


Introduction

JavaScript For Kids For Dummies is an

introduction to the basics of JavaScript coding. In each

chapter, we walk you step-by-step through creating

JavaScript programs for the web. Designed for kids of all

ages, with no coding experience, we strive to introduce

this technical topic in a fun, engaging, and interactive

way.

JavaScript is the most widely used programming

language in the world today. That’s why we think you’ve

made a great decision by beginning your journey into the

world of coding by picking up this book.

JavaScript is fun and easy to learn! With some

determination and imagination, you’ll be on your way to

creating your very own JavaScript programs in no time!

Just as the only way to Carnegie Hall is to practice,

practice, practice, the only way to become a better

programmer is to code, code, code!

About This Book

We seek to “de-code” the language of JavaScript for you

and give you an understanding of the concepts. With the

ability to move at your own pace, JavaScript For Kids For

Dummies will get you up to speed. In this book, you learn

how to create fun games and programs. We even show

you how to customize and build your own versions of the

games that you can post to the web and share with your

friends!

Whether you know a little JavaScript or you’ve never

seen it before, this book shows you how to write



JavaScript the right way.

Topics covered in this book include the following:

The basic structures of JavaScript programs

JavaScript expressions and operators

Structuring your programs with functions

Writing loops

Working with JavaScript, HTML5, and CSS3

Making choices with if…else statements

Learning JavaScript isn’t only about learning how to

write the language. It’s also about accessing the tools

and the community that has been built around the

language. JavaScript programmers have refined the tools

and techniques used to write JavaScript over the

language’s long and exciting history. Throughout this

book, we mention important techniques and tools for

testing, documenting, and writing better code!

To make this book easier to read, you’ll want to keep in

mind a few tips. First, all JavaScript code and all HTML

and CSS markup appears in monospaced type like this:

document.write("Hi!");

The margins on a book page don’t have the same room

as your monitor likely does, so long lines of HTML, CSS,

and JavaScript may break across multiple lines.

Remember that your computer sees such lines as single

lines of HTML, CSS, or JavaScript. We indicate that

everything should be on one line by breaking it at a

punctuation character or space and then indenting any

overage, like so:

document.getElementById("thisIsAnElementInTheDocument").addEventListener("cli

ck",doSomething,false);



HTML and CSS don’t care very much about whether you

use uppercase or lowercase letters or a combination of

the two. But, JavaScript cares a lot! In order to make

sure that you get the correct results from the code

examples in the book, always stick to the same

capitalizations that we use.

Foolish Assumptions

You don’t need to be a “programming ninja” or a

“hacker” to understand programming. You don’t need to

understand how the guts of your computer work. You

don’t even need to know how to count in binary.

However, we do need to make a couple of assumptions

about you. We assume that you can turn your computer

on, that you know how to use a mouse and a keyboard,

and that you have a working Internet connection and

web browser. If you already know something about how

to make web pages (it doesn’t take much!), you’ll have a

jumpstart on the material.

The other things you need to know to write and run

JavaScript code are details we cover in this book, and the

one thing you’ll find to be true is that programming

requires attention to details.

Icons Used In This Book

Here’s a list of the icons we use in this book to flag text

and information that’s especially noteworthy.



 This icon highlights technical details that you may

or may not find interesting. Feel free to skip this

information, but if you’re the techie type, you might

enjoy reading it.

 This icon highlights helpful tips that show you

easy ways or shortcuts that will save you time or

effort.

 Whenever you see this icon, pay close attention.

You won’t want to forget the information you’re

about to read — or, in some cases, we’ll remind you

about something that you’ve already learned that you

may have forgotten.

 Be careful. This icon warns you of pitfalls to avoid.

Beyond the Book

We’ve put together a lot of extra content that you won’t

find in this book. Go online to find the following:

Cheat Sheet: An online Cheat Sheet is available at

www.dummies.com/cheatsheet/javascriptforkids. Here, you

find information on converting CSS property names to

JavaScript; a list of common web browser events that

JavaScript can respond to; and a list of words that

can’t be used as JavaScript variables, functions,

methods, loop labels, or object names.

http://www.dummies.com/cheatsheet/javascriptforkids


Web Extras: Online articles covering additional topics

are available at www.dummies.com/extras/javascriptforkids.

