Marco Di Natale · Haibo Zeng Paolo Giusto · Arkadeb Ghosal

Understanding and Using the Controller Area Network Communication Protocol

Theory and Practice

Understanding and Using the Controller Area Network Communication Protocol

Marco Di Natale • Haibo Zeng • Paolo Giusto Arkadeb Ghosal

Understanding and Using the Controller Area Network Communication Protocol

Theory and Practice

Marco Di Natale Scuola Superiore S. Anna RETIS Lab. Pisa 56124, Italy

Paolo Giusto General Motors Corporation Palo Alto, CA 94306, USA Haibo Zeng McGill University Montreal, Quebec, Canada H3A 2A7

Arkadeb Ghosal National Instruments Berkeley, CA 94704, USA

ISBN 978-1-4614-0313-5 e-ISBN 978-1-4614-0314-2 DOI 10.1007/978-1-4614-0314-2 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011944254

© Springer Science+Business Media, LLC 2012

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book is the result of several years of study and practical experience in the design and analysis of communication systems based on the Controller Area Network (CAN) standard. CAN is a multicast-based communication protocol characterized by the deterministic resolution of the contention, low cost, and simple implementation. The CAN [16] was developed in the mid 1980s by Bosch GmbH, to provide a cost-effective communications bus for automotive applications. Today it is widely used also in factory and plant controls, in robotics, medical devices, and also in some avionics systems.

Controller Area Network is a broadcast digital bus designed to operate at speeds from 20 kbit/s to 1 Mbit/s, standardized as ISO/DIS 11898 [6] for high speed applications (500 kbit/s) and ISO 11519-2 [7] for lower speed applications (up to 125 kbit/s). The transmission rate depends on the bus length and transceiver speed. CAN is an attractive solution for embedded control systems because of its low cost, light protocol management, the deterministic resolution of the contention, and the built-in features for error detection and retransmission. Controllers supporting the CAN communication standard, as well as sensors and actuators that are manufactured for communicating data over CAN, are today widely available. CAN networks are successfully replacing point-to-point connections in many application domains.

Commercial and open source implementation of CAN drivers and middleware software is today available from several sources, and support for CAN is included in automotive standards, including OSEKCom and AUTOSAR. The standard has been developed with the objective of time determinism and support for reliable communication. With respect to these properties, it has been widely studied by academia and industry, and methods and tools have been developed for predicting the time and reliability characteristics of messages.

The CAN standard has originally been proposed for application to automotive systems, but with time emerged as a quite appropriate solution for other control systems as well. This book tries a general approach to the subject, but in many places it refers to automotive standards and systems. Automotive architectures and functions are also often used as examples and benchmarks. We hope this is not a

vi Preface

problem for the reader and hopefully, the generalization of the proposed approaches and methods to other domains should not be too hard. On the other side, automotive systems are today an extremely interesting context for whoever is interested in complex and distributed embedded systems (including of course those using the CAN bus). They offer complex architectures with multiple buses and nodes with gateways, real time and reliability constraints and all the challenges that come with a high bus utilization and the demand for increased functional complexity.

This book attempts at providing an encompassing view on the study and use of the CAN bus, with references to theory and analysis methods, and a description of the issues in the practical implementation of the communication stack for CAN and the implications of design choices at all levels, from the selection of the controller, to SW development and architecture design. We believe such an approach may be of advantage to those interested in the use of CAN, from students of embedded system courses, to researchers, architecture designers, system developers, and all practitioners that are interested in the deployment and use of a CAN network and its nodes.

As such, the book attempts at covering all aspects of the design and analysis of a CAN communication system. Chapter 1 contains a short summary of the standard, with emphasis on the bus access protocol and on the protocol features that are related to or affect the reliability of the communication. Chapter 2 describes the functionality, the design, the implementation options, and the management policies of the hardware controllers and software layers in CAN communication architectures. Chapter 3 focuses on the worst case time analysis of the message response times or latencies. Chapters 4 and 5 presents the stochastic and statistical timing analyses. Chapter 6 addresses reliability issues. Chapter 7 deals with the analysis of message traces. Chapter 8 describes commercial tools for configuring, analyzing and calibrating a CAN communication system. Chapter 9 contains a summary of the main transport level and application-level protocols that are based on CAN.

