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Preface

On April 25, 1953, 58 years ago, JD Watson and FHC Crick published their article

entitled “A Structure for Deoxyribose Nucleic Acid” in the journal Nature. This
article has been cited for its brevity, only 1 page and 1 diagram. The impact of this

article cannot be fully measured, but it is safe to suggest that recombinant

DNA biopharmaceuticals, such as recombinant human granulocyte colony-stimulating

factor (rmet-HuG-CSF), would not be available today without the basic knowledge

of DNA structure.

A quick search of PubMed suggests that no articles had been published on the

topic of rmet-HuG-CSF or even G-CSF as of 1953. Forward to April 2011 and

a quick search of PubMed cites 31,965 articles tagged to “G-CSF,” 1,753 tagged

to “filgrastim,” 350 tagged to “pegfilgrastim,” 295 tagged to “lenograstim,” and 13

tagged to “biosimilar filgrastim.”

We have come a long way in 58 years since the publication of the proposed

structure of DNA and further since the first approval of filgrastim by the US Food

and Drug Administration in 1991 for the treatment of patients with chemotherapy-

induced neutropenia. In the intervening 20 years since this first marketing approval,

countless patients worldwide have been treated with a recombinant form of G-CSF

for the treatment of chemotherapy-induced neutropenia; severe chronic neutropenia;

neutropenia due to disease; to mobilize peripheral blood stem cells for transplanta-

tion, either autologous or allogenic; and for bone marrow recovery after bone

marrow or stem cell transplantation, to name a few. rmet-HuG-CSF has been

tried in the treatment of infections, diabetic foot ulcers, neonatal sepsis, and

community-acquired pneumonia.

In almost all settings, it can be said that rmet-HuG-CSF ameliorated neutropenia,

increased neutrophil counts, reduced the need for intravenous antibiotics, and/or

reduced the need or duration for hospitalization. Thus, it is appropriate to celebrate

20 years of research and therapy with rmet-HuG-CSF.

The authors of several chapters are some of the early clinical investigators

of rmet-HuG-CSF and staff of Amgen, which manufactures filgrastim and pegfil-

grastim. The editors have allowed information in chapters to provide various
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perspectives on topics. We are hopeful that readers will find the presentations

varied but balanced.

The editors have tried to obtain the necessary permissions and authorizations

before publication, and great care has been exercised in the preparation of

this volume. Nevertheless, errors cannot always be avoided. The editors, their

employers or companies, and the publisher cannot accept responsibility for any

errors or omissions that inadvertently occurred. The views and opinions expressed

in the book are those of the participating individuals and do not reflect the views of

the editors, the publisher, Amgen Inc., or any other manufacturer of pharmaceutical

products named herein. The current package insert should be consulted before any

pharmaceutical product is administered.

California, USA Graham Molineux

Tara Avredson

MaryAnn Foote
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Basic Science



Hematopoiesis in 2010

George Morstyn

1 Brief History of Hematopoietic Growth Factors

In 1987, the first clinical results of the use of hematopoietic growth factors were

presented at a small meeting in Garmish-Partenkirchen [1]. It is timely, 23 years

later, to review what we have learned since that first report.

Donald Metcalf reviewed for the 50th Anniversary of the American Society of

Hematology (ASH) our knowledge of the regulation of hematopoiesis by specific

growth factors [2], and we have previously reviewed the important features of

hematopoiesis: the cell hierarchy, the movement of cells from multipotential

progenitors to mature, committed cells with specific functions, and the many

cytokines that regulate the process [3]. It was possible to purify the regulators

and obtain protein-sequence data for cloning of the hematopoietic growth factors

because of the development of various biologic assays in the preceding 50 years and

the development of recombinant DNA technology in the 1980s [2].

The regulator we knew most about was erythropoietin (EPO), initially as an

activity detectable in the urine of patients with aplastic anemia. Until the cloning

and expression of EPO and the development of an immunoassay, monitoring of red

cell-stimulating activity was cumbersome, and radioactive iron incorporation into

red blood cells was used. The assays that were used to measure granulocyte–

macrophage progenitor cells were carried out on semisolid cultures that allowed

the counting of colonies of mature cells produced from myeloid precursors [4]. The

assays were later adapted to identify red cells, megakaryocytes, and even earlier

precursors.

Early work with fluorescent-activated cell sorting (FACS) allowed the identifi-

cation, morphologically and functionally, of these precursors, and it became
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apparent that the production of mature cells in the blood, the red cells and

granulocytes, was dependent on the presence of specific regulators such as EPO,

granulocyte colony-stimulating factor (G-CSF), and granulocyte–macrophage col-

ony-stimulating factor (GM-CSF). It was not until the 1990s that the megakaryo-

cyte regulator was identified. The role of these factors was slightly different in

murine models compared with their role in humans, but many of the biologic

findings were directly comparable between the species.

