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Preface

R by Example is an example-based introduction to the R [40] statistical com-
puting environment that does not assume any previous familiarity with R or
other software packages. R is a statistical computing environment for statis-
tical computation and graphics, and it is a computer language designed for
typical and possibly very specialized statistical and graphical applications.
The software is available for unix/linux, Windows, and Macintosh platforms
under general public license, and the program is available to download from
www.r-project.org. Thousands of contributed packages are also available
as well as utilities for easy installation.

The purpose of this book is to illustrate a range of statistical and proba-
bility computations using R for people who are learning, teaching, or using
statistics. Specifically, this book is written for users who have covered at least
the equivalent of (or are currently studying) undergraduate level calculus-
based courses in statistics. These users are learning or applying exploratory
and inferential methods for analyzing data and this book is intended to be a
useful resource for learning how to implement these procedures in R.

Chapters 1 and 2 provide a general introduction to the R system and
provide an overview of the capabilities of R to perform basic numerical and
graphical summaries of data. Chapters 3, 4, and 5 describe R functions for
working with categorical data, producing statistical graphics, and implement-
ing the exploratory data analysis methods of John Tukey. Chapter 6 presents
R procedures for basic inference about proportions and means. Chapters 7
through 10 describe the use of R for popular statistical models, such as re-
gression, analysis of variance (ANOVA), randomized block designs, two-way
ANOVA, and randomization tests. The last section of the book describes the
use of R in Monte Carlo simulation experiments (Chapter 11), Bayesian mod-
eling (Chapter 12), and Markov Chain Monte Carlo (MCMC) algorithms to
simulate from probability distributions (Chapter 13).

One general feature of our presentation is that R functions are presented
in the context of interesting applications with real data. Features of the useful
R function 1m, for example, are best communicated through a good regres-
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sion example. We have tried to reflect good statistical practice through the
examples that we present in all chapters. An undergraduate student should
easily be able to relate our R work on, say, regression with the regression
material that is taught in his statistics course. In each chapter, we include
exercises that give the reader practice in implementing the R functions that
are discussed.

The data files used in the examples are available in R or provided on our
web site. A few of the data files can be input directly from a web page, and
there are also a few that found in the recommended packages (installed with
R) or contributed packages (installed by the user when needed). The web
page for this book is personal.bgsu.edu/ mrizzo/Rx.

Remarks or tips about R are identified by the symbol Rx to set them apart
from the main text. In the examples, R code and output appears in bold
monospaced type. Code that would be typed by the user is identified by the
leading prompt symbol >. Scripts for some of the functions in the examples
are provided in files available from the book web site; these functions are
shown without the prompt character.

The R manuals and examples in the help files use the arrow assignment
operators <- and ->. However, in this book we have used the equal sign =
operator for assignment, rather than <-, as novice users may find it easier to
type the = symbol.

R functions and keywords are collected at the beginning of the Index.
Examples are also indexed; see the entry ‘Example’ in the Index.

Bowling Green, Ohio Jim Albert
Maria Rizzo
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Chapter 1
Introduction

R is a statistical computing environment. It is free (open source) software for
statistical computation and graphics [40] and a computer language designed
for typical statistical and graphical applications. The R distribution includes
the ability to save and run commands stored in script files, and an integrated
editor in the R Graphical User Interface (R-GUI). It is available for most
platforms including unix/linux, PC, and Macintosh platforms. Thousands
of contributed packages are available, and users are provided tools to make
packages.

At the core of R is an interpreted computer language. This language pro-
vides the logical control of branching and looping, and modular programming
using functions. The base R distribution contains functions and data to imple-
ment and illustrate most common statistical procedures, including regression
and ANOVA, classical parametric and nonparametric tests, cluster analysis,
density estimation, and much more. An extensive suite of probability distribu-
tion functions and generators are provided, as well as a graphical environment
for exploratory data analysis and creating presentation graphics.

On the history and evolution of R, see the R-FAQ [26] and resources on
the R home page at http://www.R-project.org/.

