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Preface

The research institute EURANDOM (European Institute for Statistics, Probability,
Stochastic Operations Research and its Applications) was established in 1997 on
the campus of Eindhoven University of Technology, The Netherlands. Its mission
is to foster research in the area of stochastics and its applications. It achieves this
mission by recruiting and training talented young researchers and helping them to
find their way to tenured positions in academia and industry, and by carrying out
and facilitating research through postdoctoral and graduate appointments, visitor
exchange and workshops. Its chief mission statement has been given nationwide
support in The Netherlands by a recently installed national cluster called STAR
(Stochastics—Theoretical and Applied Research), for which EURANDOM acts as
coordinating and facilitating node.

As part of its workshop programme, EURANDOM organized a series of interna-
tional workshops on image processing and analysis. The third one in this series was
the workshop on Locally Adaptive Filters in Signal and Image Processing, Novem-
ber 24–26, 2008, focusing specifically on locally adaptive methods. The ability of a
system to adapt to the local state is important in many problems in image analysis.
Many renowned young experts were invited to give overview talks on this theme
covering state-of-the-art and novel research.

Despite the high quality of contributions, no proceedings of this workshop have
been issued. Instead, the workshop initiated a collaborative effort, focusing more
generally on mathematical methods for signal and image analysis and representa-
tion. The results of this effort are described in this book.

Contributions have been carefully selected to be representative for a variety of
generic approaches as well as to illustrate formal connections among these. Roughly
speaking deterministic methods are central to the first half of the book, whereas the
second half considers mainly statistical methods. However, some chapters in the
middle of the book clearly encompass both approaches, and more than a hundred
cross-references throughout the book emphasize the many formal connections and
analogies that exist between seemingly different paradigms.

This book differs from most existing books on medical signal and image analysis
or computer vision to the extent that it does not focus on specific applications (al-
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vi Preface

though some are detailed for the sake of illustration), but on methodological frame-
works on which such applications may be built. This book should therefore be of
interest to all those in search of a suitable methodological basis for specific applica-
tions, as well as to those who are interested in fundamental methodologies per se.

Luc FlorackEindhoven, Netherlands
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Chapter 1
A Short Introduction to Diffusion-Like Methods

Hanno Scharr and Kai Krajsek

Abstract This contribution aims to give a basic introduction to diffusion-like meth-
ods. There are many different methods commonly used for regularization tasks.
Some of them will be briefly introduced and their connection to diffusion shown.
In addition to this we will go into some detail for diffusion-like methods in a nar-
rower sense, i.e. methods based on PDEs similar to diffusion PDEs known from
physics. Main issues highlighted here are which PDE to use, how diffusivities in
such a PDE are constructed, and which discretization is suitable for a given task.

1.1 Introduction

There are quite a few methods for regularization tasks like noise reduction, inpaint-
ing, super-resolution, or interpolation described in literature. Many of them, if not
all, can somehow be brought into connection with diffusion. Obviously we cannot
visit all of them in this paper making this introduction incomplete. Our focus here
will be on nonlinear averaging, mainly used for noise reduction, even though cur-
rently best performing denoising algorithms on natural grey value images are not
diffusions in a narrower sense (see e.g. [346]). Nevertheless one goal beneath basic
introduction is to mention at least some of the major contributions to this field.

We will nearly completely ignore the fact that diffusion can be used to build a
scale-space. First discovered in Japan [231, 442] scale-space filtering is a topic of its
own (see e.g. [290, 450]). A linear scale space is built by applying linear diffusion
(see Sect. 1.2.1) to a signal in short time steps and recording the more and more
smoothed signal. Other scale spaces can be derived by applying other diffusion-like
schemes, cf. Chaps. 7 and 9.

Regularization schemes are represented in literature from different view-points.
Diffusion schemes typically start with the formulation of a continuous partial dif-
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2 H. Scharr and K. Krajsek

ferential equation (PDE) describing a process which changes data over time [334,
433]. This PDE is then discretized yielding an iterative update scheme. The classical
diffusion defined by the heat equation known from physics involves linear filtering
of the input data by derivatives

∂t s(x, t)= div(D∇s(x, t)), (1.1)

where s(x, t) is the evolving signal or image with s(x,0) = r(x) and the initially
observed data r(x); ∇ = (∂x1 , . . . , ∂xN ) is the vector of spatial derivatives. Diffu-
sion tensor D is a symmetric, positive definite tensor which may vary with space
and evolution time and may depend on local data. Adaptivity of a diffusion scheme
is achieved via adaptation of the diffusion tensor. This makes the scheme nonlin-
ear. In computational physics diffusion is typically simulated using e.g. finite dif-
ferences on a sampling grid. This grid is refined when the result is not accurate
enough, making discretization simple. In image processing no such refinement is
typically applied, giving more influence to discretization details. How to discretize
an anisotropic nonlinear diffusion process will be subject of Sect. 1.5.

