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Preface

This book is the result of several years of study and practical experience in
the design and analysis of communication systems based on the Controller Area
Network (CAN) standard. CAN is a multicast-based communication protocol
characterized by the deterministic resolution of the contention, low cost, and simple
implementation. The CAN [16] was developed in the mid 1980s by Bosch GmbH,
to provide a cost-effective communications bus for automotive applications. Today
it is widely used also in factory and plant controls, in robotics, medical devices, and
also in some avionics systems.

Controller Area Network is a broadcast digital bus designed to operate at speeds
from 20kbit/s to 1 Mbit/s, standardized as ISO/DIS 11898 [6] for high speed
applications (500 kbit/s) and ISO 11519-2 [7] for lower speed applications (up to
125 kbit/s). The transmission rate depends on the bus length and transceiver speed.
CAN is an attractive solution for embedded control systems because of its low
cost, light protocol management, the deterministic resolution of the contention, and
the built-in features for error detection and retransmission. Controllers supporting
the CAN communication standard, as well as sensors and actuators that are
manufactured for communicating data over CAN, are today widely available. CAN
networks are successfully replacing point-to-point connections in many application
domains.

Commercial and open source implementation of CAN drivers and middleware
software is today available from several sources, and support for CAN is included
in automotive standards, including OSEKCom and AUTOSAR. The standard has
been developed with the objective of time determinism and support for reliable
communication. With respect to these properties, it has been widely studied by
academia and industry, and methods and tools have been developed for predicting
the time and reliability characteristics of messages.

The CAN standard has originally been proposed for application to automotive
systems, but with time emerged as a quite appropriate solution for other control
systems as well. This book tries a general approach to the subject, but in many
places it refers to automotive standards and systems. Automotive architectures and
functions are also often used as examples and benchmarks. We hope this is not a
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problem for the reader and hopefully, the generalization of the proposed approaches
and methods to other domains should not be too hard. On the other side, automotive
systems are today an extremely interesting context for whoever is interested in
complex and distributed embedded systems (including of course those using the
CAN bus). They offer complex architectures with multiple buses and nodes with
gateways, real time and reliability constraints and all the challenges that come with
a high bus utilization and the demand for increased functional complexity.

This book attempts at providing an encompassing view on the study and use of
the CAN bus, with references to theory and analysis methods, and a description of
the issues in the practical implementation of the communication stack for CAN and
the implications of design choices at all levels, from the selection of the controller,
to SW development and architecture design. We believe such an approach may be
of advantage to those interested in the use of CAN, from students of embedded
system courses, to researchers, architecture designers, system developers, and all
practitioners that are interested in the deployment and use of a CAN network and its
nodes.

As such, the book attempts at covering all aspects of the design and analysis
of a CAN communication system. Chapter 1 contains a short summary of the
standard, with emphasis on the bus access protocol and on the protocol features that
are related to or affect the reliability of the communication. Chapter 2 describes
the functionality, the design, the implementation options, and the management
policies of the hardware controllers and software layers in CAN communication
architectures. Chapter 3 focuses on the worst case time analysis of the message
response times or latencies. Chapters 4 and 5 presents the stochastic and statistical
timing analyses. Chapter 6 addresses reliability issues. Chapter 7 deals with the
analysis of message traces. Chapter 8 describes commercial tools for configuring,
analyzing and calibrating a CAN communication system. Chapter 9 contains a
summary of the main transport level and application-level protocols that are based
on CAN.

Pisa, Italy Marco Di Natale
Montreal, QC, Canada Haibo Zeng
Palo Alto, CA, USA Paolo Giusto

Berkeley, CA, USA Arkadeb Ghosal
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Chapter 1
The CAN 2.0b Standard

This chapter introduces version 2.0b of the CAN Standard. This introduction is
an excerpt of the main features of the protocol as described in the official Bosch
specification document [16]. For more details, the reader should check the free
official specification document available on-line, along with the other references
provided throughout this chapter.

The CAN network protocol has been defined to provide deterministic communi-
cation in complex distributed systems with the following features and capabilities:

e Message priority assignment and guaranteed maximum latencies.

e Multicast communication with bit-oriented synchronization.

* System-wide data consistency.

