d the

three attraction domains (see [EMB 08]):
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i) The Gumbel attraction domain contains the distribution

functions F so that:

Examples: normal law, exponential law, chi-square law,

gamma law, lognormal law, Weibull distribution and laws

with heavy queues decreasing to 0 faster than the

exponential.

iii) The Fréchet attraction domain contains the distribution

functions F so that  with L slowly varying

function:

Examples: Student’s law, Cauchy’s law, Pareto’s law, laws

with heavy queues decreasing to 0 slower than the

exponential.