Pisa, Italy Montreal, QC, Canada Palo Alto, CA, USA Berkeley, CA, USA Marco Di Natale Haibo Zeng Paolo Giusto Arkadeb Ghosal

Contents

1	The	CAN 2	2.0b Standard	
	1.1	Physic	cal Layer	
		1.1.1	Bit Timing	
		1.1.2	Transceivers, Network Topology and Bus Length	
		1.1.3	Physical Encoding of Dominant and Recessive States	1
		1.1.4	Connectors	1
		1.1.5	The Physical Layer in ISO and SAE Standards	1
	1.2	Messa	age Frame Formats	1
		1.2.1	DATA Frame	1
		1.2.2	Remote Frame	1
		1.2.3	Error Frame	1
		1.2.4	Overload Frame	1
	1.3	Bus A	rbitration	1
	1.4	Messa	age Reception and Filtering	1
	1.5	Error	Management	2
		1.5.1	CRC Checks	2
		1.5.2	Acknowledgement	2
		1.5.3	Error Types	2
		1.5.4	Error Signalling	2
		1.5.5	Fault Confinement	2
2	Ref	erence .	Architecture of a CAN-Based System	2
	2.1		Controller and Bus Adapter	2
	2.2	CAN	Device Drivers	2
		2.2.1	Transmission	2
		2.2.2	Reception	3
		2.2.3	Bus-Off and Sleep Modes	3
	2.3	Intera	ction Layer	3
		2.3.1	Direct Transmission Mode	3
		2.3.2	Periodic Transmission Mode	3
		2.3.3	Mixed Transmission Mode	3

viii Contents

		2.3.4	Deadline Monitoring	38
		2.3.5	Message Filtering	38
	2.4	Imple	mentation Issues	38
		2.4.1	Driver Layer	39
		2.4.2	Interaction Layer	41
3	Wor	st-Case	e Time Analysis of CAN Messages	43
	3.1	Ideal I	Behavior and Worst-Case Response-Time Analysis	45
	3.2	Analy	sis Flaw and Correction	48
	3.3	Analy	sis of Message Systems With Offsets	50
	3.4	Messa	ge Buffering Inside the Peripheral	51
	3.5	An Ide	eal Implementation	52
	3.6	Source	es of Priority Inversion: When the Analysis Fails	57
		3.6.1	Message Queue Not Sorted by Priority	57
		3.6.2	Messages Sent by Index of the Corresponding TxObject	57
		3.6.3	Impossibility of Preempting the TxObjects	58
		3.6.4	Polling-Based Output	60
	3.7		the Timing Analysis of Messages to End-to-End	
			nse-Times Analysis	62
	3.8	Concl	usions	65
4	Stoc	hastic .	Analysis	67
	4.1	Introd	uction	67
	4.2		ence Work	69
	4.3	Syster	m Model and Notation	71
	4.4	Stocha	astic Analysis of Message Response-Times	72
		4.4.1	A Modeling Abstraction for CAN Messages	72
		4.4.2	Stochastic Analysis of the Approximate System	77
	4.5	Analy	sis on an Example Automotive System	84
5	Stat	istical A	Analysis	89
	5.1		uction	89
	5.2	Derivi	ing and Fitting the Model	90
		5.2.1	Common Characteristics of Message Response-Times	91
		5.2.2	Fitting the Message Response-Times	93
	5.3	Estima	ate of the Distribution Parameters	98
		5.3.1	Parameters x^{off} and y	98
		5.3.2	Parameters y^D and y^T	98
		5.3.3	Parameters a and b of the Gamma Distribution	100
	5.4		eting Message Response-Times	108
		5.4.1	Prediction of Response-Time cdfs for Messages	
			on the Reference Bus	110
		5.4.2	Prediction of Response-Time cdfs for Messages	
	<u>.</u> .	~	on Other Buses	112
	5.5	-	arison of Stochastic and Statistical Analyses	117
		5.5.1	Input Information	117

Contents ix

		5.5.2	Analysis Accuracy	118
		5.5.3	Analysis Complexity	119
6	Reli	ability .	Analysis of CAN	121
	6.1	Error 1	Rates in CAN	122
	6.2	Devia	tion Points in the Standard	124
		6.2.1	Incorrect Values in the DLC Field	124
		6.2.2	Dominant SRR Bit Value	125
	6.3	Fault (Confinement and Transition to Bus Off	125
	6.4	Incons	sistent Omissions or Duplicate Messages	126
	6.5		col Vulnerability	128
	6.6	Bus To	opology Issues	131
	6.7		ing Idiot Faults and Bus Guardians	132
7	Ana		CAN Message Traces	133
	7.1		on	134
	7.2		Studies	134
	7.3	Trace	Analysis	135
		7.3.1	Identification of Reference Messages	136
		7.3.2	Base Rate Message	137
		7.3.3	Reconstruction of the True Message Periods	
			and Arrival Times	137
		7.3.4	Queuing Jitter Because of TxTask Scheduling Delays	139
		7.3.5	Clock Drifts and Actual Message Periods	139
		7.3.6	Finding the Message Phase with Respect	
			to the Base Rate Message	141
	7.4	Analy	sis of Automotive Case Studies	142
		7.4.1	Overwrite Error at the Destination Node	
			for Message $0x1F3$ in V_1	144
		7.4.2	Aperiodic Message Transmission	148
		7.4.3	Local Priority Inversion	148
		7.4.4	Remote Priority Inversion	152
		7.4.5	Message Loss at Source Node	153
		7.4.6	Reconstruction of Message-to-ECU Relation	
			in a Hybrid Vehicle	155
8	CAN	N Tools		157
	8.1	Syster	m Configuration	158
	8.2	Syster	m Analysis	160
		8.2.1	Network Bus Simulation and Rest-Bus Simulation	160
		8.2.2	Traffic Logging and Analysis	167
		8.2.3	Network Bus Worst/Best Case Analysis	169
	8.3	Protoc	col Stack Implementation and Configuration	175
		8.3.1	CAN Driver Development and Integration	175
	8.4	Protoc	col Stack/Application Calibration	178