There are different naming conventions in the literature for diffusion schemes.
Especially the term anisotropic diffusion is inconsistently used. Following [433]
we use the term isotropic diffusion, when D is proportional to the identity matrix
D = c1, i.e. when Eq. (1.1) collapses to

∂t s(x, t)= div(c∇s(x, t)). (1.2)

If diffusivity or edge stopping function c depends on the image s(x, t), we call a
diffusion scheme isotropic nonlinear diffusion. We call diffusions with general D,
not proportional to 1, anisotropic diffusion, in contrast to several publications using
this term for isotropic nonlinear diffusion (e.g. [41, 334]). This naming inconsis-
tency originates from the fact that the overall effect of isotropic nonlinear diffusion
on the evolved data is anisotropic. We call a diffusion scheme linear if D does not
depend on the evolving image. The simplest case is linear homogenous diffusion
with a constant edge stopping function c, where Eq. (1.2) simplifies to

∂t s(x, t)= cΔs(x, t), (1.3)

where Δ =∑N
i ∂2

xi
is the spatial Laplacian. A time step applying linear diffusion

to s on the unbounded domain is solved by convolution with a Gaussian kernel (see
Sect. 1.2.1).

Diffusion equations with many different edge stopping functions c and diffusion
tensors D have been proposed in literature (see e.g. [41, 364, 369, 433]). They de-
pend on gray value or color gradients, curvatures, or other image features (see [376,
440] for possible dependencies when regularizing optical flow). There is rich ongo-
ing work on diffusions for vector, matrix or tensor-valued data (see e.g. [114, 266,
337, 381, 414], and elsewhere in this volume, cf. Chaps. 3, 4, and 5, where the main
problem is to select a useful metric and discretize operators respecting it. We will
show an example in Sect. 1.5.2. Diffusion methods explicitly focusing on metrics
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induced by known group structures are shown e.g. in this volume, Chaps. 5, 7, 8, 9,
and 10, and also elsewhere [114].

A framework for diffusions in generalized image spaces has been defined
using the Beltrami operator, a natural generalization of the Laplacian on non-
flat manifolds [250]. E.g. an RGB-color image is a 2D manifold the 5D space
(x, y, I r , I g, I b) spanned by 2 spatial dimensions x and y and 3 color intensities
I r , Ig , and I b . The Beltrami framework will be introduced in Sect. 1.2.3.

Equation (1.1) can be seen as a first order Taylor approximation describing a
dynamic process as often used in physics. This is sufficient in continuous time and
space as used in physics, but in discrete time and/or space richer representations of a
process are sometimes advantageous. First order derivatives ∇ may therefore be ex-
changed by other and/or more operators [361, 366, 465]. We introduce the isotropic
nonlinear case in Sect. 1.3.2 and give an example for the anisotropic nonlinear case
in Sect. 1.6.2.

Some, but not all of these PDEs may be derived from suitable energy functions
via calculus of variations. The PDE then changes the data such that the energy is
minimized. Consequently a diffusion scheme optimizes a property our image data
is assumed to fulfill. Energy functions may be designed assuming data models mo-
tivated from physics underlying the imaging process, e.g. modeling step edges ex-
plicitely via a line process [42, 316]. Such energy functions also occur in robust
statistics and can be expressed in terms of probabilities via Gibbs distributions or
Markov Random Fields (MRFs), cf. [183] and Chaps. 13, 14 and 15. The edge
stopping function then corresponds to a robust error function and diffusion is then
related to M-estimation [41]. Probability distributions forming potential functions
in the energy can be learned from training data using this relation to image statistics
[371, 465] (cf. also Chap. 11). Robust error functions are derived from histograms
of filtered images. In the classical diffusion case filter kernels are spatial deriva-
tives, but other kernels may be used as well. The kernels may even be learned from
training data [361]. The histograms are treated as observed statistics or empirical
marginal distributions defining a probability to observe a certain image. Maximiz-
ing this probability means minimizing an energy. We will go into more detail in
Sect. 1.3.1.

There are algorithmic approaches presenting and evaluating discrete schemes
used for filtering, e.g. nonlinear Gaussian Filtering [17, 187, 445], Mean-Shift Fil-
tering [81] or Bilateral Filtering [409]. Typically they may also be formulated in
terms of minimization of a cost functional corresponding to the energy functions
formulated in continuous time and space. We show some prominent examples and
their relation to diffusion in Sect. 1.4. Here it is important to note that diffusion
in a strict sense is only defined in continuous space and time. Therefore a discrete
scheme is called a consistent diffusion scheme, if it becomes the diffusion equation
in the limit h → 0 and τ → 0 for spatial sampling step h and temporal sampling
step τ . This is the definition for consistency known from numerics. Associating
some discrete scheme with a discrete scheme for diffusion does not show that the
first scheme is a diffusion. We will elaborate this for the case of bilateral filtering in
Sect. 1.4.1.
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Fig. 1.1 Fick’s Law. Left: Number of particles crossing a given border is proportional to the num-
ber of particles s per unit volume, i.e. proportional to the density. Overall flux j depends on the
density difference (or continuously: gradient). Right: Change of particle number in a given volume
equals in-flux minus out-flux (continuously: divergence). Combining the two laws yields the heat
equation (by means of the Gauss divergence theorem) with diffusion coefficient or diffusivity c

1.2 Diffusion in a Narrow Sense

In this section, we introduce different types of diffusion. We start with the sim-
plest case well-known as Fick’s law from physics since 1855 [142], continue with
formulation of isotropic nonlinear diffusion (sometimes called Perona-Malik Diffu-
sion [334]) and anisotropic diffusion (sometimes called Coherence [433] or Edge-
Enhancing Diffusion). Finally we show the currently most general formulation, the
Beltrami framework [250].