GM-CSF (also known as CSF2), macrophage colony-stimulating factor

(M-CSF) (also known as CSF1), and G-CSF (also known as CSF3) were identified

as growth factors for myeloid progenitor cells (reviewed in [5]). The cytokines

stimulate the proliferation, differentiation, maturation, and survival of granulocytes

and macrophages. The CSF acts through specific receptors. The G-CSF receptor

(G-CSFR) is a member of the type-1 cytokine receptor family; the GM-CSF

receptor consists of a unique a chain and a common b chain through which

signaling occurs.

The control of platelet production is different to that of granulocytes and

macrophages. Platelets form by the fragmentation of mature megakaryocytes.

The production of megakaryocytes is under the control of the c-Mpl receptor, and

its ligand was identified as thrombopoietin (TPO). TPO is the primary regulator of

platelet production and elimination of either TPO or the c-Mpl receptor results in

severe thrombocytopenia. Importantly, TPO does not seem to accelerate platelet

shedding and so its actions are slower than that of G-CSF that acts on increasing not

only the production of myeloid precursors but also their maturation. Both G-CSF

and TPO blood concentrations appear to be reduced by the mass of mature cells;

granulocytes, megakaryocytes, and platelets increase, respectively, and this

provides a feedback loop for control. G-CSF, TPO, and EPO are critical to the

maintenance of hematopoiesis, and knock-outs of the genes for the ligand or

receptor lead to profound neutropenia, thrombocytopenia, or anemia [6].

EPO is a 34.4-KD glycoprotein hormone and was cloned in 1985. EPO is

regulated by hypoxia. It acts on erythroid precursors to enhance red blood cell

production and thus the oxygen-carrying capacity of the blood. EPO, which is

produced predominantly in the kidney, is required for the production and terminal

differentiation of red blood cells. Like G-CSF and GM-CSF, EPO controls prolif-

eration, maturation, and survival of red blood cells. The receptor exists as a dimer

and when the ligand binds, a conformational change and a cascade of activation

occur through transphosphorylation of JAK2.

Controversy exists about where the EPO receptor (EpoR) is expressed and on

what cell types it is functional. This controversy has become important in evaluating

reported nonclinical and clinical effects on the central nervous system and the

cardiovascular system, and explaining adverse outcomes in the cancer setting.

The actual regulation of hematopoiesis, the feedback loops, the role of a plethora

of cytokines in maintaining homeostasis in the hematopoietic system, and then

creating an appropriate response to perturbations, such as sepsis, requires a broad

approach. The complexity that could be investigated was reviewed [7] in the

context of a systems biology approach.
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In the clinic, beginning in the late 1980s, we generally did not exploit the

complexity of multiple overlapping activities of some of the factors, other

regulators such as stem cell factor (c-kit ligand), M-CSF, interleukin (IL)-11,

multicolony-stimulating factor (IL-3), and IL-6. These cytokines also entered

clinical development but have not found broad utility.

In this chapter, I focus on the trials and tribulations of the development

of 3 families of regulation: the erythropoiesis-stimulating agents (ESA), the

G-CSF, and the thrombopoietic agents.

Don Metcalf pointed out the value of 50 years of laboratory research before the

initiation of the clinical development of each of these factors. It is apparent,

however, that despite an extensive knowledge of murine biology and in vitro

human studies, there were many surprises in the clinic and, in some cases, issues

not strictly scientific, such as economic and legal issues, also impacted on the

development and use of these agents.

The theoretical challenges encountered during the development of the ESA,

G-CSF (filgrastim and lenograstim), and thrombopoietic agents had both common

and unique features. Each was a critical regulator of an important cell lineage.

Therefore, questions were raised whether accelerated depletion of the bone marrow

would occur with prolonged use. This situation did not occur. There was concern

that the receptors for each factor would be present on malignant cells either of the

hematopoietic systems, such as the myeloid leukemias or on other cancers, and that

this situation could have had an adverse outcome due to undesirable tumor cell

stimulation. There was also concern that neutralizing antibodies to the

recombinantly produced proteins would cross-react with the normal endogenous

regulators and result in single lineage or multi-lineage aplasia. There were also

concerns that the rate of rise in mature cells such as neutrophils, red blood cells, or

platelets would cause harm or that the absolute high numbers of these cells could be

harmful. During the development of these agents, some of these potential adverse

events did become apparent, however, sometimes only after the agents entered

clinical practice, and their doses and target populations were greatly expanded.

