Refine, improve, and optimize your
i0S apps’ performance

Pro

10S Apps Performance
Optimization

Khang Vo

APIess®

Pro iOS Apps
Performance
Optimization

¥

TN

Khang Vo

Apress’

Pro iOS Apps Performance Optimization
Copyright © 2011 by Khang Vo

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3717-4
ISBN-13 (electronic): 978-1-4302-3718-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Tom Welsh

Technical Reviewer: Evan Coyne Maloney

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins

Copy Editor: Mary Behr

Compositor: MacPS, LLC

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at waw.apress.com. For detailed information about how to locate your book’s
source code, go to http://www.apress.com/source-code/.

To my girlfriend, Ngan Huynh,
for the love and great encouragement and support.

Contents at a Glance

(1 1) 1 v
About the AUthOr.......ccieeeeiimiiissss s aannnn s ix
About the Technical ReVIEWErcccurrisssmmnssssssnssmsssnnnns X
Acknowledgmentscccumussmmmmmmsssnsnmsssssnsnmsssssnsssnssssnssssssssnnssnssssnnnsnsssnnnnnnnnsnnns xi
] £ T Xii
Chapter 1: Introduction to i0S Performance Optimization..........ccccuseenrrissnnes 1
Chapter 2: Benchmark Your Apps with Tools: Simulators
and Real Device Testccucemmmmnsmmnmmmsssssnmmssssssnmmsssssssssssssssnssssssnns 7
Chapter 3: Increase and Optimize UlTableView Performanceuoeeeeeesnnncns 39
Chapter 4: Increase App Performance Using Image
and Data Caching TeChNIQUEScccusserssssnsssssnsssssnsssssnsssssnssssnnnss 59
Chapter 5: Tune Your App Using Algorithms and Data Structures 87
Chapter 6: Improve Parallel Data Access using
Multithreading TeChNIQUEScuscermssanssssansssssnsssssnnssssnnssssnnssssnnss 137
Chapter 7: Optimize Memory Usage for Better Performancecc..ccenneuns 177
Chapter 8: Integrate Multithreading and Efficient Memory Usage for
Multitasking Apps Performance.........ccocussseenmmssssssnssssssssssssssnnns 197
Chapter 9: Improve Performance with Native C/C++cccccnmrrrnssssssnnnnnnnnnnas 219
Chapter 10: Comparing Android and Windows Phone
Performance Problems........c.ccccinnnnsmmnmnnsssnnnmmssssssnmsssssssssssssans 241
INA@X ceeeiiiiiiiisssssnnnnnnnnnnnssssssssnnnnnnnnnsssssssssnnnnnnnnsssssssssnnnnnnnnessssssssnnnnnnnnnssssssnnnnnnnn 265

Contents

Contents at @ GIANCE..........eeeeeeeeeeeemeeeeeeeneessnnnennsnsssnnsssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 1V
About the Author........———————————— s 1X
About the Technical REVIEWETcuuusss X
Acknowledgmentscccuseemmsssnmssssnsmsssssssssssssssnsssssnsssssnnssssnsssssanssssannsssannessannens Xi

2 (=] [- X (| |

Chapter 1: Introduction to i0OS Performance Optimization...........ccccsseennriinnee 1
A New Era of SMArtPRONE.........cvveieiiicccccesesese e na b 1
Why Performance MaErS ..o s s 1
Who Should Use This Book? ...
My Teaching Style........c.cceeu...
What Do You Need?
HOW 10 USE ThiS BOOKcveriereiirieriestssese st se et st se s se s s s s s b e s s a e sa s s sae e s e e nn e e b sae st s e aesnennns 3
AN OVEIVIEW OF The BOOK.......ccerireeieriniririnerin e se e sas e s e s sa s s b e et ae e st se s e e b e e nen 3
LT T - OO 5
CONTACT The AULNOTceic e e e s e s a e e e e s e R e e b e Rt e bt 5

Chapter 2: Benchmark Your Apps with Tools: Simulators
and Real Device Testcccciummmmmmmsssssnmmmmmmmmmssssssssssssssssssssssnsssssnnnss

Basic Tools
Memory Allocation
LEOACY COUEvveeeeeucueceesesesesesssss s s s e e s s e e e s bbb e e ne e e bbb e b e bR et e e e e ne e e nensnnan
Performance Tools

INtroduction t0 the EXAMPIESccciiiiciiriiis s s 39
Reviewing the INStrument TOOL ..o 40
L1510 =511 0] 4
SECONA EXAMPIE ...vvvvecieieieseceese e seses s e se e sese e se s s s s e anais 50
What Can You Learn from These EXAMPIES?ccccoevererererererrsisrsssseesssssesesessasens 54

CONTENTS

(0100 T g o 1 T L [T T SRR 54
Caching the HEIGNT........ccecccce e 54
(00 o OSSR 55
AV0id GraphiCal EffECEScouverrrererrrrsnrsressseesesssssese e sesesss s sessssesssesasssssasssssssssssssssasssassssssssssessssnsssnsasaneas 55

Performance for Editing/REOIIEIINGoeuereereeiseseseseseseresesss s sssssseseses s ssss s s s sssssesssesessssssnsssssssssens 56

SUMIMAIY .ottt se s e s bbb e s e se e e e e A A e A e £ e R e R e Re R R E e e e nE e nEnE e A A e A b b e R seanan e e s e s et e e e 57

Chapter 4: Increase App Performance Using Image
and Data Caching TeChNIQUEScccussermsssnsssssnsssssasssssasssssanssssans 59

Differences in Performance Between Network, File, and Memory Processingc.c.covvnesnsnnmsesesesessssesssenens 60
INtrodUCTION 10 CACKING......cccoeierereririririris et p s r s ne e e e s s e an e 62
WhaL iS CACRING?eeeerererereriririr st e e e b s et ee e e e e s e s snsnsnanan 62
CACKE Hib...eeeee ettt nE e e e AR e n e 62
CACNE IVIISS .t a st e s e e e e e bR AR E e e e e e e A b b e e e e e e e e e n s 62
Retrieval Cost....63
Storage Cost63

Cache Invalidation....
Caching Algorithms..
Measuring Cache......... w1
What You Should Cache........cccoevevvererierenne e f2
Where Should You Store Your Images?