1.2.1 Diffusion in Physics, Basic Solution and Numerics

Diffusion occurs in statistical physics and thermodynamics where random ‘Brown-
ian’ motion of particles leads e.g. to heat transport or mixing of liquids or gases.
Densities or temperature then evolve with time as described by the heat equa-
tion (1.3): ∂t s(x, t)= cΔs(x, t) (cf. Fig. 1.1), in which s(x, t) is the evolving density
and c a diffusion constant or diffusivity. The evolution of s by linear isotropic dif-
fusion, i.e. diffusion with c = const. is given by convolution of s with a Gaussian
kernel with variance σ 2 = 2ct .

The nonlinear heat equation (1.2) may be solved by finite differences. In the
simplest case we exchange the time derivative on the left hand side by a forward
difference (Euler forward), and derivatives by neighbor differences

st+τ − st

τ
=
⎛

⎝
[1,−1][

1
−1

]
⎞

⎠

T

∗
⎛

⎝c

⎛

⎝
[1,−1][

1
−1

]
⎞

⎠ ∗ st
⎞

⎠ (1.4)

and get an update scheme

st+τ =
⎡

⎢
⎣

0 τc
x,y+ h

2
0

τc
x+ h

2 ,y
1 − τ(c

x+ h
2 ,y

+ c
x− h

2 ,y
+ c

x,y+ h
2

+ c
x,y− h

2
) τc

x− h
2 ,y

0 τc
x,y− h

2
0

⎤

⎥
⎦ ∗ st

(1.5)
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or st+τ = (1 + τAx,y) ∗ st . This is called an explicit scheme. It boils down to con-
volution of the signal with a spatially (and temporally) varying kernel (1 + τAx,y).
In the case of spatially constant c this simplifies to

st+τ =
⎛

⎝
0 τc 0
τc 1 − 4τc τc

0 τc 0

⎞

⎠ ∗ st , (1.6)

where A is the so-called 5-point-star times c. This scheme has positive entries only,
i.e. is a convex regularizer and features absolute stability, if and only if τc < 0.25. It
becomes instable if τc > 0.5, as then frequencies at the Nyquist border are amplified
by a factor <−1. For small τc the convolution kernel applied to st is a reasonable
discretization of a Gaussian. The same bounds can be derived by application of the
Gershgorin circle theorem on the spectrum which is supposed to be contained within
(−1,1).

Discretizing the left hand side by a backward difference quotient (Euler back-
ward) we get an implicit scheme (st − st−τ )/τ = Ax,y ∗ st or equivalently st+τ =
(1 − τAx,y)

−1 ∗ st boiling down to a recursive filter applied to st .

1.2.2 Anisotropic Diffusion

Anisotropic diffusion typically acts along measured local image orientations (cf.
Fig. 1.2). They are described by the structure tensor Jρ [36]

Jρ =
∫

wρ(x)∇s(x)∇T s(x) dx, (1.7)

where wρ(x) are Gaussian weights with standard deviation ρ. Being symmetric Jρ
can be diagonalized, i.e. M is a diagonal matrix with eigenvalues Mii = μi and

Jρ = (e1, . . . , eN)M(e1, . . . , eN)
T . (1.8)

Anisotropic diffusion filtering evolves the initial noisy image s(x,0) via

∂t s = ∇ · (D∇s) (1.9)

(cf. Eq. (1.1)). D is the diffusion tensor, a positive definite symmetric matrix, and
s(x, t) is the evolving spatio-temporal image. Diffusion time t is sometimes used
as the scale parameter in a scale-space. It should not be confused with the time
coordinate x3 of a 2D image sequence. The diffusion tensor D usually applied in
anisotropic diffusion uses the same eigenvectors ei as the structure tensor Jρ (see
Eq. (1.7)). Thus smoothing is applied according to the spatio-temporal image struc-
ture. Smoothing strengths along these structures are given by eigenvalues λi of D.
Given a diagonal matrix L with Lii = λi , the diffusion tensor D is transformed into
the image coordinate system given by the eigenvectors ei :

D = (e1, . . . , eN)L(e1, . . . , eN)
T . (1.10)
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Fig. 1.2 Isotropic nonlinear versus anisotropic diffusion. Left: Isotropic nonlinear diffusion re-
duces diffusivity in all directions when an image structure is present. Right: Anisotropic diffusion
reduces diffusivities across edges only

Fig. 1.3 Effect of diffusion filtering. Illustrative examples exaggerating dominating smoothing
effects. From left to right: Noisy input image, smoothing result with isotropic linear, isotropic
nonlinear and anisotropic diffusion

The directional diffusivities λi, i ∈ {1, . . . ,N} determine the behavior of the diffu-
sion. For image enhancing they shall be high for low values of μi and vice versa.

Different possible choices for L include isotropic linear, isotropic nonlinear and
anisotropic processes. There are anisotropic choices with fixed smallest or fixed
largest directional diffusivities λi and choices where all diffusivities vary. Results
demonstrating the different smoothing effects are shown in Fig. 1.3.

