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Preface

Almost no one bears the ceaseless variability of the mid-

latitude atmosphere without a firm opinion and at least

some degree of interest. The parade of weather systems

that are continuously developed and extinguished over this

part of the globe ensures that its denizens never need to

wait long for unmistakable, and sometimes dramatic,

changes in the local weather. For the physical scientist with

an interest in (or, as is most often the case for us, the

captivated, a fascination with) the weather, the

unsurprising, yet still remarkable, fact is that this variability

is governed by the basic laws of physics first articulated by

Newton centuries ago. The exact manner by which those

laws are brought to bear upon an analysis of the dynamics

of the atmospheric fluid has, especially in the last 100

years, become a separate branch of physics. This book is

dedicated to providing an introduction to the physical and

mathematical description of mid-latitude atmospheric

dynamics accessible to any student possessing a solid

background in classical physics and a working knowledge of

calculus.

When one begins to wade through the average textbook,

one often gets the sense that the author has poured

everything he/she knows into the text without regard for

whether it is all necessary to accomplish the educational

goals of the book. My many years of teaching this material

to hundreds of students have provided me with two main

motivations for writing this textbook. First, students have

invariably complained that the available textbooks are

difficult to employ as study tools, often skipping steps in

mathematical derivations and thus, on occasion,

contributing more to frustration than to edification. They

often wonder how the subject matter can seem so clear in



lectures and then so confusing that night in the library.

Second, there is no other currently available text that serves

as a concise primer in the application of elementary

dynamics to the central problems of modern synoptic–

dynamic meteorology: the diagnosis of vertical motion,

fronts and frontogenesis, and the dynamics of the cyclone

life cycle from both the ω-centric and potential vorticity

perspectives.

In this book I have attempted to remedy both of these

shortcomings by presenting an introduction to atmospheric

dynamics and its application to the understanding of mid-

latitude weather systems in a penetrating conceptual and

detailed mathematical fashion. The conversational tone of

the book is meant to render its reading akin to attending a

lecture given by someone who is profoundly excited by the

subject matter. It is hoped that this tone will increase the

likelihood that the book will serve as a genuine study guide

for students as they navigate through a first course in this

subject.

The first five chapters of the book are specifically targeted

at junior-level undergraduates who are taking a first course

in atmospheric dynamics. Chapter 1 provides a review of

relevant mathematical tools while Chapter 2 considers the

fundamental and apparent forces at work on a rotating

Earth. Chapter 3 examines the fundamental conservation

laws of mass, momentum, and energy producing, along the

way, the continuity equation, the equations of motion, and

the energy equation. Once developed, the equations of

motion are simplified in Chapter 4 through a variety of

approximations thus lending insight into basic flow

characteristics of the mid-latitude atmosphere. The

relationship between circulation, vorticity, and divergence in

fluids is examined in Chapter 5 where the quasi-geostrophic

system of equations is also introduced.



The last four chapters are targeted toward those students

who might subsequently take a course in synoptic–dynamic

meteorology in which a significant laboratory component

would be a necessary complement. The diagnosis of vertical

motions is undertaken in Chapter 6. The meso-synoptic

dynamics of the frontal zones that characterize mid-latitude

cyclones are considered in Chapter 7 where the examination

of frontogenesis and its relationship to transverse vertical

circulations is presented in both the quasi- and semi-

geostrophic frameworks. Chapter 8 explores the dynamics

of the life cycle of mid-latitude cyclones, thus providing a

particularly relevant focus for synthesis of the prior

chapters. Finally, Chapter 9 provides an introduction to the

use of potential vorticity diagnostics for examining the life

cycle of mid-latitude cyclones. Much of the material

comprising the text comes from years of lecture notes from

three distinct courses in the Department of Atmospheric and

Oceanic Sciences at the University of Wisconsin–Madison.

Both components of the text would be suitably challenging

to first-year graduate students with little prior background in

meteorology or atmospheric dynamics.

Throughout the text, the emphasis is on conceptual

understanding, the development of which for any given

topic always precedes the application of mathematical

formalism. I recognize that a level of intimacy with the

mathematics is necessary but I am certain that it is not

sufficient to produce a penetrating understanding of mid-

latitude dynamics. Such understanding is, instead, the

offspring of a marriage between a conceptual, intuitive

sense of the physics of the phenomenon and the

corresponding mathematical description of it. At the end of

each chapter several problems, characterized by varying

degrees of difficulty, are included to assist the student in

reinforcing knowledge of the subject matter and in

developing solid problem-solving skills. Solutions to selected



problems are included at the end of the chapters as well.

Complete solutions to all problems are included in a

separate Solution Manual available from the publisher. Also

included at the end of each chapter is an annotated

bibliography designed to point the interested student

toward seminal or other sources. A more complete, though

by no means exhaustive, bibliography can be found at the

end of the book.
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1

Introduction and Review of

Mathematical Tools

Objectives
The Earth’s atmosphere is majestic in its beauty, awesome

in its power, and complex in its behavior. From the smallest

drops of dew or the tiniest snowflakes to the enormous

circulation systems known as mid-latitude cyclones, all

atmospheric phenomena are governed by physical laws.

These laws can be written in the language of mathematics

and, indeed, must be explored in that vernacular in order to

develop a penetrating understanding of the behavior of the

atmosphere. However, it is equally vital that a physical

understanding accompany the mathematical formalism in

this comprehensive development of insight. In principle, if

one had a complete understanding of the behavior of seven

basic variables describing the current state of the

atmosphere (these will be called basic state variables in

this book), namely u, v, and w (the components of the 3-D

wind), T (the temperature), P (the pressure), ϕ (the

geopotential), and q (the humidity), then one could describe

the future state of the atmosphere by considering the

equations that govern the evolution of each variable. It is

not, however, immediately apparent what form these

equations might take. In this book we will develop those

equations in order to develop an understanding of the basic

dynamics that govern the behavior of the atmosphere at

middle latitudes on Earth.



In this chapter we lay the foundation for that development

by reviewing a number of basic conceptual and

mathematical tools that will prove invaluable in this task.

We begin by assessing the troubling but useful notion that

the air surrounding us can be considered a continuous fluid.

We then proceed to a review of useful mathematical tools

including vector calculus, the Taylor series expansion of a

function, centered difference approximations, and the

relationship between the Lagrangian and Eulerian

derivatives. We then examine the notion of estimating using

scale analysis and conclude the chapter by considering the

basic kinematics of fluid flows.

1.1 Fluids and the Nature

of Fluid Dynamics
Our experience with the natural world makes clear that

physical objects manifest themselves in a variety of forms.

Most of these physical objects (and every one of them with

which we will concern ourselves in this book) have mass.

The mass of an object can be thought of as a measure of its

substance. The Earth’s atmosphere is one such object. It

certainly has mass1 but differs from, say, a rock in that it is

not solid. In fact, the Earth’s atmosphere is an example of a

general category of substances known as fluids. A fluid can

be colloquially defined as any substance that takes the

shape of its container. Aside from the air around us, another

fluid with which we are all familiar is water. A given mass of

liquid water clearly adopts the shape of any container into

which it is poured. The given mass of liquid water just

mentioned, like the air around us, is actually composed of

discrete molecules. In our subsequent discussions of the

behavior of the atmospheric fluid, however, we need not

concern ourselves with the details of the molecular structure



of the air. We can instead treat the atmosphere as a

continuous fluid entity, or continuum. Though the

assumption of a continuous fluid seems to fly in the face of

what we recognize as the underlying, discrete molecular

reality, it is nonetheless an insightful concept. For instance,

it is much more tenable to consider the flow of air we refer

to as the wind to be a manifestation of the motion of such a

continuous fluid. Any ‘point’ or ‘parcel’ to which we refer will

be properly considered as a very small volume element that

contains large numbers of molecules. The various basic

state variables mentioned above will be assumed to have

unique values at each such ‘point’ in the continuum and we

will confidently assume that the variables and their

derivatives are continuous functions of physical space and

time. This means, of course, that the fundamental physical

laws governing the motions of the atmospheric fluid can be

expressed in terms of a set of partial differential equations

in which the basic state variables are the dependent

variables and space and time are the independent variables.

In order to construct these equations, we will rely on some

mathematical tools that you may have seen before. The

following section will offer a review of a number of the more

important ones.

1.2 Review of Useful

Mathematical Tools
We have already considered, in a conceptual sense only, the

rather unique nature of fluids. A variety of mathematical

tools must be brought to bear in order to construct rigorous

descriptions of the behavior of these fascinating fluids. In

the following section we will review a number of these tools

in some detail. The reader familiar with any of these topics

may skip the treatments offered here and run no risk of



confusion later. We will begin our review by considering

elements of vector analysis.

