Lin Bai · Jinho Choi

Low Complexity MIMO Detection

Low Complexity MIMO Detection

Lin Bai • Jinho Choi

Low Complexity MIMO Detection

Lin Bai School of Electronic and Information Engineering Beihang University F-627, New Main Building No.37 Xue Yuan Road, HaiDian District Beijing 100191 People's Republic of China Lbai@buaa edu cn Jinho Choi School of Engineering Swansea University, Singleton Park Room 123, Digital Technium, Singleton Park Swansea SA2 8PP United Kingdom j.choi@swansea.ac.uk

ISBN 978-1-4419-8582-8 e-ISBN 978-1-4419-8583-5 DOI 10.1007/978-1-4419-8583-5 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011943879

© Springer Science+Business Media, LLC 2012

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our families and friends

Foreword

What is the most important emerging technology leading to high data rate wireless services? With scarce wireless spectrum, the use of multiple antennas is becoming the key foundation to achieve the requirement. My colleagues, Prof. Bai and Prof. Choi have worked on this topic for many years. They have made good achievements and published a number of papers within this topic. In this book, they share their key findings.

With signal detection methods now representing a key application of signal processing methods to communication systems, this book provides a range of important techniques for signal detection when multiple transmitted and received signals are available. In this book, various optimal and suboptimal signal detection methods are explained in the context of multiple-input multiple-output (MIMO) systems, including list decoding and lattice reduction (LR)-aided detection, while various user selection schemes are also discussed within multiuser systems. Those techniques are then analyzed using performance analysis tools.

With a carefully balanced blend of theoretical elements and applications, this book is ideal for both graduate students and practicing engineers in wireless communications. All the techniques introduced in this book are quite new. Furthermore, this book makes an easy-to-follow presentation from the elementary to the profound level.

Beijing

Quan Yu Academician Chinese Academy of Engineering

Preface

In order to improve the spectral efficiency in wireless communications, multiple antennas are employed at both transmitter and receiver sides, where the resulting system is referred to as the multiple-input multiple-output (MIMO) system. In MIMO systems, it is usually required to detect signals jointly as multiple signals are transmitted through multiple signal paths between the transmitter and the receiver. This joint detection becomes the MIMO detection.

The MIMO detection can be performed by an exhaustive search method for the maximum likelihood (ML) detection. Unfortunately, although this method provides the optimal performance, it is impractical for a number of real systems since its complexity grows exponentially with the number of transmit antennas. For the case of MIMO channels in cellular systems where the transmitter is a base station and the receiver is a mobile terminal, since the receiver usually has a limited computing power for symbol detection, the use of ML detection based on an exhaustive search or those with high computational complexity becomes impossible. To avoid this prohibitively high computational complexity, computationally efficient suboptimal MIMO detection methods are investigated, including linear detectors that take the signals from the other antennas as the interference; but, poor performance is expected due to a high date error rate. Therefore, it is desired to develop MIMO detection methods that have near optimal performance as well as low computational complexity. In this book, we attempt to explain such low complexity MIMO detectors.

So far, there are many existing books related to MIMO systems. To be different from those books, our book focuses on low complexity MIMO symbol detection itself. Although our book is very specific, we have adopted an easy-to-follow presentation from the elementary to the profound level. Furthermore, we include a number of recent research outcomes that are also useful for those experts in this area.

Our group has worked on the design of low complexity MIMO detection for many years and has produced various new results on low complexity MIMO detection with the ideas of list decoding and lattice basis reduction. In addition, as an extension, multiuser MIMO and the corresponding strategies are also investigated. This book includes not only our research outcomes but also other recent research outcomes that could be very useful to practitioners and postgraduate students who want to learn new outcomes of low complexity MIMO detectors in the field of wireless communications.

This book systematically introduces the signal detection in MIMO systems. It has been written for the reader who wants to become an expert from a beginner in the field of MIMO detection. In addition, it is suitable for postgraduate students who have some fundamental knowledge of wireless communications, and for R&D personnel who works in MIMO area.