1.1 Getting Started

R is an interpreted language; that is, the system processes commands entered
by the user, who types the commands at the command prompt, or submits
the commands from a file called a script. We assume that our readers use
R at a graphics workstation running a windowing system, such as Windows,
Macintosh, or X window systems. In a window system, users interact with
R through the R console. Except for the simplest operations, most users will
prefer to type commands in a script (see Section 1.1.3) to save retyping and

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__1, 1
© Springer Science+Business Media, LLC 2012
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to separate commands from results. However, let us begin by working directly
at the command prompt.

When we use the command line interface, each command or expression
to be evaluated is typed at the command prompt, and immediately evalu-
ated when the Enter key is pressed at the end of a syntactically complete
statement. It is helpful to remember the following tips.

e Press the up-arrow key to recall commands and edit them.
e Use the Esc (Escape) key to cancel a command.

1.1.1 Preliminaries

Remarks or tips about R are identified by the symbol Ry to set them apart
from the main text.

R( 1.1 The right-to-left assignment operators are the left arrow <- and equal
sign =. For example, borrowing a line from Example 1.3, either method below

> x = c(109, 65, 22, 3, 1)
> x <- c(109, 65, 22, 3, 1)

creates the vector (109,65,22,3,1) and assigns it to z. Borrowing another line
from Example 1.3, either method below

> y = rpois(200, lambda=.61)
> y <- rpois(200, lambda=.61)

assigns the result of the rpots function to y. Notice that the equal sign in-
side the parentheses is not an assignment operator; it passes the value of an
argument (lambda) to the function rpois.

The R manuals and examples in the help files use the arrow assignment
operators <- and ->. However, in this book we have used the equal sign =
operator for assignment, rather than <-, as novice users may find it easier to
type the = symbol.

In the examples, R code and output appears in bold monospaced type
as in the remark Ry 1.1 above. Code that would be typed interactively by
the user or submitted from an R script is identified by the leading prompt
symbol >. Scripts for some of the functions in the examples are provided in
files available from the book web site; these functions are shown in the book
without the prompt character.

Data files and scripts used in the examples are available on our web site
at personal.bgsu.edu/ mrizzo/Rx. Some data files can be downloaded di-
rectly from a connection to a url.
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1.1.2 Basic operations

Some basic operations with vectors are illustrated in the following example.
The R commands are entered at the prompt in the R console window. The
prompt character is > and when a line is continued the prompt changes to
+. (The prompt symbols can be changed.)

Ezample 1.1 (Temperature data). Average annual temperatures in New Haven,
CT, were recorded in degrees Fahrenheit, as

Year 1968 1969 1970 1971
Mean temperature 51.9 51.8 51.9 53

(This data is part of a larger data set in R called nhtemp.) The combine
function c creates a vector from its arguments, and the result can be stored
in user-defined vectors. We use the combine function to enter our data and
store it in an object named temps.

> temps = c(51.9, 51.8, 51.9, 53)

To display the value of temps, one simply types the name.

> temps
[1] 51.9 51.8 51.9 53.0

Suppose that we want to convert the Fahrenheit temperatures (F) to Celsius
temperatures (C). The formula for the conversion is C = 2(F —32). It is
easy to apply this formula to all of the temperatures in one step, because
arithmetic operations in R are vectorized; operations are applied element by
element. For example, to subtract 32 from every element of temp, we use

> temps - 32
[1] 19.9 19.8 19.9 21.0

Then (5/9)*(temps - 32) multiplies each difference by 5/9. The tempera-
tures in degrees Celsius are

> (5/9) * (temps - 32)
[1] 11.05556 11.00000 11.05556 11.66667

In 1968 through 1971, the mean annual temperatures (Fahrenheit) in the state
of Connecticut were 48, 48.2, 48, 48.7, according to the National Climatic
Center Data web page. We store the state temperatures in CT, and compare
the local New Haven temperatures with the state averages. For example,
one can compute the annual differences in mean temperatures. Here CT and
temps are both vectors of length four and the subtraction operation is applied
element by element. The result is the vector of four differences.

> CT = c(48, 48.2, 48, 48.7)

> temps - CT
[1] 3.9 3.6 3.9 4.3
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The four values in the result are differences in mean temperatures for 1968
through 1971. It appears that on average New Haven enjoyed slightly warmer
temperatures than the state of Connecticut in this period.