Data Caching.........cccceerererererererererenennnnns 77
SUMIMATY .o.vtitieeeeceseeesesese s b bbb e s e e e e e e e e s e e e A e b e b e b e R e Re RS e R e e eE e nE R e e A A e A b b e R seanan e e e e s e e e e e 85
Chapter 5: Tune Your App Using Algorithms and Data Structures 87
L1103 1110 2N 88
Theoretical Issues of Measuring Algorithmic Performance. ... sssesnns 89

HOW t0 MEASUIE Big-0.......cceereririririririeis s seses s s s s ss s s se e e e s s se s s s s s s s s sssesesensnens 90

Implementation DEtailS..........covviriinrr e —————————————— 92

Big-0 of FAMOUS AIOITAMSc.covivririririeisiniseee ettt s se e s e se e e e e e e senanens 92
Practical MEASUIBIMENL..........ccviieiiie st e e e e s 93
Data Structure and AlIGOFtMSccceveieierircc e s s s ne e 95

£0C0a TOUCH DA STIUCLUIESveeeeececeecsereri s e et 95

Other DAta STIUCTUIEScvcveececccccccesee e s e bbb es 106

2T L T N 119

[T T | OO OO YT 123
Other Algorithms and Problem-Solving APPrOACRES..........cvvererurereesereserereseses s seseseesesesessssesssssssssssssssesens 130

LT 1T o] SR RN 131

SAX/DOM Parser for XML ParSing........c.ccccceeesereseresesesssssssssssessssssssessnes 132
SUMIMAIY ...ttt e s sa s e se e se e e e e E e A b e b e R e R e Ra R e aR e e nEnEnE e e A b e b b e e an e ae e e e s e e nn e ne s 133

Chapter 6: Improve Parallel Data Access using
Multithreading TechniqUEs.cccssssasssssanssssanssssanssssanssssanssssanses 137

What Are Threads and MUItIthreading?ccccoceceerrnnnnnsseeeeesese s eees 138
Threading TErMIN0IOGYccouiiririiiiriie s e bRt b s e s bn e nn s 139
FIrSE EXAMPIE ...t a s e e 140
Benefits of MUIItNrEadingccccoeiiiniii s 142
How to Write Multithreaded AppliCALIONScccviiicniinnr e 143

Create @ TIIBAGcveveeeeeeeeeeeeee e eE e e e A e bbb e bR ReRn e e e e s 143
CONFIgUING @ TRFBAGvcveeececcceccrese st e e s bbb an e s 150

R (LT T =T o = 151
RISKS OF TRIBAUS ...ccueeverrerrcriesie s sre s s sse s s s s s s s ae s p e e s s s h e e e ae s r e e e e e aeerenn e e s e nnnnne 154
Thread SYNCAIONIZATIONcoceveeeeererrineseeese s r e en e e e e e s s ansnnnnnne 169
ARRErNAtives 10 TAFBAUS ... s e e 17
Thread InStrument for iPRONE ... e 174
SUMIMAIY ...ttt e s se e e sE e e e A e A e £ e b e R e R e AR e aR e e e nE R EnE e A A e b b e e an e ae e e e e e e e e ne s 174
Chapter 7: Optimize Memory Usage for Better Performanceccusueennens 177
A LIS REBVIBW ...ttt sttt s e d g e e e A e e e e R e e e e s aeeae e e e s aennen 178
0ld Object OWNEISNIP PONICY.......cccieeerererererereressssssssesssesesesesesesssssss s ssssss s s s sssesesessssssssssssssssessssnsnsnssnsnes 178
F T (0]][T SRS S RSP 178
AULOTEIEASE POOL.......cv et 179
Automatic Reference COUNTINGcoeueuierrereeieescrtrese s se e s sa bbb nas 180
ARG POLICY ...ueueueseeeresesesssssssssssssssssssssssssessssssssssssasasessssssnsasssssssssssessssssnsssssssessssnssssssssssssssssssssssssnssssssssssssnens 182
NEW QUAIITIEN FOF ARCcoceerererererererisisiesseeeeesees e e e e e s s s s s ss s se e e g e bbb e en e e e ne e e nens 182

ODJECE PrOPEITY ...ttt se e et ne bbb bbb se e e e e e e s 183
AdVANCEU MEIMOTY ISSUEScvrviiesiiisesresisesese st ss s ss s e se s se s e e s s et bsbs e s as e e s bn s nnans 184