x Contents

9	Hig	her-Lev	vel Protocols	181
	9.1	J1939		181
		9.1.1	Physical Layer	182
		9.1.2	Parameters and Parameter Groups	183
		9.1.3	Protocol Data Units (PDUs)	185
		9.1.4	Transport Protocol	186
		9.1.5	Network Management	188
	9.2	CANo	pen	190
		9.2.1	CANopen Architecture and Standards	190
		9.2.2	Physical Level	190
		9.2.3	Object Dictionary	192
		9.2.4	Time Services	195
		9.2.5	Communication Protocols	197
		9.2.6	Service-Oriented Communication and SDO	197
		9.2.7	Message Identifier Allocation	203
		9.2.8	Network Management	204
	9.3	CCP.		206
		9.3.1	Protocol Definition	206
		9.3.2	Command Receive Object	207
		9.3.3	Data Transmission Object	208
		9.3.4	List of CCP Commands	208
		9.3.5	List of Packet IDs and Command Return Codes	210
	9.4	TTCA	N	210
		9.4.1	Motivation and Goal	211
		9.4.2	Synchronization Mechanisms in TTCAN	211
		9.4.3	Scheduling of TTCAN Networks	212
		9.4.4	Reliability of TTCAN and Additional Notes	214
Sy	mbol	s		215
Re	eferer	ices		217
In	dex			221

List of Figures

Fig. 1.1	Bit propagation delay	
Fig. 1.2	Definition of the bit time and synchronization	
Fig. 1.3	The NXP PCA 82C250 transceiver and its connections	
Fig. 1.4	Relationship between bus length and bit rate for some	
	possible configurations	
Fig. 1.5	Terminating a high-speed network	
Fig. 1.6	Placement of termination resistors on a low-speed network	
Fig. 1.7	Encoding of dominant and recessive bits	1
Fig. 1.8	The bus connector defined by CIA (DS 102-1)	1
Fig. 1.9	The CAN data frame format	1
Fig. 1.10	The CAN identifier format	1
Fig. 1.11	The control field format	1
Fig. 1.12	The CRC and acknowledgement formats	1
Fig. 1.13	An example of CAN bus arbitration based on message identifiers .	1
Fig. 1.14	Masks and filters for message reception	2
Fig. 1.15	Bit sequence after detection of an error	2
Fig. 1.16	Node error states	2
Fig. 2.1	Typical architecture of a CAN-based system. Actual	
	systems may have different dependencies among layers	2
Fig. 2.2	Interaction layer architecture	3
Fig. 2.3	Timing for the transmission of direct mode message objects	3
Fig. 2.4	Timing for the transmission of periodic mode messages objects	3
Fig. 2.5	Timing for the transmission of mixed mode messages objects	3
Fig. 2.6	Interrupt- or polling-based management of the	
	TxObject at the CAN peripheral	4
Fig. 2.7	The middleware task TxTask executes with period T_{TX} ,	
-	reads signal variables are enqueues messages	4