In these articles, we cover things like HTML5 form

input tricks, how to name JavaScript variables,

JavaScript troubleshooting tips, and more.

Where to Go from Here

Coding with JavaScript is fun, and when you get a little

knowledge under your belt, the world of interactive web

applications is your oyster! So buckle up! We hope you

enjoy the book and our occasional pearls of wisdom.

If you want to show us changes and improvements you

make to our games, or programs you come up with on

your own, you can do so on Facebook

(www.facebook.com/watzthisco), Twitter

(www.twitter.com/watzthisco), or via email at

info@watzthis.com. We’re excited to see what you come up

with!

http://www.dummies.com/extras/javascriptforkids
http://www.facebook.com/watzthisco
http://www.twitter.com/watzthisco
mailto:info@watzthis.com


Part I

What Is JavaScript? Alert!

JavaScript Is Awesome!



In this part …

 Programming the Web

 Understanding Syntax

 Giving and Receiving Data

 Fiddling with Web Applications

 For Dummies can help you get started with lots of

subjects. Visit www.dummies.com to learn more and do more

with For Dummies!

http://www.dummies.com/


Chapter 1

Programming the Web

JavaScript is a powerful language that’s

easy to learn! In this chapter, we explain the basics of

programming, tell you what JavaScript is, and get you

started with writing your first JavaScript commands.

One of the most important parts of starting any new

project is to make sure you have your workshop stocked

with all the correct tools. In this chapter, you install and

configure all the programs you need and start

experimenting with some real JavaScript programs!



What Is Programming?

A computer program is a series of instructions that can

be understood and followed by a computer. Computer

programming, also known as coding, is what we call it

when we write these instructions. Computers can’t do

things on their own. They need a computer program to

tell them what to do. Computer programmers write code

to make computers do all sort of things.

The women who invented

programming

Electronic computers as we know them were first invented in the 1930s. But

it was the middle of the 1800s when the first computer program — a set of

instructions designed to be carried out by a machine — was written.

The author of the first computer program — and, therefore, the world’s first

computer programmer — was a woman named Ada Lovelace. A

mathematician in England, she was the first person to envision computers

that could do much more than just crunch numbers. She foresaw computers

being able to do all the things we use computers for today: including working

with words, displaying pictures, and playing music. Her unique insights

earned her the nickname “The Enchantress of Numbers.”

Compilers are programs for converting programming languages into

machine language. The first compiler was created by Grace Murray Hopper

in 1944. This invention led to computer programs that could run on different

types of computers, and eventually to JavaScript. Hopper is also credited

with being the inventor of the term debugging for fixing problems in

computer programs. The term was inspired by the removal of an actual moth

from an early computer. Hopper became known as “The Queen of Software”

or “Amazing Grace” for her contributions to modern computing.

 Another name for a computer program is software.

Computer programs help people to do many thousands of

things, including the following:



Playing music and videos

Performing scientific experiments

Designing cars

Inventing medicines

Playing games

Controlling robots

Guiding satellites and spaceships

Creating magazines

Teaching people new skills

Can you think of more examples of things that computers

can do?

Talking to Computers

At the heart of every computer is a central processing

unit (CPU). This CPU is made up of millions of tiny, very

fast switches (called transistors) that can be either on or

off. The position of each of these switches at any time

determines what the computer will do.

Software written by programmers tells these switches

when to turn on or off and in what combination by using

binary codes. Binary codes use zeros and ones to form

letters, numbers, and symbols that can be put together

in order to perform tasks.

Every single thing that a computer does is the result of a

different combination of many zeros and ones. For

example, to represent a lowercase letter a, computers

use the following binary code:

0110 0001



Each zero or one in a binary number is called a bit, and a

combination of eight bits is called a byte. When you hear

the words kilobyte, megabyte, and gigabyte used to tell

how big a file is, what it’s talking about is the number of

eight-bit binary codes it takes to store the file.

Table 1-1 lists the most commonly used storage sizes.

Table 1-1 How Many Bytes Is That?