Retain/RelationShip CYCIEScccocecverereririririniniseseesese e s e ss e s s snnsesesens 184
L =T Q=] (=] € 1 T 185
UIVIBWEOONTIOIIEEceeeeeeeeereresesesesssss e esesesesesese e e ssss s s st se e e b s e e ee st e ne e s s an s e snananas 185
LOAA VIBW PIOCESS......cviuiiriiricsisies sttt st s s se st se e et e sn s 185
UNIOAA VIBW PrOCESScccieirieinisisissssssisss sttt s s b s se s e s s 186
Displaying and Hiding Views in the USer INTErfacec.ccccereieriinninininnicsiss s 187
ODJECT COPY c.rveerererrresseresesesesesesesesesesesesssesssssssssssss e e e e e e s e e sesesessasasasasese e s e e e e nE e e nE e e e e A e b e b e b aReRene s e s s s s e e nnns 188
SNAIIOW VS. DEEP COPY...vrrrrrrirerinirieesseseseresesssssssssssssssssssssssssssssssssssassssssssnsasssssssssssssssssssssssssssssssssnsnsnssnsnes 188
IMPIEMENTING @ DEEP COPY ..cuveererrrererrrisisreseseseseseesesesesesesssssssssss s ss e e e sesesssas s s snsasasssssesssssssssssssssssansnsns 189
Integrating a Copy Method into an OBJECT..........cvuruireeieererrr s 190
Advanced AULOrEIBASE POOccouieriiierinesi s s st 191
INSTFUMEBNES ...t e e E e sE R e e b e sa s e s e n 192
STALC ANAIYZET ...t s E AR AR e e 193
LE@K INSIIUMENL ..o e st s se s e nn s 193
0] 1111 3PN 194
ODJECE AIIOCALIONcveveeeeeeeeciceee et b s ne e e e bbb bR Rn e e e e e s 194
Memory Warning LEVEIS ..o 195
SUMIMATY ..ttt sesese st se s bbb s e s se e e e e e e e A e A e b e b e R e R e Re R e R R e nE e nEnEnE e A A e b b e e an e ae e e e s e e e e ne s 196

Chapter 8: Integrate Multithreading and Efficient Memory Usage for
Multitasking Apps Performance.........ccccuseenmmssssssnsssssssssssssssnnns 197

What is MUltitasking in IPRONE? ..ot s es 198
Multitasking Handler MEthOAS..........coviriieinnscn s 202
Multitasking BEnefits and COSEScevrrrrrrisiinisseseseseresessses s seeseses s ssssessssssssssssssnens 204

BACKGIOUNG SEIVICEScueeeerererereresissssssesssseeesesesesesesasssssssss s s s s ssssessssssssssssssasasessssasnsassssssssssssssssnsnsssssssssnns 205
AUTIO SEIVICEcueueeeererererereresesesis e e e e e e e e s s ss s se e e e b E e R Re e e e e e e e e e nbnsn s e nananas 206
SHOW SPIASH SCIEEN.......ccveveececcccicee e s s e bbb n e s 207
LOCALION SEIVICEucueueeeererereresesesess e se e e e e st se e e e e e R e e e nanansnnan 207
LOCAI NOEFICALIONcevciici e e 21
VO0ICE OVEE IP (VOIP)cueeerererereristsssisseseseseesesesesesessssssssssssss s s s s sesesesessssssssasasasassssnsnsnsssssssssssssssnsssnsnsnsassanas 211
BacKground EXECULIONc.ceceiiiiiriiisinise e s sr e 211
What to Notice when Running in Backgroundcccoeninnnnnnnsnsssscsss s ssssesesssssse s 213

CONTENTS

CONTENTS

System Changes NOTICAON ..o s s es 215
Dealing With i0S VEISIONScouverrrriririsseseeseesesesesesssssssss s ssssssssssesesesesessnssssssnssens 216
SUMIMAIY ...vviteeeeeeceseesese s se s s e e e sa s s s ss e e e e e e s e e e e A e R e b e R e R e ReRe e e AR R e nE e RE R EREnE e A e A e b e b e ReRnRnse e s e s e e nn e e 216

BasiC C and C++ ProgramMINgcccuovceverererensesersssesssssessssesssssessssssessssssessssessssssesesssssssssessssssessssssesssassessssssenens 221

G PrOGIAMMINGvcucueueeeeecesesesesesssssssssssss s s s s s s e s e s se e e s s s s sbsbabasa s se e s st e e e e e nE e e s b b e b nbnRnRese e e e et aes 221
G+ PrOGIrammMINGc.ceueueceeceserenesesesss s s e se st se e s bbb se e e e e e e s 231
A Practical EXAMPIEcocvuiiriiiiniiiirissesi s s s s s s s s n s 236
SQLITE 1uvuvrererrrrersessseseeee et sese e e e e e e e e s s a e e E g R e R AR R nE e R R R R R R ReRe R R s 236
Integrate C++ into YOUr APPlCALIONc.cveveeereieserr e e sne e 238
SUMIMAIY ...ttt sesesese st e e e sa s e e e s e e e e e e e e A e b e b e R e R e AR e R e e e nE R e R A e A bbb e e an e e e e e e e e e e e 238

Chapter 10: Comparing Android and Windows Phone
Performance Problems.........ccccceeeeeeememenenensnnnnssssssnsnssnsnssnnnnnnnns 241
Benchmarking on Emulator and DEVICESccvieirinnininiinsesiss s s ssnens 242