Common choices for directional diffusivities are

Isotropic-Linear The standard linear diffusion using a Gaussian kernel corresponds
to D = α1, with α ≥ 0.

Isotropic Non-linear Perona-Malik [334] type diffusion seeks to adapt the smooth-
ing strength to the absolute value of the gray value gradient. Tensor D is given by
D = f (∇g)1. Among the choices for the diffusivity f the following is given:

f (∇g)= exp(−‖∇g‖/K). (1.11)

The considered diffusivities have in common that they decrease with increasing
gradient magnitude. Thus smoothing across edges is prevented.
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Edge Enhancing This is basically an anisotropic version of the previous. Following
[164] we extend the original 2D formulation [433, 434] to nD as follows:

λi = λ2 := f (∇g) for i �=N,

λN := 1.
(1.12)

The largest diffusivity fixed to 1 enforces strong smoothing in the direction of the
corresponding eigenvector even when there is no clear linear structure present.

Coherence Enhancing In this type of diffusion the eigenvalues of the diffusion ten-
sor are chosen as λi = α for i �=N and [435]:

λN :=
{
α if κ = 0,

α + (1 − α) exp(−C
κ
) else.

(1.13)

With a small positive parameter α and the coherence κ measured by:

κ =
N−1∑

i=1

N∑

j=i+1

(μi −μj )
2. (1.14)

This process is designed to smooth only when there is a large spread in the eigen-
values, enhancing line-like, coherent structures.

Orientation-Enhancing In order to fully exploit the information provided by the
structure tensor and to facilitate orientation estimation (= optical flow in image
sequences) the eigenvalues of the diffusion tensor can be chosen [369, 431]:

λi :=
{

1 if μi ≤ σ 2,

1 − exp(− c

(μi−σ 2)2
) else,

(1.15)

where c > 0 regulates the transition and σ is related to the noise variance of the
image derivatives. This exponential function has been used in [334, 433].

The functions f used to calculate each λi are often chosen ad hoc, e.g. selected from
robust error functions [41]. As we will see in the next section (Sect. 1.3.1) they
may in principle be learned from image statistics. However no energy functional
exists for anisotropic nonlinear diffusion, where D depends on signal s. Therefore
in this case generative learning is not possible in a strict sense (cf. [371]). An energy
function for anisotropic nonlinear diffusion can be given, if D in principle should
not depend on s, even though s is used to calculate an approximation of the true D
[366]. We derive and use this energy function in Sect. 1.6.1.

1.2.3 Beltrami Framework

The basic concept behind Beltrami flow is to consider an image as a (curved) surface
embedded into a higher dimensional space [250]. This concept is frequently used in
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Fig. 1.4 Embedding of a gray value image in a feature space

Fig. 1.5 Linear diffusion (i.e. Gaussian smoothing) compared to Beltrami smoothing. Linear dif-
fusion averages a signal respecting spatial distances only. Beltrami smoothing averages a signal
respecting distances along the curved manifold

literature, especially when working on spaces with underlying non-flat group struc-
tures, cf. Chaps. 5, 8 and 9, and elsewhere [114, 157]. Results from differential ge-
ometry are then used to process this surface. We will illustrate this concept by means
of denoising gray valued images, however this concept can be generalized to other
image types (e.g. color images or tensor valued images) in a straightforward man-
ner. Instead of considering a gray valued image as a function s(x) from the image
domain Ω ⊂ R

2 into a one dimensional feature space I ⊂ R, an image is consid-
ered as a surface M embedded in the product space (trivial fiber bundle) E =Ω × I

(cf. Figs. 1.4 and 1.5). The embedding is described by the map X(x) = (x, s(x)).
In order to be able to define energies on the image, M is considered as a Rie-
mannian manifold: at each tangent space Tx(M) on a manifold M a (positive def-
inite) inner product g(x) : TM × TM → R is given by g(x) = gij (x) dxi ⊗ dxj ,
in which ⊗ denotes tensor outer product. The metric defines the length of an “in-
finitesimal line element” via ds2 = gij (x) dxi dxj as well as the “infinitesimal vol-
ume element”

√|g|dx dy, where |g(x)| = det[gij (x)]. The geometrical framework
allows to relate the metric of the embedding space E with the metric of the im-
age surface M via the so-called pullback metric gij = huv∂iX

u∂jX
v assuring that

infinitesimal distances defined by huv in E equal infinitesimal distances in M . If
we consider the usual Euclidean metric in Ω and I , the metric in the embedding
space reads d�2 = dx2 + dy2 + ds2(x, y) leading to following pullback metric on
M : g11 = 1 + (∂xs)

2, g12 = g21 = ∂xs∂ys and g22 = 1 + (∂ys)
2. Based on this
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mathematical structure an image can now be characterized by an energy based on
distances on the image surface M . For instance, a denoised image may have minimal
surface, i.e. the denoised image minimizes the energy

S(M)=
∫ √|g|dx dy. (1.16)

The corresponding diffusion equation can then be obtained with calculus of varia-
tion, i.e. setting the negative functional derivative of the energy functional equal to
the temporal derivative of the signal (cf. Eq. (1.22))

∂t s = div

(
1√|g|∇s

)

(1.17)

which is isotropic nonlinear diffusion (or Perona Malik diffusion [334]) with the
edge stopping function φ(x) = 1/