In general, millions of patients have received the hematopoietic agents with

significant reductions in morbidity and mortality, and improvements in quality of

life. The first study that identified the theoretical concerns that could occur was a

randomized study of recombinant human EPO (rHuEPO) in patients who were

receiving dialysis and who had heart disease in whom the concept of achieving high

hemoglobin concentration to improve cardiac function resulted in significant

adverse events [8]. It was reported that targeting a normal hematocrit significantly

increased the incidence of thromboses and that there were more deaths in patients

treated to obtain a normal hematocrit target than in patients treated to obtain a lower

hematocrit target.

A second concern was realized during the development of a TPO (megakaryo-

cyte growth and development factor, MGDF) when normal volunteers developed

neutralizing antibodies after two or more doses that cross-reacted with endogenous

TPO to produce prolonged thrombocytopenia. Another example of the potential

harm of neutralizing antibodies was the development in a small number of patients
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receiving rHuEPO of pure red cell aplasia due to the development of cross-reactive

neutralizing antibodies to endogenous EPO [9].

The concern about off-target stimulation of malignancies took longer to emerge.

Large randomized studies in patients with cancer did appear to show in some

studies poorer cancer outcomes – but the studies were not always well designed

and were not stratified.

At the same time as the therapeutic window was narrowed, positive developments

occurred including more convenient forms of rHuG-CSF (pegfilgrastim) and an ESA

(darbepoetin alfa), and a new agent was developed that stimulated the TPO receptor

but did not induce cross-reacting antibodies.

A new treatment paradigm, the use of peripheral blood progenitor cells (PBPC),

was established and the risk of leukemia development did not appear to be signifi-

cantly increased, although studies in severe chronic neutropenia and the

myelodysplastic syndromes are still investigating the issue [10, 11]. In parallel to

these developments, some of the clinical indications were expanded.

Not only did we learn the limits of the therapeutic agents, but the clinical settings

also evolved. In oncology, the paradigm of using chemotherapeutic drugs to

maximum tolerability thus causing the neutropenic complications reduced by

rHuG-CSF was challenged. Guidelines appeared, although initially on the appro-

priate use of growth factors rather than the chemotherapy regimes (reviewed in

chapter “Practice Guidelines for the Use of rHuG-CSF in an Oncology Setting” by

Saraf and Ozer). The issue of cost benefits, cost offsets, and reimbursement

dominated the development of the granulocyte-stimulating factors. Reimbursement

also became important in determining the use of ESA and iron-replacement ther-

apy, and this issue again led to guidelines that were modified as data emerged.

More recently, the cytokine area has attracted the development of biosimilars

and discussion about whether given the challenges that have been identified during

the development of cytokines, can other agents be approved without substantive

clinical experience. I briefly discuss what we have learned about each of these

agents.

2 Erythropoiesis-Stimulating Agents

Administration of rHuEPO is effective in increasing red blood cell counts. Anemic

patients develop high concentrations of measurable endogenous EPO if they do not

have renal disease, but in patients with renal failure or with malignancies, there can

be inappropriately low amounts of endogenous EPO.

The first clinical use of rHuEPO was in patients with anemia who were relatively

deficient in endogenous EPO due to renal disease. In early clinical trials of rHuEPO

in patients with renal disease, there was a rapid reversal of the anemia, and although

formal quality-of-life measurements were often not incorporated into the earliest

studies, it seemed clear that patients developed improved states of well-being when

their red blood cell counts recovered.

6 G. Morstyn



The increase in hemoglobin was observed in the first patients treated, and the

agent was rapidly incorporated into therapy. Issues that arose included adverse

effects such as thrombosis and hypertension in early studies, but were not perceived

to be at a higher frequency than in control patients. It was also noted that patients

needed to be replete with iron before the full effects of ESA were manifest.

After incorporation into therapy for renal disease, the anemia of cancer became

a target for therapy. Initially, there was focus on patients who were receiving

nephrotoxic chemotherapy such as cisplatin, but subsequently it was thought that

patients with cancer who were receiving chemotherapy might have inappropriately

low amounts of endogenous EPO for the degree of their anemia, and therapy with

ESA was initiated to obviate the need for blood transfusions and also to improve

quality of life.

The use of ESA became more complicated. There was much effort in trying to

define optimal hemoglobin targets in both anemia of renal failure and anemia

associated with cancer and cancer chemotherapy. It was suggested that higher

hemoglobin concentrations could lead to a reduction in complications in the

cardiovascular system of patients with chronic renal failure and in pre-dialysis

patients. In addition, in oncology, the aim moved from preventing the need for

red cell transfusions to improving the well-being of patients.