EMUIBTOr @N0 DEVICEScciviiiiriiiirinsi et st sa s 242
BENCHMAIKING.....couiieeiiriirirce s et 244
Y30 [0 RSOSSN 246
WiINAOWS PRONE ...ttt s s s et e e e s e e e s e nnn 248
D e I 0 T 1 o OSSP 249
Y30 [0 o RSOSSN 250
WiINAOWS PRONE ...ttt s e bbb n e b e s e nn e e s e nnin 251
Data Structure and AlGOFtMScceueveiiirrce e s ne e 253
LT =72 To 1 o N 255
Y3100 o RSO SRRSR 255
WiINAOWS PRONE ...ttt s e bbb e b e e e e e e e s annnen 257
LT Lo T T T 1T 1 N 258
Y310 (0T o RSOSSN 259
WiINAOWS PRONE ...ttt st e s s e et e e b g e e e s e nnen 260
MURIEASKING ...ttt e s s b s p e ee s ne R n R 261
Y310 L0 o RSO SRRSR 261
Support 0f G/C++ ProOgramMINg........ccocecseseserereressssssesssesesssssesssssssssssssssssssassssessssssssssssssssssssssssssssssasssssssssssssnsas 262
SUMIMAIY ..ttt sese st e bbb asa s e se e e e e e e E e A e R e b e R e R e Re R e R e nE e nE R e R A e A A b e b e e an e e e e e e s e nn e ne s 263

1T - ; 1

About the Author

Khang Vo is a software engineer and entrepreneur who loves working on the
latest technologies and products. He has been developing on the iOS platform
since 2009. He loves sharing and discussing different aspects of technology and
business that help to create new value for consumers. Making and selling
different applications in the Apple App Store and Android Market have been his
main business. He is a Master’s student at Carnegie Mellon University.

About the Technical Reviewer

Evan Coyne Maloney taught himself how to program after inheriting an Apple
Ile computer. As a young teen in the mid-1980s, he published an operating
system for the Apple II line called FoscilDOS that was highlighted by

both Byte and A+ magazines. Evan began writing Internet software in 1994,
creating the KeepTalking chat system, the first purely browser-based live-
updating chat system. In 1996, Evan wrote the web-based political campaign
simulation game DarkHorse for MSNBC.com. During the presidential
campaign that year, the game logged many millions of hours of play and was
even used in political science classes at various high schools and colleges. Since
2001, Evan has put his development efforts towards mobile content delivery
and commerce. He conceived of and built the first several versions of the award-winning News
Pro line of iPhone and iPad applications from the Reuters news agency. Evan joined online
retailer Gilt Groupe in 2010, where he is now the principal engineer for the company's critically
acclaimed and highly ranked iOS applications.

Acknowledgments

I would like to thank Steve Anglin, who approached me with the idea of creating this book and
guided me through the initial process. I also want to thank Evan Maloney for providing many
helpful suggestions over the technical part of the book. Ilearned many things from Evan while
writing this book.

Thanks also to Tom Welsh, who helped me make the writing clear and easy for readers to
understand. He has made lots of great suggestions to guide the book into its final form. I also
want to thank Corbin Collins for his quick and helpful instruction when I asked questions.

I also thank developers and people who shared and helped me with technical difficulties in
writing the book. It helped me to figure out what developers lack and how to help them get the
necessary knowledge and skills.

xi

Preface

The book is meant to help you to sharpen your iOS development skills in a specific area:
performance optimization. The book is intended for people who already have basic skills in iOS
development and want to make the best application for users.

Insipired by the art of application performance, I spend time practicing, learning, and
sharing a lot about performance optimization in different platforms such as the web and
smartphones. I love discussing this topic with people. While spending lots of time in forums and
i0S communities like Stack Overflow and the Apple Developer Forum, I soon recognized that the
majority of iOS developers have the same questions on how to improve the performance of their
applications. I thought it would be useful to put all common issues together in a well-written and
well-structured book so people can easily get the whole picture of the iOS performance
optimization problem. That motivated me to write this book, and I tried my best to cover the
most common problems and mistakes met by developers.

Moreover, I observed and record in my own notes many similar problems between iOS,
Android, and Windows phones. The final chapter is written based on these notes, and I think this
chapter will be really useful for anybody who wants to work in these three platforms or shift from
one platform to another.

When approaching a performance bottleneck, it is good to see it in different ways and strike a
balance between the performance of the application and the difficulty of implementing the
solution. There are subtle problems that cause people to make mistakes unless they know about
the solutions beforehand. My hope is that this text will help you to avoid those mistakes, spend
your time improving your application, and create a better experience for your users.

Chapter

Introduction to 10S
Performance Optimization

This chapter will introduce general information about the book, including the following:
Who this book will best serve
The topics this book will cover

The general structure and style of the book

A New Era of Smartphone

There are currently hundreds of thousands of iOS applications on the market and
hundreds of millions of iOS users, making this a big market for any company or
developer to explore. This market has been growing for many years and will keep
growing in the next few years, as will the need for interesting and powerful applications.
If you have a good idea for a new app, you need to make sure that the idea is
implemented well; this includes creating a good user experience. Because of the unique
technical limits of the Smartphone environment, good performance is a must for your
application. People want an app that responds quickly to their interactions, one that can
compute data and visualize it immediately.

Why Performance Matters

Performance is not just about algorithms, data structure, and memory. It’s about making
people feel that the application responds to any interaction as fast as possible.
Therefore, performance optimization in your iPhone application is important. Users have
to feel that they are interacting with real agents that receive their command and execute
it almost immediately. What if you tap a button and two long seconds later, you see the
effect. Are you happy with this performance? If you’re not happy, your users are
probably even more frustrated.

CHAPTER 1: Introduction to i0S Performance Optimization

Of course, you can shift much of your storage and processing into the cloud where there
are thousands of servers that can compute and return the result quickly. However, it’s
not enough to just put all your data and every computation into the cloud. Network data
transfers are tricky and your users will still probably need to wait for couple of seconds
before their data arrives.

Whether you are a game developer or a general application developer, you are likely to
experience difficulties in improving the performance of your applications.

Who Should Use This Book?