√|g|. The geometrical framework thus allows to
relate an ad hoc chosen edge stopping function with a metric of the image surfaceM .
However the choice of a suitable edge stopping function has only been shifted to
the choice of a suitable metric (in the embedding space). A more general energy
functional has been proposed [250]:

S(Xu,gij , huv)=
∫ √|g|gijhuv∂iXu∂jX

v dnx, (1.18)

where n denotes the dimension of the image domain, huv the embedding space met-
ric and gij the metric of the image manifold. Depending on the interpretation of the
different entities, different well known diffusion schemes can be reproduced by this
energy functional. These include the reparameterization invariant linear scale-space
by Florack et al. [155], Perona Malik anisotropic diffusion [334], Mumford-Shah
segmentation models [316], Rudin-Osher-Fatemi total variation TV method for im-
age enhancement based on the L1 norm [364], and the different Blake-Zisserman
membrane models [42]. Also diffusion schemes for vector valued images or images
whose feature space constitute itself a nonlinear manifold arise in a natural way, cf.
Sect. 1.5.2 as well as Chaps. 3, 5, 8, 9, as well as [114].

1.3 Diffusion and Image Statistics

Diffusion and diffusion-like methods can be derived from image statistics, probabil-
ity distribution functions (PDFs), or energy functionals. This section introduces the
main statistical concepts needed, pathways to diffusion and extensions to diffusion.

A considerable advantage of a statistical point of view is an airtight justification
of noise reduction. In scientific applications changing measured data e.g. by denois-
ing it or by rejecting outliers is only allowed if such a change improves the data.
Obviously, improving means to optimize some criterion which needs to be given
explicitly. What is more, the criterion must be the right one for the data-set at hand.
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However, what is the right criterion and in what sense is it right? From a statisti-
cal point of view the denoised or otherwise reconstructed data should be the most
likely one given the data and prior knowledge! Consequently we formulate suitable
probabilities and show in which way optimization schemes correspond to diffusion.

1.3.1 From Probability Distributions to Diffusion

An isotropic nonlinear diffusion process can be derived from an energy function,
that itself may be derived from a probability distribution. The smooth image s is
the maximizer of the posterior probability distribution p(s|r), i.e. the probability
that s := s(·, t) : RN → R for some fixed t > 0 is the desired smooth image when
r :RN →R has been observed

ŝ = arg max
s

p(s|r) with p(s|r)∝
∏

i

(p(ri |si)p(‖∇si‖)). (1.19)

The sampling distribution (likelihood function for fixed ri ) p(ri |si) at every pixel i,
with si = s(xi ), may be defined by a measured image statistics, i.e. a normalized
histogram of observed noise. In image processing it typically is modeled to only
depend on intensity differences εi = ri − si , i.e. on measurement noise.1 The spa-
tial term p(‖∇si‖) formulates prior knowledge about the solution s. It exploits a
Markov Random Field (MRF) assumption [183], which defines the prior in terms
of local neighbor properties. For a 1D signal the assumption used here is that if we
know a signal value si at a position i, then we can give a probability to observe a
certain si+1 at neighbor position i + 1, and vice versa.

Please note that the likelihood term depends on measured data r and is there-
fore often called data term. The prior term only depends on the sought for smooth
solution s and is therefore often called smoothness term.

We may interpret p(s|r) to be a Gibbs distribution

p(s)= 1

Z
e−E(s),

where E denotes the energy corresponding to p and Z is the partition function nor-
malizing the integral of p over all s. Maximizing p(s|r) is equivalent to minimizing
its energy, i.e. its negative logarithm

ŝ = arg min
s
E(s) with E(s)= −

∑

i

(ρ0(si − ri)+ λρ1(‖∇si‖)), (1.20)

where we used the notation ρ(x)= − logp(x), added indices to stress that sampling
and prior are different distributions, and introduced weight λ which accounts for the

1Considering e.g. Poisson or shot noise and low intensities, this is not a good approximation.
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confidence one has in the different model terms. The smoothness term in (1.20) can
be interpreted as nonlinear isotropic diffusion [41, 375]. As diffusion is defined in
continuous domain, we rewrite the smoothness term as energy functional

E(s)=
∫

ρ(‖∇s‖) dx. (1.21)

We denote with δE the functional derivative of E if the differential

〈δE(u),w〉 := lim
ε→0

E(u+ εw)−E(u)

ε
, (1.22)

exists for all test functions w : RN → R. The functional derivative can be seen as
a generalization of the gradient of a multivariate function in vector calculus to a
functional defined on a function space. Consequently, δE = 0 is a necessary con-
dition for a minimizer of E, known as the Euler-Lagrange equation. If we embed
the signal into a 1-parameter family s :RN ×R

+ →R, then the stationary point
can be interpreted as the steady state solution, if it exists, of the following evolution
equation:

〈∂t s(·, t),w〉 = −〈δE(s(·, t)),w〉, (1.23)

which, in a weak sense, amounts to the following gradient flow PDE:

∂t s = div(ψ(‖∇s‖)∇s) with ψ(α)= ρ′(α)/α. (1.24)

This means that nonlinear isotropic diffusion can be interpreted in terms of classical
or Bayesian statistics. The term ρ is denoted as an error norm in the context of
classical robust statistics and potential function in a Bayesian interpretation. In a
robust statistical approach, the main data is assumed to follow a certain distribution,
e.g. a Gaussian distribution and there are a few outliers whose distribution is not
explicitly known. The challenge is to choose an error norm such that outliers do
not influence the estimate. An energy function in a robust statistical approach does
not necessarily belong to a valid probability distribution. In contrast to this in the
Bayesian approach the complete probability distribution of main data and outliers
is modeled by a probabilistic distribution, i.e. the robust error norm directly follows
from the statistical properties of the complete data. A collection of well-known error
norms and the corresponding diffusivities2 are depicted in Fig. 1.6.