Ezample 1.2 (President’s heights). An article in Wikipedia [54] reports data
on the heights of Presidents of the United States and the heights of their
opponents in the presidential election. It has been observed [53, 48] that
the taller presidential candidate typically wins the election. In this example,
we explore the data corresponding to the elections in the television era. In
Table 1.1 are the heights of the presidents and their opponents in the U.S.
presidential elections of 1948 through 2008, extracted from the Wikipedia
article.

Table 1.1 Height of the election winner in the Electoral College and height of the
main opponent in the U.S. Presidential elections of 1948 through 2008.

Year Winner Height Opponent Height

2008 Barack Obama, 6 ft 1in 185 cm John McCain 5ft 9 in 175 cm
2004 George W. Bush 5 ft 11.5 in 182 ¢cm John Kerry 6 ft 4 in 193 cm
2000 George W. Bush 5 ft 11.5 in 182 cm Al Gore 6 ft 1 in 185 cm
1996 Bill Clinton 6 ft 2 in 188 cm Bob Dole 6 ft 1.5 in 187 cm
1992 Bill Clinton 6 ft 2 in 188 cm George H.W. Bush 6 ft 2 in 188 cm
1988 George H.W. Bush 6 ft 2 in 188 cm Michael Dukakis 5 ft 8 in 173 cm
1984 Ronald Reagan 6 ft 1 in 185 cm Walter Mondale 5ft 11 in 180 cm
1980 Ronald Reagan 6 ft 1 in 185 cm Jimmy Carter 5ft 9.5in 177 cm
1976 Jimmy Carter 5 ft 9.5 in 177 cm Gerald Ford 6 ft 0 in 183 cm
1972 Richard Nixon 5 ft 11.5 in 182 cm George McGovern 6 ft 1 in 185 cm
1968 Richard Nixon 5 ft 11.5 in 182 cm Hubert Humphrey 5 ft 11 in 180 cm
1964 Lyndon B. Johnson 6 ft 4 in 193 cm Barry Goldwater 5 ft 11 in 180 cm
1960 John F. Kennedy 6 ft 0 in 183 cm Richard Nixon 5 ft 11.5 in 182 cm

1956 Dwight D. Eisenhower 5 ft 10.5 in 179 cm Adlai Stevenson 5ft 10in 178 cm
1952 Dwight D. Eisenhower 5 ft 10.5 in 179 cm Adlai Stevenson 5ft 10in 178 cm
1948 Harry S. Truman 5 ft 9 in 175 cm Thomas Dewey 5 ft 8 in 173 cm

Section 1.5 illustrates several methods for importing data from a file. In
this example we enter the data interactively as follows. The continuation
character + indicates that the R command is continued.

> winner = c(185, 182, 182, 188, 188, 188, 185, 185, 177,
+ 182, 182, 193, 183, 179, 179, 175)

> opponent = c(175, 193, 185, 187, 188, 173, 180, 177, 183,
+ 185, 180, 180, 182, 178, 178, 173)

(Another method for entering data interactively is to use the scan function.
See Example 3.1 on page 79.) Now the newly created objects winner and
opponent are each vectors of length 16.

> length(winner)
[1]1 16
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The year of the election is a regular sequence, which we can generate using
the sequence function seq. Our first data value corresponds to year 2008, so
the sequence can be created by

> year = seq(from=2008, to=1948, by=-4)
or equivalently by
> year = seq(2008, 1948, -4)

According to the Washington Post blog [53], Wikipedia misstates “Bill
Clinton’s height, which was measured during official medical exams at 6 foot-
2-1/2, making him just a tad taller than George H.-W. Bush.” We can correct

the height measurement for Bill Clinton by assigning a height of 189 c¢m to
the fourth and fifth entries of the vector winner.

189
189

> winner [4]
> winner[5]

The sequence operator : allows us to perform this operation in one step:
> winner[4:5] = 189

The revised values of winner are

> winner

[1] 185 182 182 189 189 188 185 185 177 182 182 193 183 179 179 175
Are presidents taller than average adult males? According to the National
Center for Health Statistics, in 2005 the average height for an adult male
in the United States is 5 feet 9.2 inches or 175.768 cm. The sample mean is
computed by the mean function.