Name Number of Bytes What It Can Store

Kilobyte (KB) 1,024 Two to three paragraphs of text

Megabyte (MB) 1,048,576 800 pages of text

Gigabyte (GB) 1,073,741,824 250 songs (as MP3s)

Terabyte (TB) 1,099,511,627,776 350,000 digital pictures

Petabyte (PB) 1,125,899,906,842,624 41,943 Blu-ray discs

A typical small computer program might contain

anywhere from a couple kilobytes to a couple megabytes

of instructions, images, and other data. Because it’s

unlikely that you have enough time in your busy day to

type out thousands, or even millions, of ones and zeros, if

you want to tell a computer what to do, you need a

translator who speaks both human languages and

computer (or machine) language. Computer

programming languages are this translator.

Every computer program is written using a computer

programming language. Programming languages allow

you to write complex series of instructions that can be

translated (also known as compiled) into machine

language. Through compilation, these instructions are

eventually turned into binary codes that a computer can

understand.



Choosing a Language

People have created hundreds of different computer

programming languages. You might ask yourself why

there are so many programming languages, if they all

essentially do the same thing: translate human language

into machine language. That’s an excellent question!

There are a few main reasons why there are so many

different programming languages. New programming

languages are written to allow programmers to

Write programs in new and better ways than were

previously available.

Write programs for new or specialized types of

computers.

Create new kinds of software.

Examples of computer programming languages include

the following:

C

Java

JavaScript

Logo

Objective C

Perl

Python

Ruby

Scratch

Swift

Visual Basic



 Our short list of programming languages only

scratches the surface. For a more complete list of

programming languages, visit

http://en.wikipedia.org/wiki/List_of_programming_languages.

With so many programming languages to choose from,

how do you know which one to use? In many cases, the

answer is determined by what you want to do with the

languages. For example, if you want to program apps for

the iPhone, you have three choices: Objective C,

JavaScript, or Swift. If you want to program games to

run on Mac or Windows, you have more choices,

including C, Java, or JavaScript. If you want to make an

interactive website, you need to use JavaScript.

Are you seeing a pattern here? JavaScript is everywhere.

What Is JavaScript?

In the early days of the web, every web page consisted of

nothing but plain text in different sizes with links

between pages. There were no web forms, there

certainly wasn’t any animation, and there weren’t even

different styles of text or pictures!

We’re not complaining! When the web was new, it was

exciting to click from page to page and discover new

things. Even more exciting was how easy the web made

it for anyone to be able to publish anything at all and

have the potential for anyone else on the Internet to read

it.

But when people got a taste of what the web could do,

they wanted more features! Graphics, text colors, forms,

and many other features were introduced very quickly.

http://en.wikipedia.org/wiki/List_of_programming_languages


Of all the things that were invented in the earliest days

of the web, the thing that has had the biggest impact

over the longest time was JavaScript.

JavaScript was created in order to make it possible for

web browsers to be interactive. Interactive web pages

can range from simple forms that provide feedback when

you make a mistake, to 3D games that run in your web

browser. Whenever you visit a website and see

something moving, or you see data appearing and

changing on the page, or you see interactive maps or

browser-based games, chances are, it’s JavaScript at

work.

To see some examples of websites that are made possible

by JavaScript, open up your web browser and visit the

following sites:

ShinyText (http://cabbi.bo/ShinyText): ShinyText is an

experimental website that uses JavaScript to display a

word. You can adjust different properties of the word,

such as Reflection Power and Repulsion Power to see

what effect these changes have on how the letters in

the word react when you move them around with your

mouse. Figure 1-1 shows ShinyText in action.

 Even if you don’t understand how it works (we

sure don’t!), ShinyText is fun to play with, and it’s a

great example of what’s possible with JavaScript.

Interactive Sock Puppet

(www.mediosyproyectos.com/puppetic): Interactive Sock

Puppet is another 3D animation. This time, you can

control the movements and facial expressions of a

JavaScript puppet. Figure 1-2 shows the Interactive

Sock Puppet looking quite happy.

http://cabbi.bo/ShinyText
http://www.mediosyproyectos.com/puppetic


Facebook (www.facebook.com): Facebook uses a lot of

JavaScript (see Figure 1-3). When you see a smooth

animation or video playback, or when a list of posts

updates by itself, that’s JavaScript at work!

