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Preface

Knowledge and experience relating to the stability of man-

made materials is of great importance for realizing suitable

and reliable technologies. Control over the physico-

mechanical properties of a synthetic material can be

achieved by selecting the proper chemical ingredients and

reacting them under appropriate optimized conditions. High

chemical, environmental, mechanical and thermal stability

is often desired from a high-performance material.

Knowledge of the thermal stability of a material as a

function of time and temperature could provide valuable

insights related to performance during the service life span

of the material and, indeed, for life management too. High

thermal stability is desired in materials operating in extreme

service conditions, while moderate to low for biological

applications.

Extensive amounts of published literature are available on

the thermal analysis of materials. However, the content of

most of the published papers is limited to monitoring of

thermal degradation steps. It is extremely difficult to find

articles on the mechanisms of decomposition of materials,

partly because such studies are difficult to establish and

justify. Several books are available on fundamental aspects

of the techniques; however, application of these techniques

to new materials has not yet been properly documented. We

have noticed that researchers find it difficult to understand

and explain the reasons behind the multiple-step

decomposition patterns in their materials. The poor

availability of understood investigations with good insights

into the mechanistic routes and associated reactions has

been the primary reason for such a lacuna. In this book, we

have invited authors who have expertise in dealing with

thermal analysis of materials and suggested that they



contribute chapters focusing on the reactions occurring

during thermal decomposition and mechanisms of reactions

during such processes.

This edited volume consists of twenty-two chapters

relating to the reactions and associated mechanisms

observed in advanced materials as a function of time and

temperature. It is divided into two parts; the first part

containing information about degradation of polymeric

materials and the second part devoted to materials other

than polymers. The first chapter discusses thermal stability

of organic layers grafted onto silicon and the reaction

mechanisms of thermal degradation occurring in such

hybrid systems. The use of thermogravimetric analysis to

characterize biomedical ultrahigh molecular weight

polyethylenes is discussed in a separate chapter, followed

by a study on how thermal analysis controls the phase

composition, size, and porosity of materials. Similarly, the

reactions occurring in composites of high-density

polyethylene containing magnesium hydroxide as flame

retardant are presented in a committed chapter. Another

chapter is devoted to the study of changes in thermal

properties, crystallinity and decomposition kinetics during

the degradation of aliphatic polyesters. A detailed

investigation of polymer degradation modes and

degradation mechanisms under thermal, chemical,

biological, and radiation effects has also been provided as a

separate chapter. Additionally, this chapter provides a

fundamental overview of widely-accepted mechanisms and

methods of applying these mechanisms, either individually

or in combination with the existing high-end polymers.

Thermal degradation of polyurethanes is covered in another

chapter, and several techniques to study the degradation

processes, degradation mechanisms, and ways for

improving their thermal stability are highlighted in a chapter

related to polyurethanes. Likewise, the design, degradation



behavior, associated mechanisms, and structure-property

relationship of thermally reworkable epoxy resins have been

added in a separate chapter.

The degradation pattern and mechanism of thermal

decomposition of vinylidene chloride polymers have been

systematically described in a separate chapter, followed by

an overview chapter on the use of mass spectrometry as an

analytical tool to investigate the thermal degradation

mechanisms in macromolecules. Another important study

on the degradation behavior of general purpose

poly(styrene) has been carefully described in a separate

chapter. The reaction mechanisms involving the degradation

of lipid-based compounds such as Brazil nut oil have been

explored in an individual chapter, followed by a study on the

reaction mechanism during thermal degradation of cellulose

and cellulosic substrates such as cotton and paper.

An interesting study reporting on sodium alkoxides under

isothermal and non-isothermal conditions using the

thermogravimetric method has its own chapter, followed by

a chapter on the influences of temperature on the products

obtained through thermal processing of hard tissues. A

unique chapter on the application of the hydrothermal

method for the treatment of waste electric and electronic

equipment has also been included. Another chapter

describes the theoretical criteria for carrying out the

evaluation of a masonry structure affected by high

temperature firing. It is evident that the heat processing

step produces molecular changes in muscle proteins that

affect the functional and textural properties, resulting in the

alteration of the quality of the final product. A chapter

highlights the use of spectroscopic techniques in

determining the protein structural changes in muscle food

products and blood plasma during heating. The effect of

temperature on the structural and textural properties of

layered double hydroxide-based catalyst has also been



postulated on, followed by a study to evaluate the

degradation process of ten different natural fibers by X-ray

diffraction and thermogravimetry techniques. The kinetic

mechanism for non-isothermal degradation of solids has

been described in the final chapter.

We are confident that after reading these chapters,

students and researchers will develop a deeper

understanding of the degradation patterns in advanced

next-generation materials and could devise the mechanistic

routes of decomposition in their materials based on robust

insights. Such contributions by the readers could further

push the frontiers of the science and technology of

degradations, a vital pursuit. This is a useful book for

readers from diverse backgrounds in chemistry, physics,

biology, materials science and engineering, including

chemical engineering. This book can be used as a reference

for students and research scholars and as a guide for

technologists working in the industry.

Atul Tiwari, PhD

Baldev Raj, PhD

June 1, 2015
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Abstract

Organic modification of silicon surfaces is a topic of high

interest in fundamental surface chemistry research as well as

for the development of technological applications ranging from

microelectronics to photovoltaics and biotechnology. Over the

past decades, many approaches to anchor covalently organic

monolayers to hydrogen-terminated silicon surfaces have been

investigated. These organic monolayers may bear specific

terminal groups depending on the application aimed at. Also,

they may be used as buffer layers to protect the silicon surface

against oxidation in contact with atmospheric environment or

aqueous media. In the context of further modification of the

silicon surfaces (e.g., in microelectronics), thermal processes

mailto:fyang@surface.tu-darmstadt.de


at temperatures higher than ambient are necessary; thus, the

understanding of the reaction mechanisms of the thermal

decomposition of such organic layers may become an

important issue. In this chapter, the thermal stability of organic

layers grafted onto silicon surfaces is reviewed, and the

reaction mechanisms of the thermal degradation occurring on

these hybrid systems are discussed.

Keywords: Thermal stability, silicon, organic modification,

grafting, organic monolayers, alkyl/alkoxy chains, aryl groups,

Si–N linkages, heterostructures, silicon hybrid systems,

reaction mechanisms

1.1 Introduction
Organic modification of semiconductor materials [1–5],

especially silicon (Si) [1, 2, 5], has attracted increasing interest

because of the importance of understanding, controlling, and

tailoring the properties of these organic/inorganic interfaces.

Nowadays, the importance of surface chemistry in

fundamental research and technological applications has

grown up together with the ability to selectively modify oxide-

free Si surfaces. Functionalization of Si surfaces by grafting

organic molecules onto the hydrogen-terminated Si surface,

which leads to the formation of covalent Si–C, Si–O–C, or Si–N

bonding, opens the way to various applications ranging from

molecular electronics [6–8], microelectronics [9–13], and

photovoltaics [14–18] to photoelectrochemical devices [19,

20]. Two different pathways can be used to tether organic

species on Si surfaces. One is to start from clean and

reconstructed Si surfaces in ultrahigh vacuum (UHV) conditions

(e.g., by heating the sample up to 1000 °C), which can

subsequently react with organic compounds in UHV [3, 5, 21,

22]. Another pathway, which will be our main focus, consists in

reacting an H- or Cl-terminated Si surface with organic

functions at ambient pressure using suitable precursor



molecules. The processes are often conducted by dissolving

the precursor in an organic solvent or with the neat liquid.

Figure 1.1 summarizes the main methods to covalently anchor

organic molecules to oxide-free Si surfaces by wet chemical

means. The formation of well-ordered organic monolayers

covalently bonded to Si using the latter process has been the

subject of many studies. Among those are studies on alkyl [23–

33], alkenyl [34–38], alkynyl [38–43], and alkoxy chains [44–

54], aryl groups [55–67], and chains bearing a functional

termination [68–73] to name a few. Moreover, the presence of

functional groups, such as –OH, –COOH, or –N3, on top of the

grafted organic monolayer, may be a starting point to extend

the library of available chemical terminal groups, in particular

to develop Si-based chemical and biochemical sensors [74–78],

e.g., using click chemistry [79–83]. The organic/Si hybrid

system can be achieved via a wide variety of wet chemical

[84], photochemical [85], and electrochemical [86] methods.

Among the wet chemical methods, the hydrosilylation route

[87, 88], which is a well-known reaction in organic chemistry, is

widely used to make alkenes, alkynes, or other unsaturated

hydrocarbon compounds react with a H-terminated Si surface.