> mean(winner)
[1] 183.4375

Interestingly, the opponents also tend to be taller than average.
> mean (opponent)
[1] 181.0625
Next, we use vectorized operations to compute the differences in the height
of the winner and the main opponent, and store the result in difference.

> difference = winner - opponent

An easy way to display our data is as a data frame:

> data.frame(year, winner, opponent, difference)

The result is displayed in Table 1.2. Data frames are discussed in detail in
Section 1.4.

We see that most, but not all, of the differences in height are positive,
indicating that the taller candidate won the election. Another approach to
determining whether the taller candidate won is to compare the heights with
the logical operator >. Like the basic arithmetic operations, this operation is
vectorized. The result will be a vector of logical values (TRUE/FALSE) having
the same length as the two vectors being compared.
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Table 1.2 Data for Example 1.2.

> data.frame(year, winner, opponent, difference)
year winner opponent difference

1 2008 185 175 10
2 2004 182 193 -11
3 2000 182 185 -3
4 1996 189 187

5 1992 189 188 1
6 1988 188 173 15
7 1984 185 180 5
8 1980 185 177 8
9 1976 177 183 -6
10 1972 182 185 -3
11 1968 182 180 2
12 1964 193 180 13
13 1960 183 182 1
14 1956 179 178 1
15 1952 179 178 1
16 1948 175 173 2

> taller.won = winner > opponent
> taller.won

[1] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
[10] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

On the second line, the prefix [10] indicates that the output continues with
the tenth element of the vector.

The table function summarizes discrete data such as the result in the
vector taller.won.

> table(taller.won)
taller.won
FALSE TRUE

4 12

We can use the result of table to display percentages if we divide the result
by 16 and multiply that result by 100.

> table(taller.won) / 16 * 100
taller.won
FALSE TRUE

25 75

Thus, in the last 16 elections, the odds in favor of the taller candidate winning
the election are 3 to 1.

Several types of graphs of this data may be interesting to help visualize
any pattern. For example, we could display a barplot of differences using the
barplot function. For the plot we use the rev function to reverse the order
of the differences so that the election year is increasing from left to right. We
also provide a descriptive label for both axes.
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> barplot(rev(difference), xlab="Election years 1948 to 2008",
+  ylab="Height difference in cm")

The barplot of differences in heights is shown in Figure 1.1.

It would also be interesting to display a scatterplot of the data. A scatter-
plot of loser’s heights vs winner’s height for election years 1798 through 2004
appears in the Wikipedia article [54]. A simple version of the scatterplot (not
shown here) can be obtained in R by

> plot(winner, opponent)

Chapter 4 “Presentation Graphics” illustrates many options for creating a
custom graphic such as the scatterplot from the Wikipedia article.

J DDDD_

Height difference in cm
0 5
|
=
l
O
=

-10

Election years 1948 to 2008

Fig. 1.1 Barplot of the difference in height of the election winner in the Electoral
College over the height of the main opponent in the U.S. Presidential elections. Height
differences in centimeters for election years 1948 through 2008 are shown from left to
right. The electoral vote determines the outcome of the election. In 12 out of these
16 elections, the taller candidate won the electoral vote. In 2000, the taller candidate
(Al Gore) did not win the electoral vote, but received more popular votes.

Ezample 1.3 (horsekicks). This data set appears in several books; see e.g.
Larsen and Marx [30, p. 287]. In the late 19th century, Prussian officers
collected data on deaths of soldiers in 10 calvary corps recording fatalities
due to horsekicks over a 20 year period. The 200 values are summarized in
Table 1.3.

To enter this data, we use the combine function c.
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Table 1.3 Fatalities due to horsekick for Prussian calvary in Example 1.3

Number of deaths, & Number of corps-years in
which k fatalities occurred

109
65
22

3
1

200

W N = O

>k =c(0, 1, 2, 3, 4
> x c(109, 65, 22, 3, 1)

To display a bar plot of the frequencies, we use the barplot function. The
function barplot(x) produces a barplot like Figure 1.2, but without the
labels below the bars. The argument names.arg is optional; it assigns labels
to display below the bars. Figure 1.2 is obtained by.