xii List of Figures

Fig. 3.1	Worst-case stuffing sequence, one bit is added for every	
	four (except for the first five) bit in the frame	46
Fig. 3.2	Worst-case response-time, busy period and time critical	
	instant for m_i	47
Fig. 3.3	An example showing the need for a fix in the evaluation	
	of the worst-case response-time	49
Fig. 3.4	In systems with offsets the analysis must be repeated	
	for all the message queuing times inside the system hyperperiod	50
Fig. 3.5	Static allocation of TxObjects	52
Fig. 3.6	Temporary queuing of outgoing messages	53
Fig. 3.7	Buffer state and possible priority inversion for the	
	single-buffer (top) and two-buffer (middle) cases.	
	Priority inversion can be avoided with three-buffers (bottom)	54
Fig. 3.8	Priority inversion for the single buffer case	55
Fig. 3.9	Priority inversion for the two buffer case	56
Fig. 3.10	Priority inversion when the TxObject cannot be revoked	58
Fig. 3.11	Double software queue	59
Fig. 3.12	Trace of a priority inversion for a double software queue	59
Fig. 3.13	The transmit polling task introduces delays between transmission.	60
Fig. 3.14	Priority inversion for polling-based output	61
Fig. 3.15	Latency distribution for a message with polling-based	
	output compared to interrupt-driven output	61
Fig. 3.16	Model of a distributed computation and its end-to-end latency	64
Fig. 3.17	Data loss and duplication during communication	64
Fig. 4.1	Convolution and shrinking	70
Fig. 4.2	An example of characteristic message transmission time	73
Fig. 4.3	The transformation of the queuing model for remote messages	74
Fig. 4.4	Updating the backlog in the discrete-time model	78
Fig. 4.5	The response-time cdfs of high priority messages m_5	
6	and m_{25} in Table 4.1	86
Fig. 4.6	The response-time cdfs of low priority messages m_{43}	
6	and m_{63} in Table 4.1	87
Fig. 4.7	The response-time cdf of a low priority message in a bus trace	88
Fig. 5.1	Response-time cdf of m_{25} with more than one higher	
8	priority harmonic set	92
Fig. 5.2	Fitting a mix model distributions to the response-time of m_{13}	95
Fig. 5.3	Quantile–quantile plot of samples from simulation and	, ,
8. 0.0	fitted distribution for m_5	96
Fig. 5.4	Quantile–quantile plot of samples from simulation and	,
2 - 5. 0. 1	fitted distribution for m_{69}	97
Fig. 5.5	Absolute errors in the estimation of the y^D values for messages	99
Fig. 5.6	Approximate linear relation between μ and Q	102
Fig. 5.7	Approximate linear relation between b and Q	103
	The same and the s	

List of Figures xiii

Fig. 5.8	Approximate linear relation between μ and Q^{hr}	104
Fig. 5.9	Approximate linear relation between b and Q^{hr}	104
Fig. 5.10	Minimized absolute errors in the estimation of μ and b	
	for messages on the reference bus	106
Fig. 5.11	Minimized relative errors in the estimation of μ and b	
	for messages on the reference bus	110
Fig. 5.12	Prediction of the response-time cdf for message m_5	111
Fig. 5.13	Prediction of the response-time cdf for message m_{68}	111
Fig. 5.14	Prediction of response-time cdf for m ₃₉ with more than	
	one harmonic set	112
Fig. 5.15	Prediction of response-time cdf for messages on bus2:	
	worst result	114
Fig. 5.16	Prediction of response-time cdfs for messages on bus2:	
	better quality result	115
Fig. 5.17	RMSE of statistical analysis: reference bus, bus2, and bus3	116
Fig. 5.18	RMSE of statistical analysis: message traces	117
Fig. 5.19	Comparison of stochastic and statistical analyses: RMSE	118
Fig. 5.20	Comparison of stochastic and statistical analyses: K–S statistics	119
F' (1		100
Fig. 6.1	The experimental setup for measuring bit error rates in [26]	122
Fig. 6.2	A scenario leading to inconsistent message duplicates	127
Fig. 6.3	Two bit errors result in a much longer sequence because	120
Dia 64	of stuffing	129
Fig. 6.4	Probability of a corrupted message being undetected for a given number of bit errors	130
	for a given number of bit citors	130
Fig. 7.1	Signal overwrite error	135
Fig. 7.2	From message arrival to message receive	136
Fig. 7.3	Detection of idle time on the CAN bus	137
Fig. 7.4	Defining a reference periodic base for the arrival times	138
Fig. 7.5	Calculation of period for message 0x128 on an	
	experimental vehicle considering clock drift	140
Fig. 7.6	Detection of the message phase	141
Fig. 7.7	Response time of messages $0x184$ and $0x2F9$ on E_{12} of	
	vehicle V_1	145
Fig. 7.8	Response time of messages 0x12A, 0x1F3 and 0x3C9	
	on E_{11} of vehicle V_1	146
Fig. 7.9	An aperiodic message $0x130$ from E_{22} on vehicle V_2 :	
	activation interval in general is 200 ms, with additional	
	activations every 1,500 ms indicated by the triangles	149
Fig. 7.10	An aperiodic message $0x300$ from E_{23} on	
	vehicle V_2 : two sets of periodic transmissions	
	at nominal period 100 ms indicated by <i>triangles</i>	
	and <i>arrows</i> respectively, with relative phase	
	$= 80 \mathrm{ms/20 ms}$	149