This book is written mainly for beginner and intermediate iPhone developers who
already know basic iPhone programming. If you’re a performance lover and want to
create an application on this new platform that is responsive and market-ready as well
as innovative, this book is for you. Even advanced iOS developers can benefit from this
book.

If you intend to go deeply into the Smartphone application programming world, this
book teaches you enough so that you can apply what you know with iOS to Android and
Windows Phone environment.

My Teaching Style

| believe that the learn-by-doing principle is the best way for a programmer to develop
skills. This book is based on that idea. | discuss general and deep practices that stem
directly from around two years of iPhone development experience and many years of
Java development experience and training. The problems that | put before you will help
you to avoid or fix many of your performance mistakes in iPhone development. | have
chosen these problems based on experience and research into the issues popular on
forums and social networks (such as Stack Overflow). I've identified common pitfalls and
provide the information you need to avoid these errors.

The book is a combination of three things: basic concepts, story illustrations, and
sample source code. Instead of just supplying an ad hoc tool for your specific problem, |
hope to provide you with strong skills to use in your daily iPhone programming life. |
employ different approaches to communicating concepts: sometimes an image is worth
a thousand of words, some concepts are best explained by sample code, and some
require those thousand words.

One of the best ways to start learning about performance is to develop a cool
application that you love. This practical experience will teach you more than some non-
realistic and very forgettable examples.

You don’t need to know a lot about Cocoa Touch Framework because | explain the
basic syntax and classes that you’ll need to improve your application’s performance.
Each chapter consists of a separate topic, some of which may already be familiar to you.

CHAPTER 1: Introduction to i0S Performance Optimization

You can also use this book as a general reference; whenever you have a specific
problem, you can look it up and read about the solution.

Every chapter follows a simple format: a short overview about what that chapter delivers
followed by the main sections and subsections. Each chapter concludes with a
summary that helps consolidate your knowledge and reminds you of the important
lessons, followed by some basic and realistic exercises so that you can have fun
practicing what you just learned.

What Do You Need?

As an iOS developer, you need a Mac OS with Xcode installed. There is a free Xcode
version from the iOS Developer Account, or you can download it directly from Apple
Mac AppStore. You also need a copy of this book plus all of the sample code, which
you can download from the Apress website. The sample projects were well tested on
Xcode 4.2, with ARC turned on, so you can run my sample projects in that environment
without any concern.

You can and should run every example to understand more about the illustrated
concepts. There are some short blocks of code that aren’t associated with any project;
you should run that code, too.

How to Use This Book

Although the chapters are not closely related, reading the book from beginning to end
will ensure that you have a solid knowledge of iPhone performance, optimization skills,
and techniques. There may be some dependencies and references between chapters.
The later chapters were written with the assumption that you have read or know about
some previous chapters.

| also recommend reading each chapter from beginning to end. Each chapter opens with
a quick conceptual introduction to the topic; then theory and practical iPhone samples
are combined to help you to understand the topic thoroughly.

You should read the summary section carefully because it reminds you of the key
knowledge that you should retain. | also recommend finishing all of the exercises as
these will help cement your new knowledge.

An Overview of the Book

This book contains a good mix of basic concepts plus practical knowledge,
techniques, and tips that will help you to be successful in the competitive iOS
development world. The book’s nine chapters cover nine different approaches
to solving performance problems in iOS development.

CHAPTER 1: Introduction to i0S Performance Optimization

Chapter 2: The introduction to a range of tools and instruments so that
you know how and when to use them. Many developers don’t use
these tools correctly because they simply don’t know that they exist.

Chapter 3: As an iOS developer, you will definitely use TableView in
almost all of your projects, from trivial ones to complex ones, to
display a list of data or options. The problem with the architecture of
UITableView is that when you start customizing it, the scrolling
performance suffers. You will definitely have this issue, even if in a
subtle way. This chapter gives you a list of tools and techniques to
improve your TableView scrolling.

Chapter 4: You may believe that most performance issues can be
solved using cloud computing and by simply adding more servers to
your system. Even if that’s true, network data transfer will always be
an issue. Data transfer will remain a bottleneck for years. You should
understand how to cache data locally and in memory with a limited
environment like iOS.

Chapter 5: Data structures and algorithms in the iOS development
environment are similar and different than in other environments. You
have a high level of support from the framework with many basic data
structures like arrays, sets, and dictionaries. For some tasks, you can
simply put it to the cloud, but for other tasks, especially gathering and
processing data to make a good visualization, you still need to depend
on the iOS environment.

Chapter 6: Improving the performance of the application also means
making the application respond to users’ interaction faster. This
means not blocking the main Ul thread. Multithreading can help—not
just to improve the user responsiveness but also to improve the
general performance of your application. Multithreading is a difficult
topic for any platform, and you will learn it here through a range of
illustrations, examples, and clear explanation.

Chapter 7: With the release of a new tool to make memory
management automatic, developers now can take advantage of it to
avoid common memory problems like memory leaks and crash. This
chapter focuses on how you can best use your memory, and when you
should load data in and unload data out of your memory. It also covers
the new Automatic Reference Counting (ARC) mechanism of the new
SDK to make sure you can understand and use it correctly.

Chapter 8: With iOS 4 and above, all applications can take advantage
of multitasking to improve the user experience. In fact, it’s not actually
multitasking but rather a fast app-switching mechanism (applications
can’t run in background) with some special background processing.
This chapter will help you understand what features the iOS will
support and what tasks you can process and run in background.

