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Preface and
Acknowledgements

The development of statistical methods in spatial epidemiology has had a chequered
career. One of the earliest examples of the analysis of geographical locations of
disease in relation to a putative health hazard was John Snow’s analysis of cholera
cases in relation to the location of the Broad Street water pump in London (Snow,
1854). However, until recently, developments in statistical methods in this area
have been sporadic. While medical geography developed in the 1960s (Howe,
1963), only a number of papers on space-time clustering (Mantel, 1967; Knox,
1964) appeared in the statistical literature. More recently, developments of methods
in spatial statistics, image processing, and in particular Bayesian methods and
computation, have seen parallel developments in methods for spatial epidemiology
(see Marshall (1991b) for a review). It is notable that methods for the analysis of
case locations around a source of hazard (such as Snow’s cholera map) have only
recently been developed (Diggle, 1989; Lawson, 1989). The current increased level
of interest in statistical methods in spatial epidemiology is a reflection, in part, of the
increased concern in society for environmental issues and their relation to the health
of individuals. Hence, the ‘detection’ of pollution sources or sources of health
hazard can be seen as the backdrop to many studies in environmental epidemiology
(Diggle, 1993). The correct allocation of resources for health care in different
areas by health services is also greatly enhanced by the development of statistical
methods which allow more accurate depiction of ‘true’ disease incidence and its
relation to explanatory variables. Previous work in this area has been reviewed by
Lawson and Cressie (2000), and Marshall (1991b) and Elliott et al. (1992a) discuss
the general epidemiological issues surrounding spatial epidemiological problems.

It is the purpose of this book to provide an overview of the main statistical
methods currently available in the field of spatial epidemiology. Inevitably, some
selectivity in choice of methods reviewed will be apparent, but it is hoped that our
coverage will encompass the most important areas of development. One area which
we do not examine in detail is that of space-time analysis of epidemiological data,
although the modelling of infectious disease data is considered in Chapter 11.

As this book is mainly a review of recent research work, its target audience
is largely confined to those with some statistical knowledge and is appropriate for
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Part I

The Nature of Spatial
Epidemiology





1

Definitions, Terminology and
Data Sets

Spatial epidemiology concerns the analysis of the spatial/geographical distribution
of the incidence of disease. In its simplest form the subject concerns the use and
interpretation of maps of the locations of disease cases, and the associated issues
relating to map production and the statistical analysis of mapped data must apply
within this subject. In addition, the nature of disease maps ensures that many
epidemiological concepts also play an important role in the analysis. In essence,
these two different aspects of the subject have their own impact on the methodology
which has developed to deal with the many issues which arise in this area.

First, since mapped data are spatial in nature, the application of spatial statisti-
cal methods forms a core part of the subject area. The reason for this lies in the fact
that the study of any data which are georeferenced (i.e. have a spatial/geographical
location associated with them) may have properties which relate to the location
of individual data items and also the surrounding data. For example, Figure 1.1
shows the total number of deaths from respiratory cancer found in 26 small areas
(census tracts) in central Scotland over the period 1976–1983. This map displays
a number of features which commonly arise when the geographical distribution of
disease is examined. On this map the numbers (counts) of cases within each area
are displayed. In some areas of the map the counts are similar to those found in the
immediately surrounding areas (e.g. in the south and southeast of the map counts
of 4 and 6 are recorded, while in the northwest of the map, lower counts are found
in many areas). This similarity in the count data in groups of tracts is unlikely
to have arisen from the allocation of a random sample of counts from a common
statistical distribution. The counts may display some form of correlation in their
levels based on their location, i.e. counts close to each other in space are similar.
This form of correlation does not arise from the usual statistical models assumed to
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Figure 1.1 Falkirk: central Scotland respiratory cancer counts in 26 census enu-
meration districts over a fixed time period. * Putative health hazard.