> barplot(x, names.arg=k)

80
L

60
L

20
L

Fig. 1.2 Frequency distribution for Prussian horsekick data in Example 1.3.

The relative frequency distribution of the observed data in x is easily com-
puted using vectorized arithmetic in R. For example, the sample proportion
of I’s is 65/200 = 0.545. The expression x/sum(x) divides every element of
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the vector x by the sum of the vector (200). The result is a vector the same
length as x containing the sample proportions of the death counts 0 to 4.

>p =x / sum(x)
> P
[1] 0.545 0.325 0.110 0.015 0.005

The center of this distribution can be estimated by its sample mean, which
is

1R 109(0)+65(1) +22(2) +3(3) + 1(4)

200 2"~ 200
=1
— 0.545(0) +0.325(1) +0.110(2) + 0.015(3) -+ 0.005(4).

The last line is simply the sum of pxk, because R computes this product
element by element (“vectorized”). Now we can write the sample mean formula
as the sum of the vector pxk. The value of the sample mean is then assigned
to r.

> r = sum(p * k)

>r
[1] 0.61
Similarly, one can compute an estimate of the variance. Apply the computing
formula for variance of a sample y1,...,yn:
1 n
2 _ 2
s = n—1 ;(yz 7)

Here the sample mean is the value r computed above and
1
s = — {109(0—7)2 +65(1 — ) +22(2—7)2 +3(3—7r)> +1(4 —7)?},
n—

so the expression inside the braces can be coded as x* (k-r) “2. The sample
variance v is:
>v = sum(x * (k - r)"2) / 199

> v
[1] 0.6109548

Among the counting distributions that might fit this data (binomial, ge-
ometric, negative binomial, Poisson, etc.) the Poisson is the one that has
equal mean and variance. The sample mean 0.61 and sample variance 0.611
are almost equal, which suggests fitting a Poisson distribution to the data.
The Poisson model has probability mass function

k _—X\
f(k)zA;! . k>0, (L.1)
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where A =>"77 o kf(k) is the mean of the distribution. The sample mean 0.61
is our estimate of the population mean A. Substituting the sample mean for
A in the density (1.1), the corresponding Poisson probabilities are

> f = r°k * exp(- r) / factorial(k)

> f
[1] 0.5433509 0.3314440 0.1010904 0.0205551 0.0031346

R has probability functions for many distributions, including Poisson. The R
density functions begin with “d” and the Poisson density function is dpois.
The probabilities above can also be computed as

> f = dpois(k, r)

> f

[1] 0.5433509 0.3314440 0.1010904 0.0205551 0.0031346

];{x 1.2 R provides functions for the density, cumulative distribution func-
tion (CDF), percentiles, and for generating random variates for many com-
monly applied distributions. For the Poisson distribution these functions are
dpots, ppois, gqpots, and rpois, respectively. For the normal distribution
these functions are dnorm, pnorm, gnorm, and rnorm.

How well does the Poisson model fit the horsekick data? In a sample of size
200, the expected counts are 200f (k). Truncating the fraction using floor
we have

> floor(200%f) #expected counts
[1] 108 66 20 4 0
> x #observed counts
[1] 109 65 22 3 1

for £ =0,1,2,3,4, respectively. The expected and observed counts are in close
agreement, so the Poisson model appears to be a good one for this data.

Omne can alternately compare the Poisson probabilities (stored in vector
f) with the sample proportions (stored in vector p). To summarize our com-
parison of the probabilities in a matrix we can use rbind or cbind. Both
functions bind vectors together to form matrices; with rbind the vectors be-
come rows, and with cbind the vectors become columns. Here we use cbind
to construct a matrix with columns k, p, and f.

> cbind(k, p, f)
k P £

[1,] 0 0.545 0.5433509
[2,] 1 0.325 0.3314440
[3,] 2 0.110 0.1010904
[4,] 3 0.015 0.0205551
[5,1 4 0.005 0.0031346

It appears that the observed proportions p are close to the Poisson(0.61)
probabilities in f.
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1.1.3 R Scripts

Example 1.3 contains several lines of code that would be tedious to retype
if one wants to continue the data analysis. If the commands are placed in a
file, called an R script, then the commands can be run using source or copy-
paste. Using the source function causes R to accept input from the named
source, such as a file.