Beijing Swansea Lin Bai Jinho Choi

Acknowledgments

We would like to thank many people for supporting this work, in particular: Q. Yu (Chinese Academy of Engineering), J. Zhang (Beihang University), C. Chen (Peking University), W. Xing (Swansea University), J. He (Swansea University), C. Ling (Imperial College), and W. Guan (Swansea University). They helped us by providing valuable comments and proofreading for the remaining errors, typos, unclear passages, and weaknesses is ours.

Special thanks go to those people who inspire and encourage us all the time: Q. Yu (Chinese Academy of Engineering) for guidance and encouragement as the mentor, J. Zhang (Beihang University) for generous support, C. Chen (Peking University) for long-term friendship, and many others including our students, J. Xie, Q. Li, and H. Liu, for useful discussions.

Then, we want to express our appreciation to our parents, families, and friends. Without their support, we can barely make the achievement.

Finally, we deeply thank Editor B. Kurzman at Springer and Project Manager E. Ahmad at SPi Global, who were always there with us, for their wonderful help during the completion of the book.

This work has been supported by the China Postdoctoral Science Foundation and the China National 973 project under the grant no. 2009CB320403.

Contents

1	Introduction		1
	1.1	MIMO Systems	1
	1.2	Point to Point MIMO	4
	1.3	Multiuser MIMO	8
	1.4	Outline	10

Part I Point to Point MIMO

2	Bac	kgroun	d of MIMO Detection	15
	2.1	Syster	n Model	15
	2.2	ML D	etection	16
		2.2.1	Exhaustive Search Approach	16
		2.2.2	Performance Analysis	17
	2.3	Linear	r Detection	20
		2.3.1	ZF Detection	20
		2.3.2	MMSE Detection	21
		2.3.3	Performance Analysis	22
	2.4	SIC D	etection	23
		2.4.1	QR Factorization	24
		2.4.2	ZF-SIC	24
		2.4.3	MMSE-SIC	28
		2.4.4	Ordering	29
		2.4.5	Performance Analysis	31
	2.5	BER V	Versus SNR Simulation Results	36
	2.6	Concl	usion and Remarks	42
3	List	and La	attice Reduction-Based Methods	43
	3.1	List-B	ased Detection	43
		3.1.1	Detection Algorithms	43
		3.1.2	Ordering	46
		3.1.3	Subdetectors	48

		3.1.4	Performance Analysis	52
		3.1.5	Simulation Results	54
	3.2	Lattic	e Reduction-Based Detection	56
		3.2.1	MIMO Systems with Lattice	56
		3.2.2	Lattice Reduction-Based MIMO Detection	58
		3.2.3	Lattice Reduction Schemes for Two Basis Systems	64
		3.2.4	Gaussian Lattice Reduction for Two Basis Systems	69
		3.2.5	LLL and CLLL Algorithms	74
		3.2.6	Performance Evaluation	79
		3.2.7	Simulation Results	86
	3.3	Concl	usion and Remarks	90
4	Part	tial MA	P-Based Detection	91
	4.1	MAP	Detection	91
	4.2	Partia	1 MAP Detection	92
		4.2.1	The Case of 2×2 MIMO	92
		4.2.2	General Case	93
		4.2.3	Theoretical Analysis	97
	4.3	Partia	I MAP-Based List Detection	99
		4.3.1	System Model	100
		4.3.2	The Case of List Length $Q = 1$	101
		4.3.3	General Case	103
		4.3.4	Algorithm of the Partial MAP-Based List Detection	107
		4.3.5	Simulation Results	110
	4.4	Concl	usion and Remarks	112
5	Latt	tice Red	duction-Based List Detection	113
	5.1	Lattic	e Reduction-Based List Detection	114
		5.1.1	Algorithm Description	114
		5.1.2	Lattice Reduction-Based Detection	116
		5.1.3	List Generation in the LR Domain	117
		5.1.4	Impact of List Length	118
		5.1.5	Complexity Analysis	122
		5.1.6	Components of the LR-Based List Detection	122
		5.1.7	Simulation Results	130
	5.2	Error	Probability-Based Column Reordering Criteria	131
		5.2.1	System Model with CRIS	133
		5.2.2	Detection Algorithm with CRIS	134
		5.2.3	OD-CRC	135
		5.2.4	EP-CRC	136
		5.2.5	Simulation Results	137
	5.3	Concl	usion and Remarks	139
6	Dete	ection f	or Underdetermined MIMO Systems	141
	6.1	Joint l	Detection for Underdetermined MIMO Systems	143
		6.1.1	System Model	143