1.3.2 Gibbs Reaction-Diffusion

The prior term above is based on the absolute value of the image gradient |∇s|. This
choice is ad hoc and the partial derivatives in |∇s| may be exchanged by a set of

2Diffusivities calculated by e.g. Tuckey or Cup functions may become 0 and thus a diffusion tensor
based on them is not guaranteed to be positive definite, but positive semi-definite.
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Fig. 1.6 Different (robust) error norms

linear filters. Zhu and Mumford [465] proposed to use Gibbs distributions of the
form p(s,R,F ) = 1

Z
e−E(s,R,F ), where R = ρ1, . . . , ρJ and F is the set of filters

applied, F = {F1, . . . ,FJ }, Z a normalization factor making p integrate to 1 and

E(s,R,F )=
∑

i

J∑

j=1

ρj (Fj ∗ si), (1.25)

where ∗ denotes convolution. Filters Fj on different scales are used and the respec-
tive ρj are learned from training data. Zhu and Mumford observe that ρ-functions
are well modeled by ρ(ξ) = a(1 − (1 + (|ξ − ξ0|/b)−γ )−1) for different parame-
ters a, b, ξ0, and γ . When a > 0 we get a typical potential function with minimum
at ξ0. In most cases one gets a > 0 for filters like ∇ or Δ which capture the general
smoothness of an image (cf. Fig. 1.7, left). Interestingly for filters characterizing
prominent features, e.g. Gabor filters at various orientations and scales one gets
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Fig. 1.7 Typical ρ-functions
as derived by Zhu and
Mumford for diffusion and
reaction terms

a < 0, i.e. destabilizing behavior, resulting e.g. in edge-enhancement (cf. Fig. 1.7,
right). Zhu and Mumford call these terms reaction, while the smoothing terms are
called diffusion. All these terms are generalized isotropic nonlinear diffusions in
our nomenclature. Roth and Black [361] propose a framework for also learning the
filters F .

1.3.3 Steerable Random Fields and Anisotropic Diffusion

Following [371] anisotropic diffusion with a diffusion tensor can be derived using
Zhu and Mumford’s [465] approach (see Sect. 1.3.2). With the special filter choice
F = n1∇, . . . ,nJ∇ , i.e. directional derivatives along the normalized vectors nj we
get the posterior probability (cf. Eqs. (1.19) and (1.25))

ŝ = arg max
s

p(s|r) with p(s|r)∝
∏

i

(

p(ri |si)
J∏

j=1

pj (nj∇si)
)

. (1.26)

Maximizing p(s|r) is equivalent to minimizing its negative logarithm, i.e. the en-
ergy

ŝ = arg min
s
E(s) with E(s)= −

∑

i

(

ρ0(si − ri)+ λ

J∑

j=1

ρj (nj∇si)
)

, (1.27)

where we used ρ0(si − ri) = − logp(ri |si) and ρj (nj∇si) = − logpj (nj∇si),
added indices to stress that likelihood and prior are different distributions, and intro-
duced weight λ which accounts for the confidence one has in the smoothness terms
(as before in Sect. 1.3.1). We set up a gradient descent minimization scheme using
the functional derivative of E (cf. Eq. (1.22))

∂t s = −ρ′
0(si − ri)+ λ∇T

∑

i

J∑

j=1

ψj (nj∇si)njnTj ∇si for all i (1.28)
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with ψj (α) = ρ′
j (α)/α. Comparing the second term in Eq. (1.28) with anisotropic

diffusion (Eq. (1.1)) reveals the relation between the diffusion tensor

D =
∑

i,j

ψj (nj∇si)njnTj (1.29)

and the derivatives of the potential functions ψj (nj∇si). Consequently, the diffu-
sion tensor can be learned from training data.

Unfortunately the diffusion tensor from Eq. (1.28) is not constructed from a struc-
ture tensor as commonly done (cf. Sect. 1.2.2). Defining the prior as

∏
j p(μj ),

where μj are the eigenvalues of the structure tensor sorted by size yields a scheme
similar to structure-tensor-based anisotropic diffusion [371]. However, as eigenval-
ues of the structure tensor are smoothed squared directional derivatives, the gradient
in the spatial term of the diffusion operator (rightmost ∇ in Eqs. (1.1) and (1.28))
is also smoothed. If this smoothing is taken out of the structure tensor, the resulting
scheme reduces to isotropic nonlinear diffusion [371]. This problem can be circum-
vented, when only the orientation of the diffusion is derived via the structure tensor,
but directional diffusivities depend on unsmoothed directional derivatives [362].
Again this is not structure-tensor-based anisotropic diffusion, but called steerable
random fields. An energy functional yielding structure-tensor-based anisotropic dif-
fusion can be derived in a strict sense [366], however the structure tensor then is
only used as a proxy for an orientation tensor coming from a linear model. This
tensor does not depend on the signal s. We show this approach in Sect. 1.6.1.