apply to independent observations found in, for example, clinical medical studies
or other conventional statistical application areas. Hence, methods which apply to
the analysis of these data must be able to address the possibility of such correlation
existing in the mapped data under study. Another feature of this example, which
commonly arises in the study of spatial epidemiology, is the irregular nature of the
regions within which the counts are observed, i.e. the census tracts have irregular
geographical boundaries. This may arise as a feature of the whole study region
(study window ) or may be found associated with tracts themselves. In some coun-
tries, notably in North America, small areas are often regular in shape and size and
this feature simplifies the resulting analysis. However, in many other areas irregu-
lar region geometries are common. Finally, in some studies, the spatial distribution
of cases or counts of disease are to be related to other locations on the map. For
example, in Figure 1.1 the location of a potential (putative) environmental health
hazard is also mapped (a metal-processing plant), and the focus of the study may
be to assess the relationship of the disease incidence on the map to that location,
perhaps to make inferences about the environmental risk in its vicinity.

The second feature which uniquely defines the study of spatial epidemiology
is that the mapped data are often discrete. Unlike other areas of spatial statistical
analysis, which are often focused on continuous data, e.g. geostatistical methods,
the data found in spatial epidemiology often take the form of point locations
(the address locations of cases of disease) or counts of disease within regions
such as census tracts or, at larger scale, counties or municipalities. Hence, the
mapped data often consist of cartesian coordinates in the form of a grid reference
or longitude/latitude of an address of a case, or a count of cases within a region with
the associated location of that region (either as a point location of a centroid or as a
set of boundary line segments defining the region). Given this form of data format,
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it is not surprising that models which have been developed for applications within
this area are derived from stochastic point process theory (for case locations) and
associated discrete probability distributions (for counts within arbitrary regions).

Finally, the epidemiological nature of these discrete spatial data leads to the
derivation of models and methods which are related to conventional epidemio-
logical studies. For example, the case–control study, where individual cases are
matched to control individuals based on specific criteria, has parallels in spatial
epidemiology where spatial control distributions are used to provide a locational
control for cases. This is akin to the estimation of background hazard in survival
studies. One fundamental epidemiological issue which arises in these studies is the
incorporation of the local population which is at risk of contracting the disease in
question. As we must control for the spatial variation in the underlying population,
then we must be able to obtain good estimates of the population from which the
cases or counts arise. This estimation often leads to the derivation of expected
rates in the region count case and further to the estimation of the ratio of count to
expected count/rate or the relative risk, in each area. Relative risk is a fundamental
epidemiological concept (Clayton and Hills, 1993) in non-spatial epidemiological
studies.

1.1 Map Hypotheses and Modelling Approaches

In any spatial epidemiological analysis, there will usually be a study focus which
specifies the nature and style of the methods to be used. This focus will usually
consist of a hypothesis or hypotheses about the nature of the spatial distribution
of the disease which is to be examined, and it is convenient to categorise these
hypotheses into three broad classes: disease mapping, ecological analysis and dis-
ease clustering . Usually, the distribution of cases of disease, whether in the form
of counts or case address locations, can be thought to follow an underlying model,
and the observed data may contain extra noise in the form of random variation
around the model of interest. Often, the model will include aspects of the null
(hypothesis) spatial distribution of the cases, which captures the ‘normal’ variation
which is expected, and also aspects of the alternative spatial distribution. In much
of spatial epidemiology, the focus of attention is on identifying features of the
spatial distribution which are not captured by the null hypothesis distribution. This
is mainly related to excess spatial aggregation of cases in areas of the map. That
is, once the normal variation is allowed for, the residual spatial incidence above
the normal incidence is the focus. Seldom is there any need to examine areas of
lower aggregation than would be normally expected. Note that ‘normal’ variation
is usually assumed to be defined by the underlying population distribution of the
study region/window and cases are thought to arise in relation to the local variation
in that distribution.

The first class, that of disease mapping, concerns the use of models to describe
the overall disease distribution on the map. In disease mapping, often the object is
simply to ‘clean’ the map of disease of the extra noise to uncover the underlying
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structure. In that situation, the null hypothesis could be that the case distribu-
tion arises from an unspecified or partly specified null spatial distribution (which
includes the population spatial distribution) and the object is to remove the extra
noise/variation. In this sense disease mapping is close in spirit to image processing
where segmentation usually describes the process of allocating pixels or groups of
pixels to classes.