	6.1.2	Existing Approaches	144
	6.1.3	Prevoting Cancellation-Based MIMO Detection	146
6.2	Selecti	ion for Prevoting Vectors Depending on SubDetectors	147
	6.2.1	Selection Criterion with Linear Detector	148
	6.2.2	Selection Criteria with LR-Based Linear	
		and SIC Detectors	148
6.3	Perfor	mance Analysis	150
	6.3.1	Diversity Analysis	150
	6.3.2	Complexity Analysis	157
6.4	Simula	ation Results and Discussions	158
	6.4.1	Simulation Results	158
	6.4.2	Discussion	161
6.5	Conclu	usion and Remarks	165

Part II Multiuser MIMO

7	Sele	ction Criteria of Single User	169
	7.1	System Model	169
	7.2	User Selection Criteria	170
		7.2.1 Maximum Mutual Information Criterion	171
		7.2.2 User Selection Criteria for ML Detector	172
		7.2.3 User Selection Criterion for Linear Detectors	175
		7.2.4 User Selection Criteria for LR-Based Detectors	177
	7.3	Simulation Results	181
	7.4	Conclusion and Remarks	183
8	Sele	ction Criteria of Multiple Users	185
	8.1	System Model	187
	8.2	User Selection Criteria	189
		8.2.1 ML and Linear Selection Criteria	190
		8.2.2 LR-Based Linear and SIC Selection Criteria	191
	8.3	LR-Based Greedy User Selection Using an Updating Method	193
		8.3.1 LR-Based Greedy User Selection	193
		8.3.2 A Complexity Efficient Method for LR Updating	197
	8.4	Diversity Analysis and Numerical Results	203
		8.4.1 Diversity Gain Analysis from Error Probability	204
		8.4.2 Numerical Results	210
	8.5	Conclusion and Remarks	215
9	Con	clusion of the Book	217
Re	eferer	ces	219
Al	oout 1	he Authors	225
In	dex		227

List of Figures

Fig. 1.1	A SISO system	2
Fig. 1.2	A 2×2 MIMO system	2
Fig. 1.3	Signal constellations and binary codes	4
Fig. 1.4	MIMO detection	6
Fig. 1.5	A multiuser MIMO system	9
Fig. 2.1	BER performance of ZF-SIC for each layer in a 4×4	
	MIMO system, where BPSK is used for signaling	35
Fig. 2.2	BER performance of conventional detectors in a	
	4-QAM 2 × 2 MIMO system	39
Fig. 2.3	BER performance of conventional detectors in a	
	16-QAM 2 × 2 MIMO system	39
Fig. 2.4	BER performance of conventional detectors in a	
	64-QAM 2 × 2 MIMO system	40
Fig. 2.5	BER performance of conventional detectors in a	
	4-QAM 4 × 4 MIMO system	40
Fig. 2.6	BER performance of conventional detectors in a	
	16-QAM 4 × 4 MIMO system	41
Fig. 2.7	BER performance of conventional detectors in a	
	64-QAM 4 × 4 MIMO system	41
Fig. 3.1	BER performance of different detectors in a 16-QAM	
	2×2 MIMO system	54
Fig. 3.2	BER performance of different detectors in a 16-QAM	
	4×4 MIMO system	55
Fig. 3.3	BER performance of list-based detectors using different	
	types of subdetectors in a 16-QAM 4 × 4 MIMO system	55
Fig. 3.4	The decision boundaries of ZF detection with a lattice	
	generated by the basis H in (3.53)	60
Fig. 3.5	The decision boundaries of ZF detection with a lattice	
	generated by the basis G in (3.54)	61

