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Introduction 1

 

This series on hydraulics is divided into five volumes.

Volume 1 discusses the context for this environmental

hydraulics treatise: the evolution of the different scientific

and technical disciplines involved along with the space and

time dimensions of the processes described. It evokes the

importance of the global flood risk and outlines a first

quantification approach of the impact of climate change on

hydrology. It then describes in detail the physical processes

relating to hydrology, hydraulics and river morphodynamics.

This continues with a part dedicated to describing the

physical processes and the hydrosystems involved. The

following part lists systems of measurements that may

provide data for digital models:

– firstly focusing on estuarian processes, the tide, waves,

storm surge and storm forecasting and on shore;

– then describing forecasting systems for weather

parameters linked to the hydrological cycle, those necessary

for the acquisition of topographical and bathymetric data,

and for the characterization of soils and water in the soil. We

then address the river field with systems of measurement of

water levels and floods relative to the quality of water, to

the measurement of ice thickness and coverage, to

measurements of river sedimentology and in urban

hydrology. We continue with the measurement of sea

parameters: currents, swells and the sea level and by

sedimentological measures in an inshore environment. The

last chapter discusses new technologies arising from the

spatial dimension.

Volume 2 focuses on mathematical modeling in hydrology

and fluvial hydraulics, with a following part dedicated to the



mathematical modeling of marine hydraulics, to

transportation models and conceptual models.

Volume 3 discusses digital modeling.

Volume 4 shows examples of software applications in

water engineering case studies.

Finally, Volume 5 describes a few operational software

packages in the field of water engineering.

 

1 Introduction written by Jean-Michel TANGUY.



PART 1

Floods and Climate

Change



Chapter 1

Presentation of the

Environmental Hydraulics

Treatise 1

 

1.1. Context
The management of water has become daily news,

whether due to excess, with large devastating floods in the

world, or due to scarcity with dry summers or the

progression of semi-arid and arid areas that we know today.

This pushes public authorities to enforce measures of

protection and resource management. Climate evolution

would appear to exacerbate extreme phenomena. According

to the World Meteorological Organization (WMO) source (see

also Chapter 2):

– approximately 1.5 billion people in the world were

victims of floods from 1991 to 2000. Recently, an increase in

the number of disasters associated with this phenomenon

has been observed, mainly due to the development of land

in floodplains and its densification. Natural disasters create

a lot of suffering, particularly in developing countries with

low income economies which are sensitive to the repetition

of these events. It is true that the fact of living in a flood

plain provides undeniable advantages in terms of richness

of soils in order to obtain high agricultural yields;



– drought is probably the type of natural disaster with the

most devastating effects. From 1991 to 2000, this

phenomenon was responsible for more than 280,000 deaths

in the world and caused billions of dollars of material

damage. By 2025, it is expected that the population living in

countries facing water shortage problems will increase from

1 to 2.4 billion people, representing 13% to 20% of the

world population.

The World Summit on Sustainable Development held in

Johannesburg in August and September 2002 underlined the

need to “fight against drought and floods through better use

of information, climate and weather forecasting, fast

warning systems, better management of land and natural

resources, agricultural practices and ecosystems

conservation in order to reverse the current trends in soils

and water degradation…”

In addition, because of global warming, an increased

frequency of some extreme weather phenomena like heat

waves and very heavy rainfalls is expected, but nothing is

yet certain (see Chapter 3). We do not have enough

hindsight in terms of climate change as yet to isolate

evolutions caused by changes in natural conditions from

those due to human activities. However, everything seems

to contribute to an increase in greenhouse gas emissions.

The global awareness of these problems has led to the

ratification of major international protocols on climate

change like Kyoto in 1997 or Bali in 2007 which laid the

groundwork and then outlined the main principles of

sustainable development. All this led to international or

European initiatives which have since been outlined in

regulations in each country. Moreover, it is in this context

that in France the Environment Round Table (Grenelle de

l’Environnement) was launched, which has given more

emphasis to water conservation. This favorable context

reminds us that water is a valuable resource and is of



limited quantity, which should encourage developers to

adopt an integrated approach by considering the impacts of

each project in a much wider context and consider its

actions both in the short and long term.