xiv List of Figures

Fig. 7.11	Local priority inversion of message $0x124$ on node E_{23}	
	of vehicle V_2 , as shown in the trace segment. Note that	
	on node E_{23} the period of TxTask should be $10 \mathrm{ms}$, the	
	gcd of the periods. $0x124$ should always be queued	
	together with 0x170, 0x308, 0x348, 0x410 and 0x510,	
	but it is transmitted after 0x170, 0x308, 0x348 as	
	indicated by the <i>triangles</i>	150
Fig. 7.12	Local priority inversion of message $0x199$ on node E_{15}	
	of vehicle V_1 , as shown in the trace segment. Note that	
	on node E_{15} the period of TxTask should be 12.5 ms,	
	the gcd of the periods. 0x199 should always be queued	
	together with 0x4C9 , but it is transmitted after 0x4C9	
	as indicated by the <i>triangles</i>	150
Fig. 7.13	Local priority inversion of message $0x19D$ on node E_{15}	
	of vehicle V_1 , as shown in the trace segment. 0x19D	
	should always be queued together with 0x4C9 and	
	0x77F, but it is transmitted after 0x4C9 or 0x77F as	
	indicated by the <i>triangles</i>	151
Fig. 7.14	Local priority inversion of message $0x1F5$ on node E_{15}	
	of vehicle V_1 , as shown in the trace segment. 0x1F5	
	should always be queued together with 0x4C9 and	
	0x77F , but it is transmitted after 0x4C9 or 0x77F as	151
F: 7.15	indicated by the <i>triangles</i>	151
Fig. 7.15	Interpretation of possible cause of local priority	150
Dia 7.16	inversion for message 0x124	152
Fig. 7.16	Remote priority inversion of message 0x151 on	
	E ₂₄ of vehicle V ₂ . 0x151 should always be queued	
	together with 0x150, but 0x380, 0x388, and 0x410 get transmitted between 0x150 and 0x151, as indicated by	
	the triangles	153
Fig. 7.17	Trace segment of message loss at the transmission	133
11g. 7.17	node: 0x199 from E_{15} on vehicle V_1	153
Fig. 7.18	Trace segment of message loss at the transmission	133
11g. 7.10	node: 0x19D from E_{15} on vehicle V_1	154
Fig. 7.19	Clock drifts for ECUs on the hybrid vehicle	
115. 7.17	Clock diffes for Lee's on the hybrid vehicle	133
Fig. 8.1	The CAN communication system	
118. 011	tool flow	158
Fig. 8.2	The signal specification in CANdb++	159
Fig. 8.3	Rest-bus simulation in CANoe (source: Vector Informatik)	161
Fig. 8.4	Modeling and simulation of a CAN network in	
8	VisualSim (source: Mirabilis Design)	162
Fig. 8.5	VisualSim histogram of bytes transmitted over CAN	
<i>U</i>	Bus (source: Mirabilis Design)	164
Fig. 8.6	VisualSim plot of the CAN bus states (source: Mirabilis Design)	164

List of Figures xv

Fig. 8.7	VisualSim plot of CAN bus message latencies (source:	
	Mirabilis Design)	165
Fig. 8.8	chronVAL GUI (source: INCHRON)	166
Fig. 8.9	chronVAL Gantt chart (source: INCHRON)	166
Fig. 8.10	chronBUS GUI (source: INCHRON)	168
Fig. 8.11	chronBUS Gantt chart (source: INCHRON)	168
Fig. 8.12	CANalyzer configuration and analysis (source: Vector Informatik)	169
Fig. 8.13	Traffic data log (source: Vector Informatik)	170
Fig. 8.14	SymTA/S bus timing model	172
Fig. 8.15	SymTA/S timing analysis and forecast results	172
Fig. 8.16	chronVAL Gantt chart (source: INCHRON)	173
Fig. 8.17	chronBUS table of results (source: INCHRON)	174
Fig. 8.18	chronBUS single message results (source: INCHRON)	174
Fig. 8.19	chronBUS event spectrum viewer (source: INCHRON)	175
Fig. 8.20	η^+ -CANbedded basic software	176
Fig. 8.21	η^+ -CANbedded basic software abstraction layers	176
Fig. 8.22	Vector configuration tools for CAN	177
Fig. 8.23	GENy configuration tool	178
Fig. 9.1	J1939 standards in the ISO/OSI reference model	182
Fig. 9.2	J1939 PDU definition inside the CAN identifier	185
Fig. 9.3	Message sequence for a multi-packet message that is of	
	type broadcast (left side) as well as point-to-point (right	
	<i>side</i>) in J1939	186
Fig. 9.4	J1939 address claiming procedure starting with a	
	Request for Address Claim	189
Fig. 9.5	The CANopen standards, from the application to the	
	physical layer	191
Fig. 9.6	The CANopen pin connections for a 5-pin mini connector	192
Fig. 9.7	The CANopen Object table index	193
Fig. 9.8	The CANopen Object table indexes for object types	193
Fig. 9.9	The CANopen Object table indexes for the	
	Communication Profile Objects	194
Fig. 9.10	The error object register bits and their meaning	194
Fig. 9.11	The CANopen Identity Object structure with the bit	
	map for the fields Vendor ID and Revision number	195
Fig. 9.12	Synchronization message, with the corresponding	
	period and synchronization window	196
Fig. 9.13	The time stamp object	197
Fig. 9.14	The transfer protocol for SDO downloads and uploads	198
Fig. 9.15	SDO Transfer Initiate message and its reply from the server	199
Fig. 9.16	The initiate transfer message indicates the object	
	dictionary entry on which to operate	199
Fig. 9.17	The SDO format for segmented transfers	200
Fig. 9.18	SDO download block exchange	200