Fig. 3.6	BER performance of various detectors in a 4-QAM	07
Fig 37	2 × 2 MIMO system BER performance of various detectors in a 16-OAM	87
1 Ig. <i>3.1</i>	2×2 MIMO system	87
Fig. 3.8	BER performance of various detectors in a 64-QAM	
	2×2 MIMO system	88
Fig. 3.9	BER performance of various detectors in a 4-QAM	00
Fig 3 10	BER performance of various detectors in a 16-OAM	00
11g. 5.10	4×4 MIMO system	89
Fig. 3.11	BER performance of various detectors in a 64-QAM	
	4 × 4 MIMO system	89
E 4 1	The laws have d of D	0.0
Fig. 4.1 Fig. 4.2	Bounds of P_{cond} for different list length with $N_{\text{c}} = 2$	90
Fig. 4.2	Bounds of P_{cond} for different list length with $N_1 = 2$	100
Fig. 4.4	BER performance of various detection methods in	107
1 15. 4.4	Table 4.1 for a 16-OAM 2 \times 2 system	110
Fig 45	BER performance of various detection methods in	110
119. 110	Table 4.1 for a 16-QAM 4×4 system	111
Fig 51	BER versus E_{L}/N_{c} of different MIMO detectors	
119.011	in a 4 × 4 MIMO system ($N_1 = N_2 = 2$) with 4-OAM signaling	131
Fig. 5.2	BER versus E_b/N_a of different MIMO detectors in a	
0.1	4×4 MIMO system ($N_1 = N_2 = 2$) with 16-QAM signaling	132
Fig. 5.3	BER versus E_b/N_o of different MIMO detectors	
	in a 4 × 4 MIMO system ($N_1 = N_2 = 2$) with 64-QAM signaling.	133
Fig. 5.4	BER versus E_b/N_o of different MIMO	
	detectors in a 4 × 4 MIMO system ($N_1 = N_2 = 2$) with	
	4-QAM signaling	138
Fig. 5.5	BER versus E_b/N_o of different MIMO	
	detectors in a 4 × 4 MIMO system ($N_1 = N_2 = 2$) with	120
F: 5 (16-QAM signaling	139
F1g. 5.6	BER versus E_b/N_o of different MIMO detectors	140
	In a 4 × 4 MIMO system ($N_1 = N_2 = 2$) with 64-QAM signaling.	140
Fig. 6.1	BER versus E_b/N_0 of different detectors listed in	
-	Table 6.1 for 4-QAM, $M = 4$ and $N = 2$	160
Fig. 6.2	BER versus E_b/N_0 of different detectors listed in	
	Table 6.1 for 4-QAM, $M = 4$ and $N = 3$	161
Fig. 6.3	BER versus E_b/N_0 of different detectors listed in	
	Table 6.1 for 16-QAM, $M = 3$ and $N = 2$	162
Fig. 6.4	BER versus E_b/N_0 of different detectors listed in	
	Table 6.1 for 16-QAM, $M = 4$ and $N = 3$	163

List of Figures

Fig. 6.5	BER versus E_b/N_0 of Detector III and Detector	
	XI listed in Table 6.1 for $v_e = \{0, 0.02, 0.05\}$ with	
	4-QAM, $M = 4$ and $N = 2$	164
Fig. 7.1	Block diagram for multiuser MIMO uplink channels	
	of K users equipped per user with M transmit antennas	
	and the BS equipped with N receive antennas	170
Fig. 7.2	BER performance of various multiuser MIMO systems	
	with 4-QAM, $M = N = 4$, and $K = 10$	181
Fig. 7.3	BER performance of various multiuser MIMO systems	
-	with 16-QAM, $M = N = 4$, and $K = 10$	182
Fig. 7.4	BER performance of various multiuser MIMO systems	
	with 64-QAM, $M = N = 4$, and $K = 10$	183
Fig. 8.1	Block diagram for multiuser MIMO uplink channels	
	of $K = 10$ users equipped per user with P transmit	
	antennas and the BS equipped with N receive antennas,	
	while 4 users are selected to transmit signals to the BS	
	during a time slot interval	188
Fig. 8.2	Block diagram of virtual antennas in a single user	
	MIMO system, while 4 AS are selected among 10 AS	
	to transmit signals to the BS during a time slot interval	189
Fig. 8.3	BER versus E_b/N_0 of the multiuser MIMO systems	
	listed in Table 8.9 for the case of $(M, P) = (4, 1)$ and	
	$(M, P) = (2, 2) (16$ -QAM, $K = 5, N = 4) \dots$	212
Fig. 8.4	BER versus E_b/N_0 of the multiuser MIMO systems	
-	listed in Table 8.9 for the case of $(M, P) = (4, 1)$	
	(16-QAM, K = 5, N = 4)	213
Fig. 8.5	BER versus E_b/N_0 of the multiuser MIMO systems	
C .	listed in Table 8.9 for the case of $(M, P) = (2, 2)$	
	(16-QAM, K = 5, N = 4)	214
Fig. 8.6	BER versus K of the multiuser MIMO systems listed	
	in Table 8.9 for the case of $(M, P) = (4, 1)$ (16-QAM,	
	$E_b/N_0 = 12 \mathrm{dB}, N = 4)$	215
Fig. 8.7	BER versus K of the multiuser MIMO systems listed	
-	in Table 8.9 for the case of $(M, P) = (2, 2)$ (16-QAM,	
	$E_b/N_0 = 12 \mathrm{dB}, N = 4) \dots$	216
	and the second	