Electrochemical grafting can be made from organolithium or

Grignard reagents [26, 40, 89] in anodic conditions, or from

diazonium compounds in cathodic conditions to obtain aryl-

grafted surfaces [55, 90–92]. Among these methods, those

which have been used in connection with thermal stability

studies will be briefly described in the corresponding

subchapters. However, since a thorough description of these

organic grafting methods is beyond the scope of this chapter,

we suggest the interested reader to refer to the several

excellent reviews on this topic already published over the past

decades [1, 2, 84, 93–95]. The different approaches to form

oxide-free organic/Si-based hybrid interfaces presented in this

chapter are summarized in Figure 1.1, in the case of H-

terminated Si(111) surfaces, but can also be extended to other

types of Si surfaces. Organically modified Si surfaces exhibit

excellent electronic quality (low concentration of surface states



in the mid-gap) and improved chemical resistance against the

formation of an oxide layer under exposure to ambient air [27,

90, 96–99] or in aqueous media [100–104].

Figure 1.1 Schematic illustration of the different chemical

modification pathways to obtain organically modified Si

surfaces from atomically flat H-terminated Si(111) surfaces as

starting substrates.





Thermal stability of the grafted organic monolayers may also

become an issue in the context of microelectronics because

there is an increasing need to replace the silicon dioxide (SiO2)

gate insulator in the elementary metal-oxide-semiconductor

field-effect transistors (MOSFETs) by a material with a higher

dielectric constant (so-called “high-κ oxide”, e.g., HfO2, whose

dielectric constant is 4–6 times as high as that of SiO2) [105–

107]. The replacement of the SiO2 gate oxide layer is

necessary to keep the switching performances of individual

MOSFETs and to reduce the leakage current appearing upon

decreasing the size of the elementary MOSFETs [108–110].

However, the deposition of high-κ oxides on silicon substrates

is accompanied with the formation of an SiO2 interlayer and/or

silicate between the silicon and the high-κ oxide, leading to an

unwanted series capacitance [111]. In this context, the

passivation of the silicon surface with an ultrathin organic layer

such as a short alkyl or alkoxy layer [13], or by the formation

of Si–N linkages [112] was proposed to reduce SiO2 formation.

For instance, oxygen diffusion was retarded by depositing HfO2

on a nitride-passivated Si surface, which minimized the

formation of interfacial SiO2 compared to the case of HfO2

grown on an H-terminated Si surface [113]. In many instances,

the deposition of the high-κ oxide is performed at

temperatures well above 300 K, and post-annealing treatments

may be necessary to remove organic contaminations and/or

cure out defects in the as-deposited oxide. This raises the

question of the thermal stability of the organic layers, which is

the key issue. The reaction mechanisms of the thermal

decomposition of these organic layers will be described in this

chapter.

For good electronic properties of the grafted Si surface, an

obvious prerequisite is that the starting surface (H-terminated

Si surface) has to be as clean as possible, presenting a high

degree of passivation without defects.



1.1.1 Hydrogen-Terminated Si

Surfaces

Obtaining an H-terminated Si surface is easily achieved at

ambient by selective etching of the native oxide in aqueous

fluoride solutions or even in alkaline solutions where Si is

etched at a high rate [114–117]. This surface chemistry, also

theoretically explained by ab initio calculations [118], confers

this surface unique properties. It is quite hydrophobic (contact

angle ~90 °), stable in air, and it takes several hours to grow a

native oxide layer. From an electronic viewpoint, H-terminated

Si surfaces are known to present the slowest recombination

velocity ever reported due to the absence of any surface

states in the band gap [119]. From a structural viewpoint, Si

etching becomes more and more anisotropic with increasing

pH. In alkaline solutions [120, 121] and in 40% NH4F [122], the

(111) planes are etching stop planes for steric reasons while

the (100) and (110) planes undergo faster dissolution. At low

pH, the overall etching is quasi isotropic.

Obtaining an H-terminated Si(111) model surface with 100

nm wide terraces (miscut 0.2 °) free of etch pits and separated

by rectilinear atomic steps, such as the one in Figure 1.2a, is

feasible because this plane is an etch-stop plane. This requires,

however, careful operating conditions. The NH4F solution must

be oxygen-free [123], by bubbling it with N2 or adding sulfite

ions as an oxygen scavenger [124], the sample must present a

rough part to act as sacrificial anode [117, 125] and the miscut

must be precisely aligned toward the [11 ] direction [117,

125]. On the atomic scale the terraces present a (1 × 1)

structure (see inset of Figure 1.2a) with 7.8 1014 vertical

monohydride (≡Si–H) sites per cm2 in agreement with the

narrow IR band at 2083 cm−1 observed in p-polarization only

(see Figure 1.2b). If one of these conditions is not fulfilled, a

larger density of structural defects, associated with dihydride

(=SiH2) sites, is observed (these are located at triangular etch