Open a new R script for editing. In the R GUI users can open a new script
window through the File menu. Type the following lines of “horsekicks.R”
(below) in the script. It is a good idea to insert a few comments. Comments
begin with a # symbol.

Using the source function, auto-printing of expressions does not happen.
We added print statements to the script so that the values of objects will
be printed.

horsekicks.R

# Prussian horsekick data
k =c(0, 1, 2, 3, 4)

x = c(109, 65, 22, 3, 1)
p = x / sum(x) #relative frequencies
print(p)

r = sum(k * p)  #mean

v = sum(x * (k - r)"2) / 199 #variance
print(r)

print (v)

f = dpois(k, r)

print(cbind(k, p, £f))

At this point it is convenient to create a working directory for the R scripts
and data files that will be used in this book. To display the current working
directory, type getwd(). For example, one may create a directory at the
root, say /Rx. Then change the working directory through the File menu or
by the function setwd, substituting the path to your working directory in the
quotation marks below. On our system this has the following effect.

> getwd()

[1] "C:/R/R-2.13.0/bin/i386"
> setwd("c:/Rx")

> getwd()

[1] "c:/Rx"

Save the script as “horsekicks.R” in your working directory. Now the file can
be sourced by the command

source("horsekicks.R")

and all of the commands in the file will be executed.

];{x 1.3 Unlike Matlab .m files, an R script can contain any number of func-
tions and commands. Matlab users may be familiar with defining a function
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by writing an .m file, where each .m file is limited to exactly one function.
Function syntax is covered in Section 1.2.

B.x 1.4 Here are a few helpful shortcuts for running part of a script.

o Select lines and click the button ‘Run line or selection’ on the toolbar.
Copy the lines, and then paste the lines at the command prompt.
(For Windows users:) To execute one or more lines of the file in the R
GUI editor, select the lines and type Ctri-R.

e (For Macintosh users:) One can execute lines of a file by selecting the lines
and typing Command-Return.

Ezample 1.4 (Simulated horsekick data). For comparison with Example 1.3,
in this example we use the random Poisson generator rpois to simulate 200
random observations from a Poisson(A = 0.61) distribution. We then com-
pute the relative frequency distribution for this sample. Because these are
randomly generated counts, each time the code below is executed we obtain
a different sample and therefore the results of readers will vary slightly from
what follows.

> y = rpois(200, lambda=.61)
> kicks = table(y)  #table of sample frequencies
> kicks
y

0 1 2 3
105 67 26 2
> kicks / 200 #sample proportions
y

0 1 2 3

0.525 0.335 0.130 0.010

Comparing this data with the theoretical Poisson frequencies:

> Theoretical = dpois(0:3, lambda=.61)
> Sample = kicks / 200

cbind (Theoretical, Sample)
Theoretical Sample

0 0.54335087 0.525

1 0.33144403 0.335

2 0.10109043 0.130

3 0.02055505 0.010

\"2

The computation of mean and variance is simpler here than in Example 1.3
because we have the raw, ungrouped data in the vector y.

> mean(y)

[1] 0.625

> var(y)

[1] 0.5571608

It is interesting that the observed Prussian horsekicks data seems to fit the
Poisson model better than our simulated Poisson(A = 0.61) sample.
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1.1.4 The R Help System

The R Graphical User Interface has a Help menu to find and display online
documentation for R objects, methods, data sets, and functions. Through the
Help menu one can find several manuals in PDF form, an html help page,
and help search utilities. The help search utility functions are also available
at the command line, using the functions help and help.search, and the
corresponding shortcuts 7 and ?7. These functions are described below.

e help("keyword") displays help for “keyword”.
e help.search("keyword") searches for all objects containing “keyword”.

The quotes are usually optional in help, but would be required for special
characters such as in help(" ["). Quotes are required for help.search. When
searching for help topics, keep in mind that R is case-sensitive: for example,
t and T are different objects.