List of Tables

Table 1.1	Received signal vectors of a 2×2 MIMO system	5
Table 1.2	Received signal vectors of a 2 users multiuser MIMO	
	system under a certain user selection strategy	11
Table 2.1	Candidate vectors of 2 transmit antennas with 4-QAM	16
Table 2.2	$d_{\rm ml}$ corresponding to s in Table 2.1	20
Table 2.3	Detection errors at symbol and bit levels	36
Table 2.4	ML detection	37
Table 2.5	MMSE detection	38
Table 2.6	MMSE-SIC detection	38
Table 3.1	List generation	44
Table 3.2	The average value of column swapping per iteration	
	when the CLLL is employed for different MIMO	
	channels ($N = 8$ and $M = 2, 3,, 8$)	86
Table 4.1	Different MIMO detection methods	109
Table 4.2	The average complexity of various detection methods	
	in Table 4.1 for a 16-QAM 2×2 system	109
Table 4.3	The average complexity of various detection methods	
	in Table 4.1 for a 16-QAM 4×4 system	109
Table 4.4	The average list length of the partial MAP-based list	
	detection with different SNR for 16-QAM 2×2 and	
	4×4 MIMO systems, where $N_1 = N_2$	110
Table 5.1	Signal and parameters for the LR-based detection	
	in (5.5) and (5.7)	117
Table 5.2	Complexity analysis of different detectors	122
Table 5.3	Components of the LR-based list detection	123
Table 5.4	Gram–Schmidt algorithm	124
Table 5.5	Householder reflection algorithm	125
		-

Table 5.6	Complexity comparison of Gram–Schmidt algorithm	
	and Householder reflection algorithm	125
Table 5.7	Gaussian LR algorithm	126
Table 5.8	L–R decomposition	127
Table 6.1	Different detection methods for underdetermined	
	MIMO systems	159
Table 6.2	Complexity comparison of C_{Sel} for Detectors IX, X,	
	and XI, listed in Table 6.1	163
Table 6.3	Complexity comparison of different detectors listed	
	in Table 6.1	164
Table 8.1	Matrices with the LR at each user selection	196
Table 8.2	Size reduction in CLLL	198
Table 8.3	Column swapping in CLLL	199
Table 8.4	Basis updating in UBLR (Part I)	200
Table 8.5	Basis updating in UBLR (Part II)	201
Table 8.6	The UBLR (based on the CLLL) algorithm at the <i>m</i> th	
	user selection	202
Table 8.7	The average value of η in a multiuser MIMO system	
	when the CLLL-based MMSE-SIC detector is used	
	with the LRG and UBLRG user selection, where	
	K = 10, N = 8, and $(M, P) = (8, 1)$	202
Table 8.8	The average value of η in a multiuser MIMO system	
	when the CLLL-based MMSE-SIC detector is used	
	with the LRG and UBLRG user selection, where	
	K = 10, N = 8, and $(M, P) = (4, 2)$	203
Table 8.9	Nine multiuser MIMO systems employed in the simulations	211
Table 8.10	The average complexity of multiuser MIMO systems	
	listed in Subsect. 8.4.2	211