These studies led to an increase in the expenditure on ESA, particularly in the

USA. An unexpected finding of the larger randomized studies, however, was that

targeting a higher hemoglobin concentration seemed to lead to excess deaths. The

phenomenon did not seem to depend on the level of hemoglobin reached but the

increased dosing of ESA to reach the target. The basis for this remains unclear.

There may also be a relationship between toxicity and the rate of rise in hemoglo-

bin. Treatment guidelines and label warnings were adjusted for these findings [12].

In parallel, a new form of ESA which had additional glycosylation (darbepoetin

alfa) was developed to reduce the frequency of dosing needed with rHuEPO and to

improve convenience.

What began as a relatively clear benefit to anemic patients became much more

complicated, and our assumptions about risk benefit had to be reviewed [12, 13]. It

now seems that we have found the edges of the therapeutic window with attempts to

normalize hemoglobin concentrations in pre-dialysis and dialysis patients, leading

to increased adverse events and even mortality [8]. In the oncology setting, some-

times non-stratified randomized clinical trials have led to data suggesting reduced

survival and loss of local cancer control. These findings were unexpected and have

led to controversy about whether EPO receptors are present and functional on

cancer cells and endothelium, and whether EPO acts directly on these cells to

stimulate cancer growth [14, 15]. Others have suggested that while mRNA for the

EpoR can be identified, the receptors are not functional [16].

Another unexpected aspect of the EPO story was its use in blood doping by

cyclists to increase their red cell concentrations and endurance. In an episode in

Europe, certain vials appeared to lead to immunogenicity due to the development of

neutralizing antibodies and pure red cell aplasia in patients who received rHuEPO

from this batch [9, 17]. This episode is often thought of in the context of quality
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control for biosimilar drug [18] development, particularly for agents that are

glycosylated. A new agent has been developed that can stimulate the receptor but

does not cross-react with neutralizing antibodies [19, 20].

The development of rHuEPO and ESA has taught us a great deal about how an

agent that has been studied extensively non-clinically and for which there is a direct

pharmacodynamic marker can lead to surprises when adopted broadly in clinical

practice, and the need for appropriately designed phase 4 trials [21–23].

3 Granulocyte Colony-Stimulating Factors

The story of G-CSF has some similarities. The human molecule was first purified

and cloned by a group in the USA (reviewed in chapter “Discovery of G-CSF and

Early Clinical Studies” by Welte). It was not clear whether rHuG-CSF or rHuGM-

CSF would prove more useful. In the mouse, rHuGM-CSF appeared to produce

higher peripheral blood counts than rHuG-CSF; however, from the earliest clinical

studies of rHuG-CSF [24–27], it was clear that rHuG-CSF produced significant

increase in neutrophil counts and was well tolerated. Nonclinical studies suggested

that rHuG-CSF could be used in patients including those with severe congenital

neutropenia and those who had chemotherapy-induced neutropenia. Another appli-

cation that was considered was in patients with normal neutrophil values who had

sepsis and who might benefit from improved neutrophil function or higher neutro-

phil counts. A special setting that was also investigated was HIV-related infection

and therapy that often led to neutropenia. In parallel to rHuG-CSF development,

rHuGM-CSF was cloned and tested in the clinic, but will not be further discussed.

Both agents were approved and incorporated into practice.

The early studies with rHuG-CSF produced some surprises [28]. The findings

included that rHuG-CSF produced a transient decrease in circulating neutrophils in

the first few minutes after injection, presumably due to tissue entry, and that the

neutrophils were available to the tissue [26, 29]. The neutrophils were “left shifted”

and rHuG-CSF not only stimulated production but also accelerated maturation.

Studies also showed no change in frequency of progenitor cells in the bone marrow,

but very rapid mobilization into the periphery [30]. The latter observation led to the

practical widespread application of PBPC transplantation [31, 32; reviewed in

chapter “Use of rHuG-CSF in Peripheral Blood Progenitor Cell Transplantation”

by Beligaswatte et al.]. The basis for the mobilization is now better understood as

disruption of the interactions between adhesion molecules and their ligands [33, 34].

The next set of agents to enter the clinic in 1986 was rHuG-CSF, rHuGM-CSF,

and more recently, a pegylated form of rHuG-CSF (pegfilgrastim). The first

indications that were approved were in the reduction of the infection complication

of chemotherapy and as a consequence, the use of rHuG-CSF to intensify the doses

of chemotherapy. These studies are reviewed extensively elsewhere. It was clear

that in every setting, rHuG-CSF reduced the duration of neutropenia and the risk of

febrile neutropenia by 40–50% [28].
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