CHAPTER 1: Introduction to i0S Performance Optimization

Chapter 9: In many iPhone applications, you don’t need to use any
C/C++ code to implement features. However, when you actually need
it, especially for library integration, you will be in serious trouble. You
may not need to write your whole application in C/C++ but you do
need to understand how these languages work for any necessary
troubleshooting.

Chapter 10: By now you should have a complete picture of all the
different aspects of iPhone performance. You will definitely consider
porting your application to Android and Windows Phone soon, so in
this final chapter, | give you the whole picture on similarities between
performance problems in iOS, Android, and Windows Phone. This will
help to smooth your learning experience for new platforms.

Source Code

You should download the sample source code from the book’s page on the
Apress web site (www.apress.com) and try it on your own.

Contact the Author

If you have any questions, please email me at vodkhang@gmail.com or visit my web site at
http://vodkhang.com. | shall be happy to have a chat about iPhone performance
problems.

Chapter

Benchmark Your Apps
with Tools: Simulators
and Real Device Test

In this chapter, you will learn about the following:
The differences between a simulator and real device test environment.
How memory management affects the performance of an app.

Tools and techniques to benchmark your app’s performance including the
following:

Basic tools to measure the memory and performance.

Complicated tools to measure different aspects of memory
management such as memory leaks and bad access.

Complicated tools to measure different aspects of performance
in computer processing such as battery, file loading, and display
information.

How to divide your program into smaller parts to easily identify
the location of the performance bottleneck.

To improve performance, you need to carefully run benchmark tests to see where the
problems lie. To carry out a useful benchmark test, you have to understand the different
reasons that a program or a segment of code might run slowly.

Right at the outset, you should be aware of two fundamental choices: simulator versus
real device environment, and the trade-offs between memory optimization and
performance optimization.

First, you need to know the difference between the simulator and device environment.

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

Simulator and Device

The main problem with the performance of iPhone applications is that they are running
in a restricted, slow-processing environment. The iPhone development environment
simulator runs much faster than the real environment; in fact, the simulator’s
environment can be as fast as the machine running it.

As a result, you can get a big and unpleasant surprise when the program runs really fast
in the simulator environment but runs much slower in the real environment. | have
observed many people blaming slow application performance on the phone’s network.
This is certainly true in some cases. However, in many cases the app’s performance can
drop down a lot because of the code implementation itself, not because of a network
problem. Therefore, careful testing and benchmarking your app against basic tools and
standard environments will make you more confident about your app’s performance and
the user experience.

To demonstrate the significant differences between the simulator and real device, |
tested a program in the iPhone simulator environment and the real iPhone environment.
The results are surprising.

It takes 0.5 seconds to finish the main calculation in the iPhone simulator.
It takes 7 seconds to finish the same calculation on the iPhone device.

The program was simple: | did a simple test with two arrays, each with 1000 elements.

Then, the code loops over both arrays to find the same number and print “hello.” In the
real world, you may not need to process 1000 items in an array or you may not choose
to loop over arrays to find same number. However, this is not the point. | picked these

actions to demonstrate that real iPhone environment is much slower than in the iPhone
simulator.

This brings me to a point that | will mention many times in this book: you always need to
test the app on both simulator and the real device. Well, why not just test on the device?
Because simulator has the following significant benefits:

It is faster to run the test in the simulator, which means less delay time for
developers.

It is good enough to test for memory leaks and memory allocation problems.

Memory and Performance

Memory and performance are different. Memory usually means the RAM storage, and it
refers to how much storage you use and how much you have left. Performance is about
how fast your app runs a specific feature.

Memory can have a significant effect on performance. When the device has more RAM
and more storage space, you can preload and cache more data on it. RAM is fast
access storage compared to file storage and the network. By preloading and caching

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

more data on RAM, you can significantly speed up your program in many cases. For
example, if your app is a game that needs to load many images, more memory is
important to because you can preload the images and display them when necessary.
Loading from RAM is 10 times faster than loading from the file system.

However, better use of memory does not always mean better performance. Some apps
don’t need to use much memory; therefore, you can optimize the memory only so far
and the performance will not go up anymore. The inverse is not much better: an app can
use up all the memory in order to achieve good performance, but then the app runs out
of memory.

Therefore, you should always carefully benchmark both the memory and runtime
performance to make sure that you strike a good balance between memory usage and
runtime performance.

Tools

The tools fall into the following three main categories:
Basic tools, without XCode instruments.

Memory tools, which verify the correctness and measure the efficiency of your
memory usage.

Performance tools, which measure how fast each part of your program runs and
pinpoint any bottlenecks.

Basic Tools

In this part, | discuss about logging as a basic tool to measure the running time between
blocks of code.

Logging the Running Time

One of the most basic tools is logging the time difference between the start and end of a
block of code. Usually, logging is implemented with NSLog. With this basic tool,
developers can measure every line of code or block of code to see how fast that block
of code runs.

For example, running this block of code

NSDate *date1l = [NSDate date];
for (int i = 0; 1 < 1000; i++) {
// Do calculation here

}
NSDate *date2 = [NSDate date];
NSLog (@”time: %f”, [date2 timeIntervalSinceDate:datel]);

10

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

returns this result

time: 0.0123 (measured in seconds)
Advantages:

A straightforward and easy way to measure the performance.

You can measure the performance of lines of code or blocks of code.
Disadvantages:

You can’t measure the Ul performance (i.e. the rendering time of the Ul thread).

You can over-optimize (spend too much time on a very specific block of code
just to optimize it a little bit).

Running the application in simulator is usually fast, and at this fast level, NSLog
can’t help you distinguish between a difference in runtime performance.
Otherwise, although NSLog is slow in the device, it can help you to detect the
differences in runtime performance.