1.3.4 Robust Statistics and Kernel Estimation

In the last section, we discussed the relation between probabilistic and diffusion
based denoising methods. In particular we showed that the prior term in a Bayesian
approach is directly linked to the energy of a robust estimator which then leads to
classical diffusion schemes. Examining the likelihood term in (1.19) in the same
manner reveals similar relations between different denoising methods as shown
next. Let us consider several observations rj in a local neighborhood. Assuming that
all these observations belong to the same signal value3 corrupted with identical in-
dependently distributed Gaussian noise, the corresponding likelihood function reads

p({rj }|s)∝ exp

{

− 1

2σ 2

∑

j

(s − rj )
2
}

(1.30)

with the corresponding energy

E(s)=
∑

j

(s − rj )
2. (1.31)

3In the case of an image, where rj are spatially distributed on the pixel grid this is of course a
smoothness assumption on the underlying signal s.
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Fig. 1.8 Optimal spatial filter masks in a data term depending on an assumed noise level. From
left to right and top to bottom: Noise level 1, 5, 10, 20, 50, 100

The maximum likelihood estimator is thus given by the linear least squares estima-
tor, i.e. the signal is estimated by the mean of all observations. The assumption of
a constant signal model might be too restrictive and one is attempted to give pixel
values closer to a position xk of interest more weight leading to the weighted least
squares estimator

E(sk)=
∑

j

wx(xk − xj )(sk − rj )
2 ⇒ sk =

∑
j wx(xk − xj )rj
∑

j wx(xk − xj )
, (1.32)

where xj and xk denote the (pixel) position of rj and sk , respectively, and wx is a
weight function. The weighted least squares scheme here is usually implemented
by a convolution with a (normalized) smoothing kernel wx , equivalent to linear dif-
fusion if a Gaussian kernel is used (cf. Sect. 1.2.1). Optimal weights depending on
pixel position can be chosen from statistical characteristics of the model error (a con-
stant signal here) and are typically not of Gaussian shape (cf. [267] and Fig. 1.8).

If the observed signal contains outliers, i.e. either the signal model or the noise
model is severely violated, the estimator can be made robust. Such a robust estimator
is obtained by exchanging the quadratic energy function by a robust error metric, i.e.
the corresponding estimator is the minimum of the energy

E(sk)=
∑

j

ρ(sk − rj ). (1.33)

It may be minimized by iterating

st+1
k =

∑
j ws(s

t
k − rj )rj

∑
j ws(s

t
k − rj )

, (1.34)
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Likelihood (data term) Prior (smoothness term)
• May be learned from data. • May be learned from data.
• Smoothness assumption on signal only if r

spatially distributed.
• Smoothness assumption on signal.

• Term contains measured data r and solution s. • Term contains only solution s.
• Initialized with mean or r (typically). • Initialized with r , if only one term.
• Solution non-constant. • Solution (piece-wise) constant.
• Scheme iterated till convergence. • Only few iterations, then stopped.
• Variance of spatial kernel constant wrt. h⇒ 0,
τ ⇒ 0.

• Variance of spatial Gaussian decreases with
h⇒ 0, τ ⇒ 0 (σ 2 = 2cτ ).

• Consistency check: No diffusion. • Consistent diffusion.

Fig. 1.9 Summary: Likelihood versus prior. First iteration may be identical in both cases

where ws(u) = ρ′(u)/u, and the upper index t is the iteration number. Please note
that if ρ is a negative Gaussian ρ(u)= − exp(−u2)/2, then ρ′(u)= u exp(−u2) and
ws(u)= exp(−u2) is a Gaussian as well.

In a Bayesian framework, the error metric is interpreted as a potential function
that directly encodes the statistical properties of signal model and noise. As for the
weighted least squares estimator, we may introduce a further weight wx reducing
the influence of estimates being further away from the central position xk . The min-
imizer of the corresponding energy

E(sk)=
∑

j

wx(xk − xj )ρ(sk − rj ) (1.35)

is denoted as the robust M-smoother in literature (cf. e.g. [75, 449]). This energy
may be minimized by iterating

st+1
k =

∑
j wx(xk − xj )ws(s

t
k − rj )rj

∑
j wx(xk − xj )ws(s

t
k − rj )

. (1.36)

The equivalence to nonlinear diffusion becomes apparent, when we select a spatial
neighborhood consisting of nearest neighbors only for wx and start with s0

k = rk .
The first iteration step then is equivalent to a diffusion step, where ws models diffu-
sivities. This equivalence can also be shown for larger neighborhoods [20, 21].

Please note When we start with a smoothness or constancy assumption formu-
lated on the measured data r , we construct a data term. In the respective estimation
schemes r is never updated. When we start with a similar assumption on the un-
derlying signal s as in Sect. 1.3.1, we get diffusion schemes, where rj stands for
the initial value s0

j and is updated. Here, we introduced spatial weights ad hoc, in
Sect. 1.3.1 they come from an MRF assumption.

