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Chapter 1
Introduction

The Integrated Circuit (IC) was invented in the 1950s. At the beginning, ICs were
mainly used in computers. With the advancing miniaturization of the components,
the significance of ICs as part of our daily life grows. Many consumer products such
as mobile music players or cell phones use ICs (or “chips”) as core engines. A failure
of these devices usually results in problems of lesser extent for the owner. But today,
ICs also control safety critical applications. For example, chips are responsible for
the correct mode of operation in car control systems, avionics or medical equipment.
A failure of a chip can be life-threatening in the worst-case. Consequently, the
correct mode of operation of a fabricated chip is crucial.

Due to the ever shrinking component sizes of today’s designs, the vulnerability
of chips to flaws in the manufacturing process increases. The IC manufacturers
put much effort in guaranteeing the integrity of their products. A large part
of the manufacturing costs is spent for the detection of defects caused by the
manufacturing process. Every fabricated chip is subjected to a post-production test
(or manufacturing test) to avoid that defective chips are delivered to customers (and
by this could cause failures in operation mode). Thus, the purpose of such a post-
production test is to detect any defects caused by the manufacturing process.

Stimuli are applied to the inputs of the Circuit Under Test (CUT) during this
test. The output responses are monitored. If one or more of the output responses are
inconsistent with the specification, the chip will be rejected as erroneous. However,
the complexity of modern designs does not allow for a complete test of all possible
input stimuli. A complete test for each fabricated chip would be far too time-
consuming or costly, since the number of possible tests is exponential in the number
of inputs. Instead, a test set is pre-computed that covers a large range of possible
defects. Logical fault models are used to abstract from physical defects. The fault
model most widespread is the Stuck-at Fault Model (SAFM) [E1d59].

This test set is applied to each fabricated chip by Automatic Test Equip-
ment (ATE). Because the memory and bandwidth of an ATE is limited, the applied

S. Eggersgliil and R. Drechsler, High Quality Test Pattern Generation 1
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2 1 Introduction

test set has to be as small as possible. A large test set size signifies not only a long
test application time but also immense test costs. The computation of the test set,
which is known as Automatic Test Pattern Generation (ATPG), is the main subject
of this book. Due to the large number of potential faults, ATPG is a computationally
intensive task and fast algorithms are needed for obtaining a test set in acceptable
run time.

Classical ATPG algorithms are mostly based on the D-algorithm proposed by
Roth in 1966 [Rot66]. These algorithms work directly on the circuit structure,
i.e. a flat gate-level netlist, and typically benefit significantly from their knowledge
about the structure of the problem. Several techniques and powerful heuristics
have been proposed over the years to improve the effectiveness of ATPG. At the
turn of the millennium, the ATPG problem was considered to be solved. The
existing algorithms were fast enough and provided sufficient fault coverage. This
has changed in the last years.

The size of new designs doubles every 18 months according to Moore’s law
[Moo65]. Today’s circuits consist of multi-million gates and the classical structural
ATPG algorithms reach their limits. Tests for a large number of faults can still be
generated very quickly. But the size of the set of faults for which no test can be
generated in acceptable run time increases significantly. As a result, the high fault
coverage demands of the chip manufacturers can barely be met. Thus, the overall
quality of the test set decreases due to the lower fault coverage. As a consequence,
there is a need for new robust ATPG algorithms especially when considering future
design sizes.

Furthermore, another crucial point has been emerged in the field of manufactur-
ing test. Due to the increased operation speed beyond the GHz mark and the small
manufacturing technologies, the number of timing-related defects which affects
the product quality has increased. This trend is expected to grow with the process
technology scaling down towards very deep sub-micron devices. Therefore, delay
testing has become mandatory to filter out defective devices and to assure that the
desired performance specifications are met.

Test generation for delay faults generally needs more computational effort than
ATPG for stuck-at faults because test patterns have to be computed over at least two
time frames. A large number of delay faults remain unclassified during ATPG for
modern designs. Moreover, in contrast to the SAFM, test patterns for delay faults
can be classified in different quality levels like robust and non-robust test patterns
[KC98]. The quality of a test can be — simply spoken — defined as the probability
of fault detection. High quality test patterns are more desirable but usually harder to
obtain. As a result, the need for new robust ATPG algorithms is even more urgent in
the field of delay test generation. In the last years, Small Delay Defects (SDDs)
have become more and more serious. Therefore, the ability to detect SDDs has
become an important indicator for judging the quality of a delay test. However,
ATPG approaches struggle with the generation of tests dedicated to detect SDDs
due to the high complexity.

A promising solution to close the gap between test quality requirements and
ATPG effectiveness is the application of solvers for Boolean Satisfiability (SAT).