1.2. Origin of

environmental hydraulics
In this critical context, it seemed necessary to establish a

state of knowledge regarding hydraulics in a broad sense, so

as to inform policy makers by providing overwhelming

evidence not only on the behavior of water and its richness,

but also on its fragility. This treatment of environmental

hydraulics deals with the physical processes of water from a

raindrop all the way to the sea. Its publication stems from a

number of motivations:

– the lack of works covering this subject in its global

nature. The literature is rich in works covering meteorology,

hydrology, hydraulics or hydrogeology on the one hand and

mathematical modeling and numerical methods on the

other hand. These works are often very theoretical and do

not grant enough space for illustrations and practical

examples. We want to present these fields in an integrated

manner, starting from the description of physical processes

through mathematical theories and by illustrating our

comments with examples of applications and the description

of software;

– the evolution of current knowledge in the areas of water

resource management and risk management. Public

authorities implement policies to protect people and goods

combining prevention, protection and anticipation. New

tools must be developed to implement and evaluate these

policies;



– the necessary networking of teams and dissemination of

knowledge. The hydrological community (in a very broad

sense) has been structured for several years around

national, European or international projects. Researchers

and professionals in this field have developed a project

culture that requires the sharing of common knowledge

laterally. The publication of this work should be brought to

the forefront of expertise in this field;

– the authors also identified the need to reinstate the

different approaches in terms of modeling processes within

a unified conceptual framework, thus meeting the needs of

experts who use simulation tools that seem at first glance to

be of different origins, but that result from the same

theories;

– at an international level, it was felt that there was a need

for a reference work which could be shared by the entire

scientific community. In this regard, the World

Meteorological Organization (WMO), which works in the field

of hydrology through the Commission for hydrology, has a

number of guides, including “Guide to hydrological

practices.” The treatment of environmental hydraulics

presented herein, promoted by the WMO, directly

complements these existing guides.

All these reasons prompted the coordinator of this series

to propose initially to a small group of authors, to be

associated with writing a reference document not only for

professionals in the field (in the broad sense), but also for

students and professors involved in the technical and

scientific fields dealing with the water cycle. The boundaries

of this work are thus, naturally: from a raindrop

(meteorology) to the sea (maritime morphodynamic)

following the paths of water either on the surface or in the

subsoil, of the drainage basin into the sea. This group was

then expanded considerably in order to collect descriptive



case studies illustrating the use of numerical models in all of

the areas covered by this work.

1.3. Modeling at the

crossroads of several

sciences
What exactly do we mean by modeling and why should we

seek to model?

The need for modeling stems from the necessity of

reproducing phenomena in order to better study them.

Numerical modeling uses computer-based tools, but there

are other ways to reproduce natural phenomena, in

particular using physical models. The aforementioned

models are of great assistance to the physicist, enabling

him to study and quantify some processes that are good

benchmarks in order to validate numerical models.

By skimming through the different scientific and technical

disciplines which are concerned with the water cycle, it is

surprising to see the very strong heterogeneity which

characterizes the level of development of the various

disciplines concerned:

– meteorology;

– river hydraulics and maritime hydraulics;

– hydrogeology;

– computing;

– numerical methods.

We will thus show that the disciplines are all interrelated

and that the recent development in computing has given

them a “boost.”

1.3.1. Meteorology



Modern meteorology in France arose from an accident or

rather from a shipwreck. During the Crimean War, on

November 14th 1854, a violent storm caused the death of

400 sailors and the loss of 38 French ships. Following this

disaster, French War Minister Marshal Vaillant, charged the

astronomer Le Verrier to study the causes of such a disaster.

He realized that the storm in question had crossed over the

whole of Europe from 10th to 14th November. The minister

then made the decision to establish a monitoring network in

charge of indicating dangerous phenomena. At that time,

the French network included 24 stations.

This discipline is in a very advanced level of modeling. It

has obviously taken advantage of the strategic nature of the

knowledge of time and anticipation of upcoming events (see

historical insert below). Moreover, it was developed

according to the dimensions of the planet. In history,

meteorologists were confronted very quickly with the need

to have measurements across the globe in order to develop

quality forecasting for their own country.

The data which comes from radiosondes, from

observations on land and sea, has been exchanged since

the emergence of this science, and an astonishing fact of

history is that this data continues to be exchanged during

conflicts and wars. Meteorologists have thus been able to

develop efficient modeling tools across the globe, and

weather forecasting has become an international issue. It

has been necessary to work with very sophisticated models:

3D, transient and rapid execution models.

Between 1916 and 1922, the Briton, Lewis Fry Richardson

[RIC 65], tried to manually solve the primitive (unfiltered)

weather forecasting equations in an approximate way. He

used a horizontal grid of 200 km, with four layers along the

vertical, and centered on Germany. The forecastings he

obtained were completely unrealistic because of poor initial

conditions and because they did not respect the stability



condition which was developed a few years later by

Courant, Frierichs and Lewy (CFL condition). This first

unsuccessful test penalized numerical predictions for

several years, but it nevertheless marked a major step in

the evolution of this discipline. Richardson imagined that a

factory of 64,000 human calculators would be necessary to

get ahead of the changing weather throughout the globe

(Figure 1.1). This modeling dream partly became a reality in

1950 thanks to J. Charney, R. Fjörtoft and von Neumann who

achieved the first numerical predictions using a computer.