Usage:
When you need an immediate tool to measure without much planning.
When you need a tool that can return a result quickly.

When you need to isolate a small block of code to verify a performance
assumption.

Memory Tools

With memory problems, you have only one main concern: high memory usage. There
are minor concerns with legacy code: memory leak and memory garbage. For the new
projects, you should go straight with the new Automatic Reference Counting (ARC in
short) support. For some old projects, you can try to convert them using the convert tool
of Xcode.

However, not every project can be converted, there are many issues and memory
management policy that prevents you from conversion. Trying to comply with the new
management policy may cause you more troubles. So, | discuss mainly with you about
the memory tools for object allocation and briefly about tools for memory leaks and
memory garbage.

NOTE: All the memory tools that | introduce here (and I introduce all Apple’s tools for memory)
can be run with simulator. The good thing about the simulator is that it runs really fast and
installs apps quickly. However, be careful! | strongly recommend that you also test your apps on
the device because the simulator and device are not always the same. They are built differently
and have different architectures.

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

Memory Allocation

Memory Allocation helps you to understand how much object allocations you use. This
may mean that you allocate and keep in memory so many objects. These objects are not
released yet because it is still in use.

Allocation

Choose Product » Profile and then choose Allocations in the open window (as shown in
Figure 2-1)

Profile 'Cricket Coach’

Choose Trace Template or Existing Document:

! i0s

1O Activity
Graphics

I User ‘

Blank Allocations Leaks Activity Monitor

.5 Allocations

This template measures heap memory usage by tracking allecations, including specific
object allocations by class. It also can record virtual memory statistics by region.

(':’\ (Cancel) (Profile)

Figure 2-1. Choose Allocation in Profile Window

After choosing Allocations instrument, you will be shown with a main Allocation panel,
which gives you all the necessary information, as you can see in Figure 2-2.

The Allocations panel (Figure 2-2) shows you “created and still living” jobs so that you
can see what objects are still in memory and what objects consume the most memory.
You should use this tool if you start receiving many warnings from the iOS environment
like “Received memory warning. Level =1”.

The details will show you at which time which lines of code and which class is
responsible for creating and handling the objects. With this information, you can easily
figure out how to deal with memory. This is a good tool for tracking caching algorithms
and methods (see Chapter 4 for more details).

1

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

®eno Instruments =

@Q@ 1@ iPhone Simulato...; | [D][O]G
Stop Target _ Inspection Range

0g:00:23 @ Q- Instrument Detail -
et vew "
T

Instruments Toooo i

ﬁ Allocations i
& o=
> VM Tracker)
r =]
WA Allocations % HH Statistics $) Object Summary =
¥ Heapshot Analysis. Graph | Category Live Bytes. #Lliwing #Transitory = Overall Bytes | #Overallw|# Allocations
Mark Heap @ - all Allocations * 10.03 KB 152 6033 5.06 MB 6185 e
¥ Allocation Lifespan O malloc 16 Bytes 48 Bytes] 1412 22.11K8 1415
O Al Objects Created O malioc 64 Bytes 64 Bytes 1 564 35.31K8 565
© Created & Stil Living (] Malloc B0 Bytes 320 Bytes 4 386 30.47 KB 390
OCreated & Destroyed O Malloc 32 Bytes 128 Bytes 4 328 10.38 K8 332
 Call Tree O CRAmay (mutable-vari 384 Bytes 12 300 9.78 KB 312
R CagorT [Malioc 96 Bytes 192 Bytes 2 215 20.34 k8 217
(] CFArray (store-deque) 480 Bytes 14 152 19.47 KB 166
O Malloc 160 Bytes 160 Bytes 1 156 24.53 K8 157
[0 CrBasicHash (value-st... 2.52KB 29 121 39.52 KB 150 |
[) Malloc 48 Bytes 384 Bytes 8 121 6.05 KB 129
O cGEvent 672 Bytes 3 97 21.88K8 100
B O} Malloc 144 Bytes 288 Bytes 2 59 8.58KE 61
- Call Trec. Canstrainks L Mallec 112 Bytes 224 Bytes 2 54 6.12KB 56
» Specific Data Mining O |NsEvem 64 Bytes 1 48 3.06 KB 49 |
[l CrBasicHash (key-store) 464 Bytes 19 29 14.67 KB 48 | e
[CFString immutable) 784 Bytes 15

2 el 2
Figure 2-2. The main allocations panel

Figure 2-3 and 2-4 shows you more details about what objects are living and
consuming the most memory for your application. In Figure 2-3, you see the list of
details about objects are created and lived inside your application.

Graph Category Live Mesﬂ # Living # Transitory Overall Bytes # Overall # Allocations (Net / Overall)
@j * All Allocations * 27.77 KB 565 55386 17.06 MB 55951
[CFRunLoopTimer € 11.72 KB 125 250 35.16 KB 375 |
(] CFBasicHash (value-st... 4.50 KB 135 1146 109.23 KB 1281 |
[} CFSet (mutable) 3.91 KB 125 266 12.22 KB 391 |
() CFBasicHash (count-s... 2.36 KB 8 57 16.86 KB 65
[_NSCFDate 1.94 KB 124 247 5.80 KB 371 |
(] CGEvent 672 Bytes 3 291 64.31 KB 294
[Malloc 144 Bytes 576 Bytes 4 924 130.50 KB 928
(] Malloc 48 Bytes 480 Bytes 10 1353 63.89 KB 1363
] Malloc 80 Bytes 320 Bytes 4 4787 374.30 KB 4791

Figure 2-3. The allocation results

In Figure 2-4, you can see which methods are calling to create these objects.