Acronyms

APP	A posteriori probability
APRP	A priori probability
AWGN	Additive white Gaussian noise
AS	Antenna subset
BER	Bit error rate
BPSK	Binary phase shift keying
BS	Base station
cdf	Cumulative density function
CLLL	Complex-valued LLL
CMs	Complex multiplications
CRC	Column reordering criteria
CRIS	Column reordering index set
CSCG	Circular symmetric complex Gaussian
CSI	Channel state information
DFE	Decision feedback equalizer
DMT	Diversity multiplexing trade-off
DRC	Dimension reduction condition
EP-CRC	Error probability based CRC
flops	Floating point operation
GS	Gram–Schmidt
GSD	Generalized sphere decoding
ISI	Intersymbol interference
LAPPR	Logarithms of a posteriori probability ratios
LBR	Lattice basis reduced
LLL	Lenstra–Lenstra–Lovász
LLR	Log-likelihood ratio
LR	Lattice reduction
LRG	LR-based greedy
MAP	Maximum a posteriori probability
MD	Max-min diagonal term
MDist	Max-min distance

Max-min eigenvalue
Multiple-input multiple-output
Maximum likelihood
Maximum mutual information
Min-max mean square error
Minimum mean square error
Mean square error
Orthogonality deficiency-based CRC
Optimal decision region
Orthogonal frequency division multiplexing
Pulse amplitude modulation
Probability density function
Probability of dimension reduction
Pairwise error probability
Prevoting cancellation
Postvoting vector selection
Quadrature amplitude modulation
Space division multiple access
Symbol error rate
Successive interference cancellation
Signal to interference plus noise ratio
Single-input single-output
Signal-to-noise ratio
Sum of squared error
Shortest vector problem
Tree search decoder-column reordering
Updated basis LR
UBLR-based greedy
Underdetermined integer least squares
Vertical Bell laboratories layered space-time
Very large scale integration
Zero forcing

Notations

A/a	(Boldface upper/lower letters) complex-valued matrix/vector
$\mathbf{A}_{\mathrm{r}}/\mathbf{a}_{\mathrm{r}}$	(Boldface upper/lower letters) real-valued matrix/vector
$\mathbf{A}^{\mathrm{T}}, \mathbf{A}^{\mathrm{H}}, \mathbf{A}^{\dagger}$	Transpose, Hermitian transpose, Pseudo inverse, respectively
$[\mathbf{A}]_{p,q}$	The (p, q) th element of A
$\mathbf{A}(a:b,c:d)$	The submatrix of A with the elements obtained from rows
	a, \ldots, b and columns c, \ldots, d
A (:, <i>n</i>)	The <i>n</i> th column vector of A
$\mathbf{A}(n,:)$	The <i>n</i> th row vector of A
Tr(A)	The trace operation of a square matrix A
det(A)	Determinant of matrix A
adj(A)	Adjoint of matrix A
$\mathcal{D}(\mathbf{A})$	Length of the shortest nonzero vector of the lattice generated
	by A
$\lambda_{\min}(\mathbf{A})$	Minimum eigenvalue of A
$\mathcal{L}(\mathbf{A})$	Lattice generated by A
$E[\cdot]$	Statistical expectation
$\Re(\cdot),\ \Im(\cdot)$	Real and imaginary parts
< a, b >	Inner product of two vectors a and b
$\mathcal{CN}(\mathbf{m}, \mathbf{C})$	Complex Gaussian vector distribution with mean \mathbf{m} and
	covariance C
$\log(\cdot)$	Natural logarithm
0	Matrix with all entries of 0
$\ \cdot\ $	2-norm
$\left\ \cdot\right\ _{\mathrm{F}}$	The Frobenius norm
$\lceil \beta \rfloor$	The nearest integer to β
$\lfloor \beta \rfloor$	The closest integer which is smaller than β
$ \beta $	Absolute value of scalar β
\	Set minus