One or two question marks in front of a search term also search for help
topics.

e 7keyword (short for help(keyword)).
e ?7keyword (short for help.search("keyword")).

Try entering the following commands to see their effect.

7barplot #searches for barplot topic
??plot #anything containing "plot"
help(dpois) #search for "dpois"

help.search("test") #anything containing "test"

The last command above displays a list including a large number of statistical
tests implemented in the R.

One of the features of R online help is that most of the keywords doc-
umented include examples appearing at the end of the page. Users can try
one or more of the examples by selecting the code and then copy-paste to
the console. R also provides a function example that runs all of the exam-
ples if any exist for the keyword. To see the examples for the function mean,
type example(mean). The examples are then executed and displayed at the
console with a special prompt symbol (mean>) that is specific to the keyword.

> example (mean)
mean> x <- c(0:10, 50)
mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10))
[1] 8.75 5.50
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mean> mean(USArrests, trim = 0.2)
Murder Assault UrbanPop Rape
7.42 167.60 66.20 20.16
>

For many of the graphics functions, the documentation includes interesting
examples. Try example (curve) for an overview of what the curve function
can do. The system will prompt the user for input as it displays each graph.
A glossary of R functions is available online in “Appendix D: Function and
Variable Index” of the manual “Introduction to R” [49], and the “R Refer-
ence Manual” [41] has a comprehensive index by function and concept. These
manuals are included with the R distribution, and also available online on
the R project home page! at the line “Manuals” under “Documentation”.

1.2 Functions

The R language allows for modular programming using functions. R users
interact with the software primarily through functions. We have seen several
examples of functions above. In this section, we discuss how to create user-
defined functions.

The syntax of a function is

f = function(x, ...) {
}

or

f <- function(x, ...) {
}

where £ is the name of the function, x is the name of the first argument (there
can be several arguments), and . . . indicates possible additional arguments.
Functions can be defined with no arguments, also. The curly brackets enclose
the body of the function. The return value of a function is the value of the
last expression evaluated.

Ezample 1.5 (function definition). R has a function var that computes the
unbiased estimate of variance, usually denoted by s?. Occasionally, one re-
quires the maximum likelihood estimator (MLE) of variance,

A2 1 - —\2 n—1 2
& :EZ(a:ifx) =—s".
i=1

A function to compute 62 can be created as follows.

! WWW.r-project.org
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v = var(x)
n
v (n-1)/n
}

var.n = function(x) {

The NROW function computes the number of observations in x. The value v *
(n-1) /n evaluated on the last line is returned. Note: it would also be correct
(but unnecessary) to replace the last line of the function var.n with

return(v * (n - 1) / n)

Before this user-defined function can be used, one must input the code
so that the function, in this case var.n, is an object in the R workspace.
Normally, one places functions in a script file and uses the source function
(or copy and paste to the command line) to submit them. Here is an example
that computes s? and 62 for the temperature data of Example 1.1.

> temps = c(51.9, 51.8, 51.9, 53)
> var(temps)

[1] 0.3233333

> var.n(temps)

[1] 0.2425

Ezample 1.6 (functions as arguments). Many of the available R functions re-
quire functions as arguments. An example is the integrate function, which
implements numerical integration; one must supply the integrand as an argu-
ment. Suppose that we need to compute the beta function, which is defined
as

1
B(a,b)z/ 2 1 —x)b e,
0

for constants ¢ > 0 and b > 0. First we write a function that returns the
integrand evaluated at a given point x. The additional arguments a and b
specify the exponents.

f = function(x, a=1, b=1)
x~(a-1) * (1-x) " (b-1)

The curly brackets are not needed here because there is only one line in the
function body. Also, we defined default values a =1 and b =1, so that if a or
b are not specified, the default values will be used. The function can be used
to evaluate the integrand along a sequence of x values.

> x = seq(0, 1, .2) #sequence from O to 1 with steps of .2

> f(x, a=2, b=2)

[1] 0.00 0.16 0.24 0.24 0.16 0.00

This wvectorized behavior is necessary for the function argument of the in-
tegrate function; the function that evaluates the integrand must accept a
vector as its first argument and return a vector of the same length.

Now the numerical integration result for a = b= 2 can be obtained by