The results obtained were completely encouraging and this

historical experiment marks the starting point of modern

weather forecasting.

Figure 1.1. Richardson’s dream (drawing by F. Schuiten)

The first numerical models used the geostrophic

approximation (time-independent relationship between

pressure and wind). This approximation has the advantage

of having only slow waves (Rossby waves) as a solution and

of enabling large time steps (filtered approximations).



These models were operational until the 1960s. The

increase in the capacity of computers made it possible to

revert to hydrostatic primitive equations which enable

inertia-gravity waves to be alternative solutions.

In conjunction with grid point models using the finite

difference method, spectral models were also developed, in

which the defined fields are represented on the sphere using

a decomposition based on orthonormal functions.

Along with the use of global models (several tens of

kilometers in resolution), it proved necessary to work on

smaller areas at a sufficiently fine scale to correctly simulate

the processes that develop at smaller scales, in particular

because of the presence of relief but also to better

represent certain physical phenomena such as water phase

transfer. These initially hydrostatic models have evolved

into more sophisticated models, non-hydrostatic with fine

mesh (a few kilometers in plan). Their boundary conditions

are extracted from global models.

A major technological innovation in meteorology comes

from the assimilation of data which enables the

determination of the state of the atmosphere, taking into

account the various meteorological observations available.

This method known as 3D-VAR (developed from optimal

control methods) has been extended to 4D-VAR to take into

account the data distributed in time and space.

Another problem appeared with the date of prediction that

could not be postponed. In the early 1960s, Lorentz made a

significant discovery: by modifying the boundary conditions

of his model, he obtained very different predictable states of

the atmosphere within a few days of the date. The idea then

came to him to launch the deterministic model several

times by varying the initial conditions (the ECMWF model is

launched 50 times). This method known as Quantitative

Precipitation Forecasts (QPFs) presents a probabilistic



approach, for example it assesses what percentage an

overall prediction will forecast precipitation at a given point.

Developments will certainly continue in the future. Some

authors [COI 00] predict an improvement of fine models

towards very fine models, data assimilation, ocean-

atmosphere coupling, adaptive measuring systems

(reinforced spatially during errors of models), all this is

made possible by international cooperation regarding

measurement systems and modeling.

1.3.2. Operational hydrology

Operational hydrology appears to be the poor relation of

the family with respect to modeling. Although many

observations have been recorded in works since antiquity by

famous names such as Thales or Aristotle, hydrology as an

independent scientific discipline is only around 100 years

old. The main cause of the very limited development in

modeling disciplines is certainly due to the fact that the

considered media are very heterogeneous and less

observable, especially anything which concerns the

subsurface which explains a large part of the overall

behavior of drainage basins.

Without repeating the history of hydrology in detail, let us

specify that the first ancient speculations were turned

towards the origin of the source of water and its fate:

everything that was underground, and therefore hidden,

gave rise to speculative discourse. Bernard Palissy is

regarded by the hydrologist community as the founder of

the discipline with his work Discours admirables de la nature

des eaux et fontaines tant naturelles qu'artificielles

(admirable discourse of water and fountains) [PAL 80]. He

expresses his “firm conviction” that sources and rivers

originate from the rain and not as the first theories

supported from the sea (Musy online course). He

recommended the taking of many measurements and



devoted himself to carrying out many measurements and to

comparing rainfall and flow on the basin of the River Seine.

François Le Père in his work “on the origin of springs” in

1653 extrapolated the idea of Palissy to the entire planet,

thus initiating a comprehensive view of the water cycle. In

order to tackle the behavior of water underground, he

recommended complementing surface measurements with

measurements of groundwater fluctuations; this was quite

innovative for its time.

Traditionally, we recognize that Perrault [PER 74] and

Mariotte [MAR 86] established the first quantitative

approaches in terms of a balance sheet, on the Coquille

River, a tributary of the Seine and on the upstream of the

Seine basin, respectively. The first balance sheets indicated

that the surface flow represented only one sixth of the

rainfall.

To complete the understanding of the water cycle and to

integrate the exchanges with the sea, a major contribution

was made by Halley who explained the origin of

atmospheric water vapor by evaporation and then

condensation (his discovery came from the condensation on

his telescope). Dalton proved this theory by measurement.

In situ measurements then began to develop. Thus, by the

middle of the 17th century, observations had been made on

the level of the River Seine as well as the first gauging.

Rainfall was also measured at the Paris observatory, and in

1719 a flooding scale was installed at the Tournelle Bridge.

Thereafter, many developments were made in the field of

hydraulics and hydrogeology (treated separately in this

section), but few big discoveries have been made in the

hydrology field since these pioneers of the 17th century.

The hydrological functioning of drainage basins remains in

many ways not well known. B. Amboise [AMB 99] points out

that two issues have not yet been completely solved by

hydrology:


