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Preface

Knowledge and experience relating to the stability of man-
made materials is of great importance for realizing suitable
and reliable technologies. Control over the physico-
mechanical properties of a synthetic material can be
achieved by selecting the proper chemical ingredients and
reacting them under appropriate optimized conditions. High
chemical, environmental, mechanical and thermal stability
is often desired from a high-performance material.
Knowledge of the thermal stability of a material as a
function of time and temperature could provide valuable
insights related to performance during the service life span
of the material and, indeed, for life management too. High
thermal stability is desired in materials operating in extreme
service conditions, while moderate to low for biological
applications.

Extensive amounts of published literature are available on
the thermal analysis of materials. However, the content of
most of the published papers is limited to monitoring of
thermal degradation steps. It is extremely difficult to find
articles on the mechanisms of decomposition of materials,
partly because such studies are difficult to establish and
justify. Several books are available on fundamental aspects
of the techniques; however, application of these techniques
to new materials has not yet been properly documented. We
have noticed that researchers find it difficult to understand
and explain the reasons behind the multiple-step
decomposition patterns in their materials. The poor
availability of understood investigations with good insights
into the mechanistic routes and associated reactions has
been the primary reason for such a lacuna. In this book, we
have invited authors who have expertise in dealing with
thermal analysis of materials and suggested that they



contribute chapters focusing on the reactions occurring
during thermal decomposition and mechanisms of reactions
during such processes.

This edited volume consists of twenty-two chapters
relating to the reactions and associated mechanisms
observed in advanced materials as a function of time and
temperature. It is divided into two parts; the first part
containing information about degradation of polymeric
materials and the second part devoted to materials other
than polymers. The first chapter discusses thermal stability
of organic layers grafted onto silicon and the reaction
mechanisms of thermal degradation occurring in such
hybrid systems. The use of thermogravimetric analysis to
characterize biomedical ultrahigh molecular weight
polyethylenes is discussed in a separate chapter, followed
by a study on how thermal analysis controls the phase
composition, size, and porosity of materials. Similarly, the
reactions occurring in composites of high-density
polyethylene containing magnesium hydroxide as flame
retardant are presented in a committed chapter. Another
chapter is devoted to the study of changes in thermal
properties, crystallinity and decomposition kinetics during
the degradation of aliphatic polyesters. A detailed
investigation of polymer degradation modes and
degradation mechanisms under thermal, chemical,
biological, and radiation effects has also been provided as a
separate chapter. Additionally, this chapter provides a
fundamental overview of widely-accepted mechanisms and
methods of applying these mechanisms, either individually
or in combination with the existing high-end polymers.
Thermal degradation of polyurethanes is covered in another
chapter, and several techniques to study the degradation
processes, degradation mechanisms, and ways for
improving their thermal stability are highlighted in a chapter
related to polyurethanes. Likewise, the design, degradation



behavior, associated mechanisms, and structure-property
relationship of thermally reworkable epoxy resins have been
added in a separate chapter.

The degradation pattern and mechanism of thermal
decomposition of vinylidene chloride polymers have been
systematically described in a separate chapter, followed by
an overview chapter on the use of mass spectrometry as an
analytical tool to investigate the thermal degradation
mechanisms in macromolecules. Another important study
on the degradation behavior of general purpose
poly(styrene) has been carefully described in a separate
chapter. The reaction mechanisms involving the degradation
of lipid-based compounds such as Brazil nut oil have been
explored in an individual chapter, followed by a study on the
reaction mechanism during thermal degradation of cellulose
and cellulosic substrates such as cotton and paper.

An interesting study reporting on sodium alkoxides under
isothermal and non-isothermal conditions using the
thermogravimetric method has its own chapter, followed by
a chapter on the influences of temperature on the products
obtained through thermal processing of hard tissues. A
uniqgue chapter on the application of the hydrothermal
method for the treatment of waste electric and electronic
equipment has also been included. Another chapter
describes the theoretical criteria for carrying out the
evaluation of a masonry structure affected by high
temperature firing. It is evident that the heat processing
step produces molecular changes in muscle proteins that
affect the functional and textural properties, resulting in the
alteration of the quality of the final product. A chapter
highlights the wuse of spectroscopic techniques in
determining the protein structural changes in muscle food
products and blood plasma during heating. The effect of
temperature on the structural and textural properties of
layered double hydroxide-based catalyst has also been



postulated on, followed by a study to evaluate the
degradation process of ten different natural fibers by X-ray
diffraction and thermogravimetry techniques. The kinetic
mechanism for non-isothermal degradation of solids has
been described in the final chapter.

We are confident that after reading these chapters,
students and researchers will develop a deeper
understanding of the degradation patterns in advanced
next-generation materials and could devise the mechanistic
routes of decomposition in their materials based on robust
insights. Such contributions by the readers could further
push the frontiers of the science and technology of
degradations, a vital pursuit. This is a useful book for
readers from diverse backgrounds in chemistry, physics,
biology, materials science and engineering, including
chemical engineering. This book can be used as a reference
for students and research scholars and as a guide for
technologists working in the industry.

Atul Tiwari, PhD
Baldev Raj, PhD
June 1, 2015
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Abstract

Organic modification of silicon surfaces is a topic of high
interest in fundamental surface chemistry research as well as
for the development of technological applications ranging from
microelectronics to photovoltaics and biotechnology. Over the
past decades, many approaches to anchor covalently organic
monolayers to hydrogen-terminated silicon surfaces have been
investigated. These organic monolayers may bear specific
terminal groups depending on the application aimed at. Also,
they may be used as buffer layers to protect the silicon surface
against oxidation in contact with atmospheric environment or
aqueous media. In the context of further modification of the
silicon surfaces (e.g., in microelectronics), thermal processes
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at temperatures higher than ambient are necessary; thus, the
understanding of the reaction mechanisms of the thermal
decomposition of such organic layers may become an
important issue. In this chapter, the thermal stability of organic
layers grafted onto silicon surfaces is reviewed, and the
reaction mechanisms of the thermal degradation occurring on
these hybrid systems are discussed.

Keywords: Thermal stability, silicon, organic modification,
grafting, organic monolayers, alkyl/alkoxy chains, aryl groups,
Si-N linkages, heterostructures, silicon hybrid systems,
reaction mechanisms

1.1 Introduction

Organic modification of semiconductor materials [1-5],
especially silicon (Si) [1, 2, 5], has attracted increasing interest
because of the importance of understanding, controlling, and
tailoring the properties of these organic/inorganic interfaces.
Nowadays, the importance of surface chemistry in
fundamental research and technological applications has
grown up together with the ability to selectively modify oxide-
free Si surfaces. Functionalization of Si surfaces by grafting
organic molecules onto the hydrogen-terminated Si surface,
which leads to the formation of covalent Si-C, Si-O-C, or Si-N
bonding, opens the way to various applications ranging from
molecular electronics [6-8], microelectronics [9-13], and
photovoltaics [14-18] to photoelectrochemical devices [19,
20]. Two different pathways can be used to tether organic
species on Si surfaces. One is to start from clean and
reconstructed Si surfaces in ultrahigh vacuum (UHV) conditions
(e.g., by heating the sample up to 1000 °C), which can
subsequently react with organic compounds in UHV [3, 5, 21,
22]. Another pathway, which will be our main focus, consists in
reacting an H- or Cl-terminated Si surface with organic
functions at ambient pressure using suitable precursor



molecules. The processes are often conducted by dissolving
the precursor in an organic solvent or with the neat liquid.
Figure 1.1 summarizes the main methods to covalently anchor
organic molecules to oxide-free Si surfaces by wet chemical
means. The formation of well-ordered organic monolayers
covalently bonded to Si using the latter process has been the
subject of many studies. Among those are studies on alkyl [23-
33], alkenyl [34-38], alkynyl [38-43], and alkoxy chains [44-
54], aryl groups [55-67], and chains bearing a functional
termination [68-73] to name a few. Moreover, the presence of
functional groups, such as -OH, -COOH, or -N3, on top of the

grafted organic monolayer, may be a starting point to extend
the library of available chemical terminal groups, in particular
to develop Si-based chemical and biochemical sensors [74-78],
e.g., using click chemistry [79-83]. The organic/Si hybrid
system can be achieved via a wide variety of wet chemical
[84], photochemical [85], and electrochemical [86] methods.
Among the wet chemical methods, the hydrosilylation route
[87, 88], which is a well-known reaction in organic chemistry, is
widely used to make alkenes, alkynes, or other unsaturated
hydrocarbon compounds react with a H-terminated Si surface.
Electrochemical grafting can be made from organolithium or
Grignard reagents [26, 40, 89] in anodic conditions, or from
diazonium compounds in cathodic conditions to obtain aryl-
grafted surfaces [55, 90-92]. Among these methods, those
which have been used in connection with thermal stability
studies will be briefly described in the corresponding
subchapters. However, since a thorough description of these
organic grafting methods is beyond the scope of this chapter,
we suggest the interested reader to refer to the several
excellent reviews on this topic already published over the past
decades [1, 2, 84, 93-95]. The different approaches to form
oxide-free organic/Si-based hybrid interfaces presented in this
chapter are summarized in Figure 1.1, in the case of H-
terminated Si(111) surfaces, but can also be extended to other
types of Si surfaces. Organically modified Si surfaces exhibit
excellent electronic quality (low concentration of surface states



in the mid-gap) and improved chemical resistance against the
formation of an oxide layer under exposure to ambient air [27,
90, 96-99] or in aqueous media [100-104].

Figure 1.1 Schematic illustration of the different chemical
modification pathways to obtain organically modified Si
surfaces from atomically flat H-terminated Si(111) surfaces as
starting substrates.
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Thermal stability of the grafted organic monolayers may also
become an issue in the context of microelectronics because
there is an increasing need to replace the silicon dioxide (SiO2)

gate insulator in the elementary metal-oxide-semiconductor
field-effect transistors (MOSFETs) by a material with a higher
dielectric constant (so-called “high-k oxide”, e.g., HfO2, whose

dielectric constant is 4-6 times as high as that of SiO») [105-
107]. The replacement of the SiO» gate oxide layer is

necessary to keep the switching performances of individual
MOSFETs and to reduce the leakage current appearing upon
decreasing the size of the elementary MOSFETs [108-110].
However, the deposition of high-k oxides on silicon substrates
is accompanied with the formation of an SiO> interlayer and/or

silicate between the silicon and the high-k oxide, leading to an
unwanted series capacitance [111l]. In this context, the
passivation of the silicon surface with an ultrathin organic layer
such as a short alkyl or alkoxy layer [13], or by the formation
of Si-N linkages [112] was proposed to reduce SiOy formation.

For instance, oxygen diffusion was retarded by depositing HfO>

on a nitride-passivated Si surface, which minimized the
formation of interfacial SiOp compared to the case of HfO>

grown on an H-terminated Si surface [113]. In many instances,
the deposition of the high-k oxide is performed at
temperatures well above 300 K, and post-annealing treatments
may be necessary to remove organic contaminations and/or
cure out defects in the as-deposited oxide. This raises the
question of the thermal stability of the organic layers, which is
the key issue. The reaction mechanisms of the thermal
decomposition of these organic layers will be described in this
chapter.

For good electronic properties of the grafted Si surface, an
obvious prerequisite is that the starting surface (H-terminated
Si surface) has to be as clean as possible, presenting a high
degree of passivation without defects.



1.1.1 Hydrogen-Terminated Si
Surfaces

Obtaining an H-terminated Si surface is easily achieved at
ambient by selective etching of the native oxide in aqueous
fluoride solutions or even in alkaline solutions where Si is
etched at a high rate [114-117]. This surface chemistry, also
theoretically explained by ab initio calculations [118], confers
this surface unique properties. It is quite hydrophobic (contact
angle ~90 °), stable in air, and it takes several hours to grow a
native oxide layer. From an electronic viewpoint, H-terminated
Si surfaces are known to present the slowest recombination
velocity ever reported due to the absence of any surface
states in the band gap [119]. From a structural viewpoint, Si
etching becomes more and more anisotropic with increasing
pH. In alkaline solutions [120, 121] and in 40% NHgF [122], the

(111) planes are etching stop planes for steric reasons while
the (100) and (110) planes undergo faster dissolution. At low
pH, the overall etching is quasi isotropic.

Obtaining an H-terminated Si(111) model surface with 100
nm wide terraces (miscut 0.2 °) free of etch pits and separated
by rectilinear atomic steps, such as the one in Figure 1.23, is
feasible because this plane is an etch-stop plane. This requires,
however, careful operating conditions. The NHgF solution must

be oxygen-free [123], by bubbling it with N> or adding sulfite

ions as an oxygen scavenger [124], the sample must present a
rough part to act as sacrificial anode [117, 125] and the miscut
must be precisely aligned toward the [11 2] direction [117,
125]. On the atomic scale the terraces present a (1 x 1)

structure (see inset of Figure 1.2a) with 7.8 1014 vertical
monohydride (=Si-H) sites per cm? in agreement with the

narrow IR band at 2083 cm~—1 observed in p-polarization only
(see Figure 1.2b). If one of these conditions is not fulfilled, a
larger density of structural defects, associated with dihydride
(=SiH>y) sites, is observed (these are located at triangular etch