The second class, that of ecological analysis, concerns the analysis of the rela-
tion between the spatial distribution of disease incidence and measured explanatory
factors. This is usually carried out at an aggregated spatial level, and usually con-
cerns regional incidence compared to explanatory factors measured at regional
or other levels of aggregation (Greenberg et al., 1996). This contrasts with stud-
ies which use measurements made on individual subjects. However, many of the
issues concerning interpretation of ecological studies are concerned with change
in aggregation level and not aggregated data per se. For example, the ecological
fallacy concerns making inference about individuals from analyses carried out at
a higher scale, e.g. regional or country-wide level. Equally, the atomistic fallacy
concerns making inferences about average characteristics from individual measure-
ments. In what follows we assume a relatively wide definition of ecological, more
in the sense of ecology itself, as any study which seeks to describe/explain the
spatial distribution of disease based on the inclusion of explanatory variables. Two
classic studies of this kind are presented by Cook and Pocock (1983), who exam-
ined the relation of cardiovascular incidence in the UK to a variety of variables
(including water hardness, climate, location, socioeconomic and genetic factors
and air pollution), and Donnelly (1995), who examined the respiratory health of
school children and volatile organic compounds in the outdoor atmosphere. Note
that this general definition can include the situation where case address locations
are related to a pollution hazard via explanatory variables such as distance and
direction from the hazard. In that case individual data are related to explanatory
variables.

The final class, that of disease clustering , concerns the analysis of ‘unusual’
aggregations of disease, i.e. assessing whether there are any areas of elevated
incidence of disease within a map. This type of analysis could take a variety
of forms. First, the analysis could include the assessment of a complete map to
ascertain whether the map is clustered. This is often termed general clustering.
In this case, the null hypothesis would be that the disease map represents normal
variation in incidence given the population distribution. The alternative hypothesis
would include some specified clustering mechanism for the disease cases. This
mechanism could be descriptive or include some notion of how the clusters form
(e.g. clusters can form if infectious diseases are examined, and the contact rate
of individuals can be modelled). General clustering is often treated as a form
of autocorrelation and models for such effects are often employed. This form
of clustering can be termed non-specific as it does not seek to determine where
clusters are found but instead simply seeks to determine whether the pattern is
clustered.



DEFINITIONS AND DATA EXAMPLES 7

Second, specific cluster studies attempt to ascertain the locations of any clusters
if they exist on the map. These clusters could have known (fixed) locations and the
incidence of disease around these locations may be assessed for its relation to the
location(s). Studies of putative pollution hazards fall within this category. This is
often termed focused clustering. If the locations of clusters are unknown a priori,
then the locations must also be estimated from the data; this is termed non-focused
clustering. Often, ecological regression methods can be used in focused clustering
studies, whereas, for non-focused studies, special methods must be constructed
which allow the estimation of cluster locations and their form.

In all the above areas of study, fundamental to the methods employed is the
inclusion of spatial location in the analysis and so spatial statistical methods are
often employed to model the observed data; that epidemiological considerations
should be employed in any study of the distribution of disease incidence, in that
the concept of normal variation of disease (i.e. that generated from the population
at risk from the disease) must be catered for in any model of incidence; and that
methods used should be appropriate to the analysis of georeferenced discrete data.

1.2 Definitions and Data Examples

In this section, some basic definitions and concepts are introduced which are used
throughout this book. In addition, a number of data examples make their first
appearance and these will be referred to at various stages throughout the work.

In what follows we will mainly be concerned with data which are available
within a single period of time. Hence, we do not provide notation for space-time
problems here. Where such notation is appropriate, we provide it locally.

We define ‘epidemiology’ as the study of the occurrence of disease in relation
to explanatory factors. A strict dictionary definition of the term implies the study
of ‘epidemic diseases’. However, in this work we mainly restrict attention to fixed
time period studies and do not directly examine the dynamic behaviour of disease
incidence. This area has recently been reviewed in Mollison (1995), Daley and Gani
(1999) and Andersson and Britton (2000). Some discussion of epidemic models
appears in Chapter 10. Here the term ‘spatial epidemiology’ is defined to mean the
study of the occurrence of disease in spatial locations and its explanatory factors.
Usually, the disease to be examined occurs within a map and the data are expressed
as a point location (case event) or are aggregated as a count of disease within a
subregion of the map. Two examples of such data are provided in Figures 1.2 and
1.3. These two data types lead to different modelling approaches, and we make
specific the following definitions as a basis for further discussion.