xvi List of Figures

Fig. 9.19	Message exchanges for Read- or Write-type PDOs	201
Fig. 9.20	Mapping of application objects into PDOs	201
Fig. 9.21	Synchronous and asynchronous PDO messages	202
Fig. 9.22	A taxonomy of PDO transmission modes	202
Fig. 9.23	Cyclic and acyclic synchronous PDOs	203
Fig. 9.24	The CANopen Object table indexes for object types	204
Fig. 9.25	The device states controlled by the Network	
	Management protocol	205
Fig. 9.26	The three sub-states in initialization state	206
Fig. 9.27	Communication flow between CCP master and slave devices	207
Fig. 9.28	Message format of a Command Receive Object	208
Fig. 9.29	Format of a Command Return Message or an Event Message	208
Fig. 9.30	Format of a Data Acquisition Message	208
Fig. 9.31	An example of a TTCAN system matrix	213

List of Tables

ole I.I	Typical transmission speeds and corresponding bus lengths	/
ble 1.2	Bus cable characteristics	8
ble 1.3	Acceptable voltage ranges for CAN transmitters and receivers	12
ble 1.4	The rules of updating transmit error count and receive	
	error count	23
ble 2.1	CAN controllers	28
ble 3.1	Summary of properties for some existing CAN controllers	51
ble 4.1	An automotive CAN system with 6 ECUs and 69 messages	85
ble 5.1	An example automotive CAN system	91
ble 5.2	Statistics of the fitted model distributions for messages	
	on the reference bus	97
ble 5.3	Coefficients $\beta_1 - \beta_4$ of the parameterized model of	
	y^D for the reference bus	101
ble 5.4	Coefficients $\beta_5 - \beta_{19}$ of the parameterized model to	
	minimize absolute errors of μ and b	107
ble 5.5	Coefficients $\beta_5' - \beta_{21}'$ of the parameterized model to	
	minimize relative errors of μ and b	109
ble 5.6	Error of the predicted distribution for messages on the	
	reference bus with regression functions (5.9), (5.13),	
	and (5.14)	113
ble 5.7	Error of the predicted distribution for messages on the	
	reference bus with regression functions (5.9), (5.18),	
	and (5.19)	114
ble 5.8	Comparison of stochastic and statistical	
	analyses: analysis complexity	119

xviii List of Tables

Table 6.1	Bit error rates on a CAN bus measured in three	123
Table 6.2	different environments	123
Table 0.2	inconsistent message duplicates	128
Table 6.3	Number of undetected message errors per day as a	120
Table 0.5	function of the bit error rate	131
	Tunction of the oil error rate	131
Table 7.1	True periods estimated for the messages of node E_{12}	139
Table 7.2	Evidence of clock drift on the same node: message	
	0x128 on an experimental vehicle with different	
	number of frames received in the same length of time	140
Table 7.3	Nodes and messages from a subset of vehicle V_1	143
Table 7.4	Nodes and messages from a subset of vehicle V_2	144
Table 7.5	Trace segment with arrival times and response times	147
Table 7.6	Messages from the hybrid vehicle (periods in ms)	154
Table 8.1	Characteristic functions of most relevant event streams	171
Table 9.1	Physical layer requirements for J1939	183
Table 9.2	The definition of engine temperature parameter group	184
Table 9.3	Parameters required for the definition of the	
	connection management PGN and message format	187
Table 9.4	Definition of an ECU name in J1939	188
Table 9.5	Acceptable bit rates, bus lengths, and bit timings as	
	specified by CANopen	191
Table 9.6	Pin assignment for the 5-pin mini connector	192
Table 9.7	Definition of the CAN identifier based on the function	
	code and the device identifier	204
Table 9.8	List of CCP commands	209
Table 9.9	List of packet IDs and their meaning	210
Table 9.10	List of command return codes	210

Chapter 1 The CAN 2.0b Standard

This chapter introduces version 2.0b of the CAN Standard. This introduction is an excerpt of the main features of the protocol as described in the official Bosch specification document [16]. For more details, the reader should check the free official specification document available on-line, along with the other references provided throughout this chapter.