Figure 1-1: ShinyText uses JavaScript to produce a 3D physics simulation.

http://www.facebook.com/


Figure 1-2: Interactive Sock Puppet lets you control a JavaScript dinosaur sock

puppet.



Figure 1-3: Facebook uses JavaScript to do everything.



 Some of these examples use some very advanced

features of web browsers. We recommend that you

use the latest version of Google Chrome to view

these. The examples may not work in older web

browsers.

Get Your Browser Ready

The one essential tool that you need for working with

JavaScript is a web browser. You have many different

web browsers to choose from, and nearly all of them will

do a great job running JavaScript. Odds are, you already

have a web browser on your computer.

The most widely used web browsers today are Firefox,

Safari, Chrome, Internet Explorer, and Opera. For this

book, we’ll be using Chrome. Google Chrome is currently

the most popular web browser. It has a number of great

tools for working with JavaScript.

If you don’t already have Chrome installed, you’ll need to

download and install it. You can install Chrome by

opening any web browser and going to

www.google.com/chrome/browser/desktop. Follow the

instructions found on that page to install Chrome on your

computer. When you have Chrome installed, start it up.

In the next section, we show you the Chrome Developer

Tools, which help website designers and JavaScript

programmers to see exactly what’s going on inside the

browser so they can write better web pages and

programs.

http://www.google.com/chrome/browser/desktop


Opening the Web

Developer Tools

After you have Chrome installed and launched, look at

the top of the browser window. In the upper-right corner,

you see three lines. This is the icon for the Chrome

menu. If you expand the Chrome menu, you see a list of

options similar to those shown in Figure 1-4.



Figure 1-4: The Chrome menu.

If you scroll down to the bottom of this menu and select

More Tools, a new menu of options appears, as shown in



Figure 1-5. These secret tools are the JavaScript coder’s

best friends.

Figure 1-5: The More Tools menu.

Select Developer Tools from the More Tools menu. A new

panel opens at the bottom of your browser window that

looks like Figure 1-6.



Figure 1-6: The Developer Tools.

The Developer Tools give you all the information you

need for finding out how any web page works, for testing

and improving your own web pages and JavaScript

programs, and much more.

Notice that the there’s a menu at the top of the

Developer Tools with different options, including

Elements, Network, Sources, Timeline, Profiles,

Resources, Audits, and Console. If you click each of

these, you’ll see a different set of options and data in the

Developer Tools panel.

We describe the different components of the Developer

Tools as they become necessary throughout this book,

but for now, the most important part of the Developer



Tools is the one labeled Console. Click the Console tab

now.

Introducing the JavaScript

Console

The Developer Tools Console, also known as the

JavaScript Console, shown in Figure 1-7, gives you

information about the JavaScript that’s currently running

in the browser window.

Figure 1-7: The JavaScript Console.

If there are errors in the JavaScript code of a web page,

you see information about the errors in the console. This

is a very helpful tool and one of the main features of the

JavaScript Console.

Another very cool capability of the console is that you

can type JavaScript into the console panel and it will run.

In the next section, you learn why this is useful and how

to do it.



 The JavaScript Console is a useful tool for

JavaScript programmers, but it also has the potential

to be misused. If someone you don’t know or trust

asks you to paste code into the JavaScript Console,

make sure you understand what that code does first.

Running Your First

JavaScript Commands

Now it’s time to start experimenting with some real

JavaScript code! If you don’t already have it open, open

the JavaScript Console by selecting it from the Other

Tools menu under the Chrome menu, or by clicking the

Console tab in the Developer Tools.

Follow these steps to run your first JavaScript

commands:

1. Click inside the JavaScript console, near the >, to start

inserting code.

2. Type 1 + 1 and then press Return (Mac) or Enter

(Windows).

The browser gives you the answer on the next line.

Notice that when the answer is returned to you, it has an

arrow on the left side of it that points to the left. This

arrow indicates that the value came from JavaScript

rather than from your input. Any value that comes from

JavaScript is called a return value. Every command that

you run in JavaScript produces some sort of return value.