1.2.1 Case event data

We define the study window (W ), within which m disease case events occur at
locations xi , i = 1, . . . , m. The area of W is denoted by |W |, Lebesque measure
on R

2. Figure 1.4 displays these definitions.
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Figure 1.2 The locations of larynx cancer cases in an area of central Lancashire,
UK, for the period 1974–1983.
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Figure 1.3 Respiratory cancer counts within census tracts (enumeration districts)
of Falkirk, central Scotland, for the period 1978–1983.

1.2.2 Count data

We define the study window (W ) as above, within which m arbitrarily bounded
subregions, wholly or in part, lie. The count in m subregion tracts is denoted
ni , i = 1, . . . , m. In Figure 1.5, only regions 4, 5 and 6 are wholly within the
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Figure 1.4 A notional study area (W ) and a guard area (T ).
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Figure 1.5 A study region within which counts are observed in subregions (tracts).

window. Regions 1, 2, 3 and 7 are cut by the window boundary. The effect of
this region truncation will be discussed in detail later. However, it should be noted
that, usually, the count available (ni ) is from the complete region and not from
the truncated region which appears in the study window.

Usually, the m subregions are politically defined administrative regions and
are often tracts defined for the purposes of population censuses. We adopt the
term ‘census tract’ to denote an arbitrarily defined region. In addition, the counts
in census tracts are just an aggregation of case event data counted within the
bounding tract boundaries. Hence, the data in Figure 1.5 could be derived from
the data in Figure 1.4 by counting case events in census tract subregions of the
window.

The object of analysis of case event or count data can define the type of
summary measures used to describe the data. Usually, as a basic summary measure
it is common to compute a local measure of relative risk, or to use a local measure
of relative risk as the dependent variable in a more substantial analysis. Here,
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relative risk is taken to mean the measure of excess risk found in relation to
that supported purely by the local population, which is ‘at risk’. This population is
sometimes called the ‘at-risk’ population or background. Relative risk is derived or
computed from the relation of observed incidence to that which would be expected
based on the ‘at-risk’ background. It is common practice within epidemiology to
derive such risk estimates. In the case of spatial epidemiology it is common, when
tract count data are available, to compute a standardised mortality (or morbidity)
ratio (SMR), which is simply the ratio of the observed count within a tract to the
expected count based on the ‘at-risk’ background. A ratio greater than 1.0 would
suggest an excess of risk within the tract. These SMRs are often the basis for
atlases of disease risk (see, for example, Pickle et al., 1999).

1.3 Further Definitions

Some further definitions are required in relation to data which arise in such studies.

1.3.1 Control events and processes

Often, an additional process or realisation of disease events is used to provide
an estimate of the ‘background’ incidence of disease in an area. Define xcj

,
j = 1, . . . , mc, to be these mc control event locations. The use of such data will
be detailed in a later section.

1.3.2 Census tract information

The census tract count of a control disease is defined to be nc.
Instead of using a control disease to represent ‘background’, the ‘expected’

incidence of disease can be used. This is usually based on known rates of disease
in the population (Inskip et al., 1983). Denote this expected incidence as ei, i =
1, . . . , m. The total population of a tract is pi , while the extent of the tract is
defined as ai . The tract centroid, however defined, is denoted by xni

.
For models involving explanatory variables measured at tract level, we define

F as an m × p matrix whose columns represent p explanatory variables, and α

as a p × 1 vector of parameters. (For case event models the row dimension of F
will usually be m also.)

1.3.3 Clustering definitions

In cases where clustering is studied, a number of additional definitions are required.
First, cluster centre locations are defined as y

j
, j = 1, . . . , k, where k is the number

of centres in a suitably defined window. The term ‘parent’ is used here synony-
mously with cluster centre. This does not imply any genetic linkage with the
observed data. The observed data belonging to a cluster are sometimes referred to
as offspring. Again, there is no genetic linkage implied by this term. In addition,