The CAN network protocol has been defined to provide deterministic communication in complex distributed systems with the following features and capabilities:

- Message priority assignment and guaranteed maximum latencies.
- Multicast communication with bit-oriented synchronization.
- System-wide data consistency.
- · Bus multimaster access.
- Error detection and signaling with automatic retransmission of corrupted messages.
- Detection of permanent failures in nodes, and automatic switch-off to isolate faulty node.

In the context of the ISO/OSI reference model, the original CAN specification, developed by Robert Bosch GmbH, covers only the *Physical* and *Data link* layers. Later, ISO provided its own specification of the CAN protocol, with additional details for the implementation of the physical layer.

Generally speaking, the purpose of the Physical Layer is to define the encoding of bits into (electrical or electromagnetic) signals with defined physical characteristics. The signals are transmitted over wired or wireless links from one node to another. In the Bosch CAN standard, however, the description is limited to the definition of the bit timing, bit encoding, and synchronization. The specification of the physical transmission medium including the required (current/voltage) signal levels, the connectors, and other characteristics that are necessary for the definition of the driver/receiver stages and the physical wiring is not covered. Other reference documents and implementations have filled this gap, providing solutions for the practical implementation of the protocol.

The Data-link layer consists of the Logical Link Control (LLC) and Medium Access Control (MAC) sublayers. The LLC sublayer provides all the services for the transmission of a stream of bits from a source to a destination. In particular, it defines:

- Services for data transfer and remote data request.
- Conditions upon which received messages should be accepted, including message filtering.
- Mechanisms for recovery management and flow management (overload notification).

The MAC sublayer is considered as the kernel of the CAN protocol. The MAC sublayer is responsible for message framing, arbitration of the communication medium, acknowledgment management, and error detection and signaling. For the purpose of fault containment and additional reliability, the MAC operations are supervised by a controller entity monitoring the error status and limiting the operations of a node if a possible permanent failure is detected.

The following sections provide more details into each sub-layer, including requirements and operations.

1.1 Physical Layer

As stated in the introduction, the Bosch CAN standard defines bit encoding, timing and synchronization, included in the Physical Signaling (PS) portion of the ISO-OSI physical layer. The standard does not cover other issues related to the physical layer, including the types of cables and connectors that should be used for communicating over a CAN network and the ranges of voltages and currents that are considered as acceptable for the operations. In the OSI terminology, the Physical Medium Attachment (PMA) and Medium Dependent Interface (MDI) are the two parts of the physical layer which are not defined by the original standard.

1.1.1 Bit Timing

The signal type is digital with *Non Return to Zero* (NRZ) bit encoding. The use of NRZ encoding ensures a minimum number of transitions and high resilience to external disturbance. The two bits are encoded in physical medium states defined as "recessive" and "dominant." (0 is typically assumed to be associated with the "dominant" state). The protocol allows multi-master access to the bus. At the lowest level, if multiple masters try to drive the bus state at the same time, the "dominant" configuration always prevails upon the "recessive."

Nodes are requested to be synchronized on the bit edges so that every node agrees on the value of the bit currently transmitted on the bus. To achieve synchronization,

1.1 Physical Layer 3

each node implements a protocol that keeps the receiver bit rate aligned with the actual rate of the transmitted bits. The synchronization protocol uses transition edges to resynchronize nodes. Hence, long sequences without bit transitions should be avoided to ensure limited drift among the node bit clocks. This is the reason why the protocol employs the so-called "bit stuffing" or "bit padding" technique, which forces a complemented bit in a transmission sequence after 5 bits of the same type. Stuffing bits are automatically inserted by the transmission node and removed at the receiving side before processing the frame contents.

Synchronous bit transmission enables the CAN arbitration protocol and simplifies data-flow management, but also requires a sophisticated synchronization protocol. Bit synchronization is performed first upon the reception of the start bit available with each asynchronous transmission. Later, to enable the receiver(s) to correctly read the message content, continuous resynchronization is required. Other features of the protocol influence the definition of the bit timing. Bus arbitration, message acknowledgement and error signalling are based on the capability of the nodes to change the status of a transmitted bit from recessive to dominant. Since the bus is shared, all other nodes in the network are informed of the change in the bit status before the bit transmission ends. Therefore, the bit (transmission) time must be at least large enough to accommodate the signal propagation from any sender to any receiver and back to the sender.

The bit time needs to account for a propagation delay that includes the signal propagation delay on the bus as well as delays caused by the electronic circuitry of the transmitting and receiving nodes. In practice, this means that the signal propagation is determined by the two nodes within the system that are farthest apart from each other as the bit is broadcasted to all nodes in the system (Fig. 1.1).