* Bus multimaster access.

e Error detection and signaling with automatic retransmission of corrupted
messages.

e Detection of permanent failures in nodes, and automatic switch-off to isolate
faulty node.

In the context of the ISO/OSI reference model, the original CAN specification,
developed by Robert Bosch GmbH, covers only the Physical and Data link layers.
Later, ISO provided its own specification of the CAN protocol, with additional
details for the implementation of the physical layer.

Generally speaking, the purpose of the Physical Layer is to define the encoding of
bits into (electrical or electromagnetic) signals with defined physical characteristics.
The signals are transmitted over wired or wireless links from one node to another.
In the Bosch CAN standard, however, the description is limited to the definition
of the bit timing, bit encoding, and synchronization. The specification of the
physical transmission medium including the required (current/voltage) signal levels,
the connectors, and other characteristics that are necessary for the definition of
the driver/receiver stages and the physical wiring is not covered. Other reference
documents and implementations have filled this gap, providing solutions for the
practical implementation of the protocol.

M. Di Natale et al., Understanding and Using the Controller Area Network 1
Communication Protocol: Theory and Practice, DOI 10.1007/978-1-4614-0314-2_1,
© Springer Science+Business Media, LLC 2012



2 1 The CAN 2.0b Standard

The Data-link layer consists of the Logical Link Control (LLC) and Medium
Access Control (MAC) sublayers. The LLC sublayer provides all the services for
the transmission of a stream of bits from a source to a destination. In particular, it
defines:

* Services for data transfer and remote data request.

e Conditions upon which received messages should be accepted, including mes-
sage filtering.

e Mechanisms for recovery management and flow management (overload notifica-
tion).

The MAC sublayer is considered as the kernel of the CAN protocol. The MAC
sublayer is responsible for message framing, arbitration of the communication
medium, acknowledgment management, and error detection and signaling. For
the purpose of fault containment and additional reliability, the MAC operations
are supervised by a controller entity monitoring the error status and limiting the
operations of a node if a possible permanent failure is detected.

The following sections provide more details into each sub-layer, including
requirements and operations.

1.1 Physical Layer

As stated in the introduction, the Bosch CAN standard defines bit encoding, timing
and synchronization, included in the Physical Signaling (PS) portion of the ISO-OSI
physical layer. The standard does not cover other issues related to the physical layer,
including the types of cables and connectors that should be used for communicating
over a CAN network and the ranges of voltages and currents that are considered
as acceptable for the operations. In the OSI terminology, the Physical Medium
Attachment (PMA) and Medium Dependent Interface (MDI) are the two parts of
the physical layer which are not defined by the original standard.

1.1.1 Bit Timing

The signal type is digital with Non Return to Zero (NRZ) bit encoding. The use
of NRZ encoding ensures a minimum number of transitions and high resilience to
external disturbance. The two bits are encoded in physical medium states defined
as “recessive” and “dominant.” (0 is typically assumed to be associated with the
“dominant” state). The protocol allows multi-master access to the bus. At the lowest
level, if multiple masters try to drive the bus state at the same time, the “dominant”
configuration always prevails upon the “recessive.”

Nodes are requested to be synchronized on the bit edges so that every node agrees
on the value of the bit currently transmitted on the bus. To achieve synchronization,
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each node implements a protocol that keeps the receiver bit rate aligned with the
actual rate of the transmitted bits. The synchronization protocol uses transition edges
to resynchronize nodes. Hence, long sequences without bit transitions should be
avoided to ensure limited drift among the node bit clocks. This is the reason why
the protocol employs the so-called “bit stuffing” or “bit padding” technique, which
forces a complemented bit in a transmission sequence after 5 bits of the same type.
Stuffing bits are automatically inserted by the transmission node and removed at the
receiving side before processing the frame contents.

Synchronous bit transmission enables the CAN arbitration protocol and sim-
plifies data-flow management, but also requires a sophisticated synchronization
protocol. Bit synchronization is performed first upon the reception of the start bit
available with each asynchronous transmission. Later, to enable the receiver(s) to
correctly read the message content, continuous resynchronization is required. Other
features of the protocol influence the definition of the bit timing. Bus arbitration,
message acknowledgement and error signalling are based on the capability of the
nodes to change the status of a transmitted bit from recessive to dominant. Since the
bus is shared, all other nodes in the network are informed of the change in the bit
status before the bit transmission ends. Therefore, the bit (transmission) time must
be at least large enough to accommodate the signal propagation from any sender to
any receiver and back to the sender.