In Fig. 1.9 we summarize properties of likelihood-based data terms and prior-
based smoothness terms.
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1.4 Some Diffusion-Like Nonlinear Regularization Schemes

There are several regularization techniques using averaging kernels, usually Gaus-
sians, together with a nonlinearity (for overviews see e.g. [55, 75, 449] as well
Chap. 4 in this volume). Local M-smoothing [75, 449] and related robust statistics-
based methods have already been shown in Sect. 1.3.4. We only show two prominent
examples here: bilateral filtering [409] also called cascaded nonlinear Gaussian fil-
tering [17, 187, 445], and channel smoothing [139], cf. Chap. 2. They are closely
connected to nonlinear isotropic diffusion. A false friend in the list of diffusion-like
methods is mean shift filtering [81], a mode-seeking method. Iterations occurring in
this approach are similar to diffusion, but only the first iteration really is equivalent
to a diffusion step.

1.4.1 Bilateral Filtering and Nonlinear Gaussian Filtering

Bilateral Filtering [409] as well as nonlinear Gaussian filtering [17, 187, 445] oper-
ate on the input data given by r(x) and filter it via

ŝ(x)= k−1(x)
∑

ξ

w1(x − ξ)w2(r(x)− r(ξ ))r(x), (1.37)

x ∈ R
N , where k(x)=∑ξ w1(x − ξ)w2(r(x)− r(ξ )) is a normalization, and ŝ(x) :

R
N → R is the filtered image. The filter weights w1 and w2 may be Gaussians

as suggested in [17, 187, 409, 445] but other filter weights may also be applied.
Positions xi may be restricted to a spatial local neighborhood with size depending
on the standard deviation σ1 of w1, typically 3σ1.

Equation (1.37) is simple linear Gaussian smoothing if the second kernel w2 ≡ 1
and thus a direct solution of the heat equation (1.3) for one given time step, cf.
Sect. 1.2.1. The second kernel w2(r(x)− r(ξ)) down-weights the contribution of a
value r(ξ ) if it differs from the value r(x) at the current position x. This is equivalent
to reducing the diffusivity between the points x and ξ . Iterating Bilateral Filtering by
applying it to the filtered data is therefore similar to isotropic nonlinear diffusion in
relatively coarse time steps. An investigation based on a detailed analysis of discrete
schemes also shows this connection between diffusion and bilateral filtering [20,
21].

So-called cascaded nonlinear Gaussian filtering changes standard deviations σ1
and σ2 of w1 and w2, respectively, in every iteration step. Typically one starts with
small σ1 (space) and large σ2 (range) and doubles σ1 while halving σ2 in every
iteration step.

We will now check for numerical consistency of bilateral filtering with isotropic
non-linear diffusion. It is not sufficient to compare discrete schemes in order to de-
cide whether or not bilateral filtering is a consistent numerical scheme for isotropic
nonlinear diffusion. We need to known how it behaves in the limit of continuous
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signals s and r . It is clear that if we only go to continuous domain, without asso-
ciating r with the initial (i.e. t = 0) signal s(x, t)|t=0 this scheme cannot become
diffusion—the diffusion equation contains no r . In this case the energy associated
with the respective likelihood term reads

E(sk)=
∑

j

w(xk − xj )ρ(rk − rj )(sk − rj )
2 (1.38)

with rj = r(xj ), which can be interpreted as the energy function of a Gaussian distri-
bution with the precision matrix Λkj =w(xk − xj )ρ(rk − rj ). Rewriting Eq. (1.37)
as

ŝ(x, t + τ)= k−1(x)
∑

ξ

w1(x − ξ)w2(s(x, t)− r(ξ))s(x, t) (1.39)

we do not end up with diffusion either, but perform robust averaging of multiple
measurements r . This update scheme corresponds to a robust M-smoother.

Only if we exchange also r(ξ) by s(ξ,0), we may end up with diffusion if we do
the limiting process right

ŝ(x, t + τ)= k−1(x)
∑

ξ

w1(x − ξ)w2(s(x, t)− s(ξ ))s(x, t). (1.40)

This update scheme is proposed in [409]. If the variance of kernel w1 decreases
with selected time step τ and τ is small enough, only nearest neighbors need to be
addressed. Comparing Eq. (1.40) with the update scheme in Eq. (1.5) reveals that
w2 may be interpreted as diffusivity c in that scheme. This interpretation of bilateral
filtering is consistent with isotropic nonlinear diffusion.

1.4.2 Mean Shift Filtering

Noise reduction may be regarded as estimation of the most likely measurement value
(or other feature) at a given position. Density of features in feature space may be re-
garded as empirical probability function (PDF) of the represented parameter. The
modes of a feature space, i.e. maximal dense regions, may therefore be identified as
local maxima of the unknown PDF. Mean shift filtering locates maxima, i.e. station-
ary density points by gradient ascent without estimating the density. How does this
work?

A kernel density estimator in a flat space is given by

f̂ (x)= 1

n

n∑

i=1

K(x − xi ), (1.41)

where f̂ is the estimated density, n data points xi ∈ R
N , i ∈ {1, . . . , n}, are given

and K is some normalized smoothing kernel typically radially symmetric K(x) =