Simple math is one thing, but JavaScript can do much,

much more. Let’s try out some other commands and see

just how quickly we can get some answers around here.



Before we get started, let’s clean up the console and

remove any previous commands, errors, and return

values in there. To clear the console, look at the upper-

left corner and click the circle with the line through it.

Everything inside the console will be erased, and now

you’ve got a clean slate.

Click your mouse next to the > and try out the following

JavaScript commands. Make sure to press Return (Mac)

or Enter (Windows) after each one to see the results.

JavaScript

Command
Description

2000 – 37

This is a simple math problem, but this time we’re using the

minus sign to subtract the number on the right from the

number on the left.

30 * 27
The asterisk (*) is how you tell JavaScript to multiply

numbers.

120 / 20
The forward slash (/) tells JavaScript to divide the number on

the left by the number on the right.

"Your name"

+ " " + "is

learning

JavaScript!"

Yes, you can add words together with JavaScript! When you

run a command that adds words together, it’s called

concatenation. The result will be that the words are

combined into a single word.

Notice that the words in the above JavaScript command are

inside quotes. These quotes are very important. We tell you

exactly why they’re important in Chapter 2.

Your name +

+ is

learning

JavaScript!

When you don’t use quotes, JavaScript doesn’t like that one

bit. It returns an error message containing the keyword

SyntaxError. A syntax error means that you’ve written

something that isn’t valid JavaScript. Any time you see a

syntax error, it means that you’ve goofed. Take a close look

at your code and look for typos, missing punctuation, or

missing quotes.

Having Fun with Math



Now it’s your turn to try out some math problems on

your own! Clear out your commands and the return

values and errors from the previous section and

experiment with the console.

Here are some ideas to get you started:

Multiply together two decimal numbers.

Run multiple commands in one line (for example, 1 +

1 * 4 / 8).

Type a number without any symbols at all and then run

it.

Add a word (remember to use quotes!) to a number

(without quotes).

Add a number (without quotes) to a word (with

quotes).

Combine your first name with the last name of your

celebrity crush. Remember to add a space between

the first and last name! For example, "Eva" + " " +

"Harry Styles".

Try to produce extremely large return values.

Try to produce extremely small return values.

Try to do an impossible math problem, such as dividing

a number by zero.

Try multiplying a number by a word (in quotes). For

example, 343 * "hi!". The result of this will be NaN,

which stands for “not a number.”



Chapter 2

Understanding Syntax

Just as spoken languages have rules

(called grammar), computer programming languages

have rules (called syntax). When you understand the

basic rules of speaking JavaScript, it actually looks

similar to English.

If you thought that your teacher correcting you when you

say “ain’t” was strict, wait until you see how strict

JavaScript is! It won’t even listen to a thing you say if

you make certain kinds of syntax errors.

In this chapter, you learn the basics of JavaScript syntax

and how to avoid being scolded by the syntax police!



Saying Precisely What You

Mean

In order to be compiled correctly into machine language

instructions, programs need to be written very precisely.

 Chapter 1 explains what a program is and how

programs are translated into machine language

using the process called compilation.

As a programmer, your job is to think about the big

picture of what you want the program to do, and then



break it down into bite-size steps that can be

accomplished by the computer without errors. For

example, if you wanted to ask a robot to go downstairs

and get you a sandwich, you might start your

instructions like this:

1. Rotate head toward stairs.

2. Use visual sensors to look for obstacles.

3. If an obstacle is found, determine what it is.

4. If the obstacle is a cat, try to lure the cat away from

the top of the stairs by:

Throwing a toy down the hall

Speaking the cat’s name

Gently nudging the cat with your hand until it

walks away

5. If there is no obstacle, rotate left foot in the direction

of the stairs.

6. Place left foot in front of right foot.

7. Look for an obstacle.

8. Determine whether you’re at the top of the stairs.

9. If you’re not at the top of the stairs, rotate right foot in

the direction of the stairs.

10. Place right foot in front of left foot.

11. Repeat steps 1 through 10 until you’re at the top of

the stairs.

You’ve written 11 instructions already and the robot

hasn’t even started walking down the stairs, much less

making a sandwich!

A real computer program to tell a robot to go downstairs

and make a sandwich would need to contain far more