The leading bit edge from the transmitting node (node A in Fig. 1.1 reaches node B after the signal propagates all the way from the two nodes. At this point, B can change its value from recessive to dominant, but the new value will not reach A until the transition from recessive to dominant propagates across the entire bus length from B back to A. Only then can node A safely determine whether the signal level it wrote on the bus is the actual stable level for the bus at the bit sampling time, or whether it has been replaced (in case it was recessive) by a dominant level superimposed by another node.

Considering the synchronization protocol and the need that all nodes agree on the bit value, the nominal bit time (reciprocal of the bit rate or bus speed) is defined as composed of four segments (Fig. 1.2, segment names are all upper case in accordance with the notation in the original specification.)

- Synchronization segment (SYNC_SEG) This is a reference interval, used for synchronization purposes. The leading edge of a bit is expected to lie within this segment.
- Propagation segment (PROP_SEG) This part of the bit time is used to compensate for the (physical) propagation delays within the network. It is twice the sum of the signal propagation time on the bus line, plus the input comparator delay, and the output driver delay.

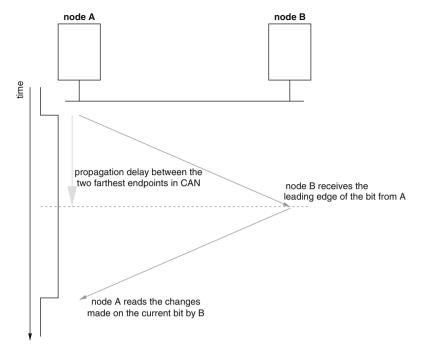


Fig. 1.1 Bit propagation delay

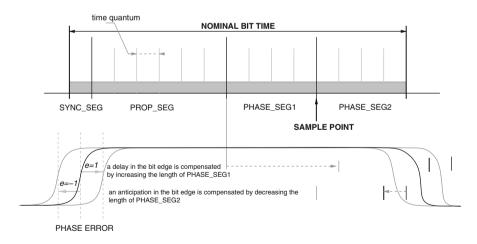


Fig. 1.2 Definition of the bit time and synchronization

1.1 Physical Layer 5

• *Phase segments (PHASE_SEG1 and PHASE_SEG2)* These phase segments are time buffers used to compensate for phase errors in the position of the bit edge. These segments can be lengthened or shortened to resynchronize the position of SYNCH_SEG with respect to the following bit edge.

Sample point (SAMPLE_POINT) The sample point is the point of time at which
the bus level is read and interpreted as the value of that respective bit. The
quantity information processing time is defined as the time required to convert the
electrical state of the bus, as read at the SAMPLE_POINT into the corresponding
bit value.

All these segments are multiple of a predefined time unit, denoted as *time* quantum and derived from the local oscillator by applying a prescaler to a clock with rate minimum time quantum.

time quantum =
$$m \times \min \min$$
 (1.1)

where *m* is the value of the prescaler. The *time quantum* is the minimum resolution in the definition of the bit time and the maximum assumed error for the bit-oriented synchronization protocol. The widths of the segments are defined by the standard as follows: SYNC_SEG is equal to 1 *time quantum*; PROP_SEG and PHASE SEG are between 1 and 8 times the *time quantum*; PHASE_SEG2 is the maximum between PHASE_SEG1 and the *information processing time*, which must be always less than or equal to twice the *time quantum*.

Two types of synchronization are defined: hard synchronization, and resynchronization (Fig. 1.2).

- *Hard synchronization* takes place at the beginning of the frame, when the start of frame bit (see the frame definition in the following section) changes the state of the bus from recessive to dominant. Upon detection of this edge, the bit time is resynchronized in such a way that the end of the current quantum becomes the end of the synchronization segment SYNC_SEG. Therefore, the edge of the start bit lies within the synchronization segment of the restarted bit time.
- Re-synchronization takes place during transmission. The phase segments are
 shortened or lengthened so that the following bit starts within the SYNCH_SEG
 portion of the following bit time. In detail, PHASE_SEG1 may be lengthened
 or PHASE_SEG2 may be shortened. Damping is applied to the synchronization
 protocol. The amount of lengthening or shortening of the PHASE_SEG segments
 is upper bounded by a programmable parameter resynchronization jump width,
 which is set to be between 1 and min(4, PHASE_SEG1) times the time quantum.

Nodes can perform synchronization only when the bus state changes because of a bit value change. Therefore, the possibility of resynchronizing a bus unit during a frame transmission depends on the possibility of detecting at least one bit value transition in any interval of a given length. The bit stuffing protocol guarantees that the time interval between any two bit transitions is upper bounded (no more than 5 bits) in such a way that clocks should never drift beyond the possibility of recovery offered by the synchronization protocol.