The bit time needs to account for a propagation delay that includes the signal
propagation delay on the bus as well as delays caused by the electronic circuitry
of the transmitting and receiving nodes. In practice, this means that the signal
propagation is determined by the two nodes within the system that are farthest apart
from each other as the bit is broadcasted to all nodes in the system (Fig. 1.1).

The leading bit edge from the transmitting node (node A in Fig. 1.1 reaches
node B after the signal propagates all the way from the two nodes. At this point,
B can change its value from recessive to dominant, but the new value will not reach
A until the transition from recessive to dominant propagates across the entire bus
length from B back to A. Only then can node A safely determine whether the signal
level it wrote on the bus is the actual stable level for the bus at the bit sampling
time, or whether it has been replaced (in case it was recessive) by a dominant level
superimposed by another node.

Considering the synchronization protocol and the need that all nodes agree on
the bit value, the nominal bit time (reciprocal of the bit rate or bus speed) is
defined as composed of four segments (Fig. 1.2, segment names are all upper case
in accordance with the notation in the original specification.)

* Synchronization segment (SYNC_SEG) This is a reference interval, used for
synchronization purposes. The leading edge of a bit is expected to lie within
this segment.

* Propagation segment (PROP_SEG) This part of the bit time is used to compensate
for the (physical) propagation delays within the network. It is twice the sum of
the signal propagation time on the bus line, plus the input comparator delay, and
the output driver delay.
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Fig. 1.1 Bit propagation delay
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Fig. 1.2 Definition of the bit time and synchronization
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e Phase segments (PHASE_SEGI and PHASE_SEG2) These phase segments are
time buffers used to compensate for phase errors in the position of the bit edge.
These segments can be lengthened or shortened to resynchronize the position of
SYNCH_SEG with respect to the following bit edge.

e Sample point (SAMPLE_POINT) The sample point is the point of time at which
the bus level is read and interpreted as the value of that respective bit. The
quantity information processing time is defined as the time required to convert the
electrical state of the bus, as read at the SAMPLE_POINT into the corresponding
bit value.

All these segments are multiple of a predefined time unit, denoted as time
quantum and derived from the local oscillator by applying a prescaler to a clock
with rate minimum time quantum.

time quantum = m X minimum time quantum (1.1)

where m is the value of the prescaler. The time quantum is the minimum resolution
in the definition of the bit time and the maximum assumed error for the bit-oriented
synchronization protocol. The widths of the segments are defined by the standard as
follows: SYNC_SEG is equal to 1 time quantum; PROP_SEG and PHASE SEG are
between 1 and 8 times the time quantum; PHASE_SEG?2 is the maximum between
PHASE_SEG1 and the information processing time, which must be always less than
or equal to twice the time quantum.

Two types of synchronization are defined: hard synchronization, and re-
synchronization (Fig. 1.2).

* Hard synchronization takes place at the beginning of the frame, when the start of
frame bit (see the frame definition in the following section) changes the state of
the bus from recessive to dominant. Upon detection of this edge, the bit time is
resynchronized in such a way that the end of the current quantum becomes the
end of the synchronization segment SYNC_SEG. Therefore, the edge of the start
bit lies within the synchronization segment of the restarted bit time.

* Re-synchronization takes place during transmission. The phase segments are
shortened or lengthened so that the following bit starts within the SYNCH_SEG
portion of the following bit time. In detail, PHASE_SEG1 may be lengthened
or PHASE_SEG?2 may be shortened. Damping is applied to the synchronization
protocol. The amount of lengthening or shortening of the PHASE_SEG segments
is upper bounded by a programmable parameter resynchronization jump width,
which is set to be between 1 and min(4, PHASE_SEG1) times the time quantum.

Nodes can perform synchronization only when the bus state changes because of
a bit value change. Therefore, the possibility of resynchronizing a bus unit during
a frame transmission depends on the possibility of detecting at least one bit value
transition in any interval of a given length. The bit stuffing protocol guarantees that
the time interval between any two bit transitions is upper bounded (no more than 5
bits) in such a way that clocks should never drift beyond the possibility of recovery
offered by the synchronization protocol.