Figure 1.1 The 3-D representation of a vector, . The

components of  are shown along the coordinate axes

1.2.1 Elements of vector

calculus

Many physical quantities with which we are concerned in

our experience of the universe are described entirely in

terms of magnitude. Examples of these types of quantities,

known as scalars, are area, volume, money, and snowfall

total. There are other physical quantities such as velocity,

the force of gravity, and slopes to topography which are

characterized by both magnitude and direction. Such

quantities are known as vectors and, as you might guess,

any description of the fluid atmosphere necessarily contains

reference to both scalars and vectors. Thus, it is important

that we familiarize ourselves with the mathematical

descriptions of these quantities, a formalism known as

vector analysis.2

Employing a Cartesian coordinate system in which the

three directions (x, y, and z) are mutually orthogonal (i.e.

perpendicular to one another), an arbitrary vector, , has

components in the x, y, and z directions labeled Ax, Ay, and

Az, respectively. These components themselves are scalars



since they describe the magnitude of vectors whose

directions are given by the coordinate axes (as shown in

Figure 1.1). If we denote the direction vectors in the x, y,

and z directions as , , and , respectively (where the ˆ

symbol indicates the fact that they are vectors with

magnitude 1 in the respective directions – so-called unit

vectors), then

(1.1a)  

is the component form of the vector, . In a similar manner,

the component form of an arbitrary vector  is given by

(1.1b)  

Figure 1.2 (a) Vectors  and  acting upon a point O. (b)

Illustration of the tail-to-head method for adding vectors 

and  (c) Illustration of the parallelogram method for adding

vectors  and 

The vectors  and  are equal if Ax = Bx, Ay = By, and Az =

Bz. Furthermore, the magnitude of a vector  is given by

(1.2)  

which is simply the 3-D Pythagorean theorem and can be

visually verified with the aid of Figure 1.1.

Vectors can be added to and subtracted from one another

both by graphical methods as well as by components.

Graphical addition is illustrated with the aid of Figure 1.2.

Imagine that the force vectors  and  are acting at point O

as shown in Figure 1.2(a). The total force acting at O is

equal to the sum of  and . Graphical construction of the

vector sum  +  can be accomplished either by using the

tail-to-head method or the parallelogram method. The tail-

to-head method involves drawing  at the head of  and



then connecting the tail of  to the head of the redrawn 

(Figure 1.2b). Alternatively, upon constructing a

parallelogram with sides  and , the diagonal of the

parallelogram between  and  represents the vector sum, 

+  (Figure 1.2c).

If we know the component forms of both  and , then their

sum is given by

(1.3a)  

Thus, the sum of  and  is found by simply adding like

components together. It is clear from considering the

component form of vector addition that addition of vectors

is commutative (  +  =  + ) and associative ((  + ) +  =

 + (  + )).

Subtraction is simply the opposite of addition so  can be

subtracted from  by simply adding –  to . Graphical

subtraction of  from  is illustrated in Figure 1.3. Notice that

 –  =  + (– ) results in a vector directed from the head of 

 to the head of  (the lighter dashed arrow in Figure 1.3).

Component subtraction involves

Figure 1.3 Graphical subtraction of vector  from vector 

Figure 1.4 (a) Vectors  and  with an angle α between

them. (b) Illustration of the relationship between vectors 

and  (gray arrows) and their cross-product,  ×  (bold

arrow). Note that  ×  is perpendicular to both  and 



subtracting like components and is given by

(1.3b)  

Vector quantities may also be multiplied in a variety of

ways. The simplest vector multiplication involves the

product of a vector, , and a scalar, F. The resulting

expression for F  is given by

(1.4)  

a vector with direction identical to the original vector, , but

with a magnitude F times larger than the original

magnitude.

It is also possible to multiply two vectors together. In fact,

there are two different vector multiplication operations. One

such method renders a scalar as the product of the vector

multiplication and is thus known as the scalar (or dot)

product. The dot product of the vectors  and  shown in

Figure 1.4(a) is given by

(1.5)  

where α is the angle between  and . Clearly this product is

a scalar. Using this formula, we can determine a less

mystical form of the dot product of  and . Given that  =

Ax  + Ay  + Az  and  = Bx  + By  + Bz , the dot product is

given by

(1.6)  

which expands to the following nine terms:

Now, according to (1.5),  ·  =  ·  =  ·  =1 since the angle

between like unit vectors is 0°. However, the dot products of

all other combinations of the unit vectors are zero since the

unit vectors are mutually orthogonal. Thus, only three terms

survive out of the nine-term expansion of  ·  to yield

(1.7)  



Given this result, it is easy to show that the dot product is

commutative (  ·  =  · ) and distributive (  · (  + ) =  · 

+  · ).

Two vectors can also be multiplied together to produce

another vector. This vector multiplication operation is known

as the vector (or cross-)product and is signified

 × .

The magnitude of the resultant vector is given by

(1.8)  

where α is the angle between the vectors. Note that since

the resultant of the cross-product is a vector, there is also a

direction to be discerned. The resultant vector is in a plane

that is perpendicular to the plane that contains  and 

(Figure 1.4b). The direction in that plane can be determined

by using the right hand rule. Upon curling the fingers of

one’s right hand in the direction from  to , the thumb

points in the direction of the resultant vector,  × , as

shown in Figure 1.4(b). Because the resultant direction

depends upon the order of multiplication, the cross-product

has different properties than the dot product. It is not

commutative (  ×  ≠  × ; instead  ×  = –  × ) and it is

not associative (  × (  × ) ≠ (  × ) × ) but it is

distributive (  × (  + ) =  ×  +  × ).

Given the vectors  and  in their component forms, the

cross-product can be calculated by first setting up a 3 × 3

determinant using the unit vectors as the first row, the

components of  as the second row, and the components of 

 as the third row:

(1.9a)  

Evaluating this determinant involves evaluating three 2 × 2

determinants, each one corresponding to a unit vector , ,

or . For the  component of the resultant vector, only the

components of  and  in the  and  columns are



considered. Multiplying the components along the diagonal

(upper left to lower right) first, and then subtracting from

that result the product of the terms along the anti-diagonal

(lower left to upper right) yields the  component of the

vector  × , which equals (AyBz – AzBy) . The same

operation done for the  component yields (AxBy – AyBx) .

For the  component, the first and third columns are used to

form the 2 × 2 determinant and since the columns are non-

consecutive, the result must be multiplied by –1 to yield –

(AxBz – AzBx) . Adding these three components together

yields

(1.9b)  

Vectors, just like scalar functions, can be differentiated as

long as the rules of vector addition and multiplication are

obeyed. One simple example is Newton’s second law (which

we will see again soon) that states that an object’s

momentum will not change unless a force is applied to the

object. In mathematical terms,

(1.10)  

where m is the object’s mass and  is its velocity. Using the

chain rule of differentiation on the right hand side of (1.10)

renders

(1.11)  

where  is the object’s acceleration. Exploitation of the

second term of this expansion is what made Einstein

famous!

Let us consider a more general example. Consider a

velocity vector defined as  = u  + v  + w . In such a case,

the acceleration will be given by

(1.12)  

The terms involving derivatives of the unit vectors may

seem like mathematical baggage but they will be extremely



important in our subsequent studies. Physically, such terms

will be non-zero only when the coordinate axes used to

reference motion are not fixed in space. Our reference

frame on a rotating Earth is clearly not fixed and so we will

eventually have to make some accommodation for the

acceleration of our rotating reference frame. Thus, all six

terms in the above expansion will be relevant in our

examination of the mid-latitude atmosphere.

The last stop on the review of vector calculus is perhaps

the most important one and will examine a tool that is

extremely useful in fluid dynamics. We will often need to

describe both the magnitude and direction of the derivative

of a scalar field. In order to do so we employ a mathematical

operator known as the del operator, defined as

(1.13)  

If we apply this partial differential del operator to a scalar

function or field, the result is a vector that is known as the

gradient of that scalar. Consider the 2-D plan view of an

isolated hill in an otherwise flat landscape. If the elevation

at each point in the landscape is represented on a 2-D

projection, a set of elevation contours results as shown in

Figure 1.5. Such contours are lines of equal height above

sea level, Z. Given such information, we can determine the

gradient of elevation, ∇Z, as

Note that the gradient vector, ∇Z, points up the hill from low

values of elevation to high values. At the top of the hill, the

derivatives of Z in both the x and y directions are zero so

there is no gradient vector there. Thus the gradient, ∇Z, not

only measures magnitude of the elevation difference but

assigns that magnitude a direction as well. Any scalar

quantity, ϕ, is transformed into a vector quantity, ∇ϕ, by the

del operator. In subsequent chapters in this book we will



concern ourselves with the gradients of a number of scalar

variables, among them temperature and pressure.

Figure 1.5 The 2-D plan view of an isolated hill in a flat

landscape. Solid lines are contours of elevation (Z) at 50m

intervals. Note that the gradient of Z points from low to high

values of the scalar Z

The del operator may also be applied to vector quantities.

The dot product of ∇ with the vector  is written as

(1.14)  

which is a scalar quantity known as the divergence of .

Positive divergence physically describes the tendency for a

vector field to be directed away from a point whereas

negative divergence (also known as convergence)

describes the tendency for a vector field to be directed

toward a point. Regions of convergence and divergence in

the atmospheric fluid are extremely important in

determining its behavior.

The cross-product of ∇ with the vector  is given by

(1.15a)  



The resulting vector can be calculated using the

determinant form we have seen previously,

(1.15b)  

where the second row of the 3 × 3 determinant is filled by

the components of ∇ and the third row is filled by the

components of . This vector is known as the curl of . The

curl of the velocity vector, , will be used to define a

quantity called vorticity which is a measure of the rotation

of a fluid.

Quite often in a study of the dynamics of the atmosphere,

we will encounter second-order partial differential

equations. Some of these equations will contain a

mathematical operator (which will operate on scalar

quantities) known as the Laplacian operator. The Laplacian

is the divergence of the gradient and so takes the form

(1.16)  

It is also possible to combine the vector  with the del

operator to form a new operator that takes the form

and is known as the scalar invariant operator. This operator,

which can be used with both vector and scalar quantities, is

important because it is used to describe a process known as

advection, a ubiquitous topic in the study of fluids.

1.2.2 The Taylor series

expansion

It is sometimes convenient to estimate the value of a

continuous function, f (x), about the point x = 0 with a

power series of the form



(1.17)  

The fact that this can actually be done might appear to be

an assumption so we must identify conditions for which this

assumption is true. These conditions are that (1) the

polynomial expression (1.17) passes through the point (0, f

(0)) and (2) its first n derivatives match the first n

derivatives of f (x) at x = 0. Implicit in this second condition

is the fact that f(x) is differentiable at x = 0. In order for

these conditions to be met, the coefficients a0, a1, . . . , an

must be chosen properly. Substituting x = 0 into (1.17) we

find that f (0) = a0. Taking the first derivative of (1.17) with

respect to x and substituting x = 0 into the resulting

expression we get f ′(0) = a1. Taking the second derivative

of (1.17) with respect to x and substituting x = 0 into the

result leaves f″(0) = 2a2, or f″(0)/2 = a2. If we continue to

take higher order derivatives of (1.17) and evaluate each of

them at x = 0 we find that, in order that the n derivatives of

(1.17) match the n derivatives of f (x), the coefficients, an,

of the polynomial expression (1.17) must take the general

form

Thus, the value of the function f (x) at x = 0 can be

expressed as

(1.18)  

Now, if we want to determine the value of f (x) near the

point x = x0, the above expression can be generalized into

what is known as the Taylor series expansion of f(x) about x

= x0, given by

(1.19)

Since the dependent variables that describe the behavior of

the atmosphere are all continuous variables, use of the



Taylor series to approximate the values of those variables

will prove to be a nifty little trick that we will exploit in our

subsequent analyses. Most often we consider Taylor series

expansions in which the quantity (x – x0) is very small in

order that all terms of order 2 and higher in (1.19), the so-

called higher order terms, can be effectively neglected. In

such cases, we will approximate the given functions as

1.2.3 Centered difference

approximations to derivatives

Though the atmosphere is a continuous fluid and its

observed state at any time could theoretically be

represented by a continuous function, the reality is that

actual observations of the atmosphere are only available at

discrete points in space and time. Given that much of the

subsequent development in this book will arise from

consideration of the spatial and temporal variation of

observable quantities, we must consider a method of

approximating derivative quantities from discrete data. One

such method is known as centered differencing3 and it

follows directly from the prior discussion of the Taylor series

expansion.

Figure 1.6 Points x1 and x2 defined with respect to a

central point x0