Category Timestamp Live Size Responsible Library Responsible Caller

Malloc 80 Bytes 00:22.186.397 =« 80 CoreGraphics CGClipStackCreateMutable
Malloc 80 Bytes 00:25.680.592 -« 80 CoreCraphics CGClipStackCreateMutable
Malloc 80 Bytes 00:26.680.849 80 AppKit ~[NSViewHierarchyLock lock. ..
Malloc B0 Bytes 00:26.680.980 = 80 CoreGraphics CGClipStackCreateMutable

Figure 2-4. The allocation details

Advantages:

B Itis accurate and provides many details on the time and situation in which the
application consumes the most memory.

B It can also give you a good overview of the object’s lifecycle over the application
lifetime.

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

Disadvantages:

The results depend on how developers run the app. It requires a good test suite
preparation to cover as many cases as possible.

It can take time and effort to create a good test case that helps developers to
figure out the place and time the application consume the most memory.

You need to test on the real device so that you can receive memory warning
message. The simulator will almost never give the memory warning message.
The problem with using the simulator is that your computer will have 2-4GB of
RAM and your device probably has much less.

Usages:

If you test your app and receive a memory warning, this is the one of the first
tools you should reach for.

Legacy Code

At this release, the tool to automatically convert from a manual memory management
project to new ARC project may fail. The tool may ask you to fix lots of places in your
current code to make sure the project can be converted into an ARC project. It may be
your open source library fails to convert into a new ARC style and you would not want to
touch it. So, | think it is good for you to understand some background about manual
memory management.

Memory Leaks

Memory leaks happen when you create a new object in memory and you don’t release it
properly. That object will stay in memory for the whole application life. The result is your
application doesn’t have enough memory to run fast, or even worse, the iOS will force
your application to close.

Static Analyzer

This is a simple and straightforward tool to measure the memory leaks. As shown in the
Figures 2-5 and 2-6, the tool will show you which line or block of code may possibly be
causing the memory leak.

13

14

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

[ECEMTEY Window Help

Run #R
Test U
Profile 8l
Analyze 0B
Build For 3
Perform Action >
Build B
Clean ¢ ¥8K
Generate Output »
Debug I
Debug Workflow 3
Attach to Process b
Edit Scheme... #<
New Scheme...

Manage Schemes...

Figure 2-5. Choose Product > Analyze

As shown in Figure 2-5, you need to choose Product » Analyze or Command + Shift + B

- [void)applicationDidFi tion =}application {
t

w1

nishLaunching: (UIApplica
String allec] &

app launch
3 Potessial leak of an obgect aliocated on line 19 and stoned in50 ‘st

]

Figure 2-6. Static Analyzer reports a potential leak of an object allocation on line 19 and stored in str.

As you can see in Figure 2-6, the str object in line 19 is never released; in this case,
Static Analyzer provides a correct warning.

Advantages:

B [t gives you a quick and general look at possible places where memory leaks
can happen.

B It has a really fast process: it only builds and looks at the source code. Static
Analyzer doesn’t need to run the program.

B This tool requires no effort from the developer; you just click on Build and
Analyze.

Disadvantages:

B Sometimes it’s not accurate. It can give an incorrect warning or doesn’t indicate
places where there is a memory leak.

Usage:

B Developers should use this tool first to measure the memory leak because it’s
fast and requires almost no effort.

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

Leaks Instrument

This is a better instrument that measures the memory leak in runtime (when the app is
running). This makes sure that the object is really leaked out; if an object is leaked out, it
will have to be reported to the user. You keep trying different features of the app, and
the Leaks Instrument will report memory leak places.

You will need to look for places where the Leaks horizontal bar shows a vertical column.
The height of the column will show how much memory the app has leaked at that time
(see Figure 2-7).

L

ST J

Figure 2-7. Shows how many leaks you have had from running the code

Then, when you go inside the details of the leaks, you may see a list of leaks happening
in your code. By sorting by responsible library and looking for your app name (in this
case, LeaksViewController), you will see two leaked objects. A quick look tells you that
you leaked two images inside the class RootViewController.

Leaked Object # Address Size Responsible Library w Responsible Frame

j Ulimage 0x8026020 16 Bytes LeaksViewController -[RootViewController
Ulimage Ox4b2a250 16 Bytes LeaksViewController -[RootViewController
| Malloc 9.00 KB 0x5026a00 9.00 KB ImagelO initimage)PEC

Figure 2-8. A list of leaks inside your program

As shown in Figure 2-8, next to the address is a small arrow; by clicking on it, the Leaks
Instrument will guide you to the correct place in the app that caused that leak (see
Figure 2-9).

- (void)tableView: (UITableView *)tableView didSelectRowAtIndexPath: (NSIndexPath *)indexPath {

NSString #avatarFile = [NSString stringWithFormat:@"a@"];
NSString *avatarName = [[NSBundle mainBundle] pathForResource:avatarFile ofType:@"jpeg"];

imagel = [[UIImage_alloc]l_initWithContentsOfFile;avatarNamel; [i]

NSLoa(@"image: %@". imaael):

Figure 2-9. Lines of code that created the leaks

At this point, you can observe the line of code that created the memory leak. Usually,
Leaks Instrument will give you exact details about where the memory leak happened so
that you can easily fix it.

Advantages:
Leaks Instrument is very accurate and detailed.
Disadvantages:

The results depend on how developers run the app. It requires a good test suite
preparation to cover as many cases as possible.

It can be slow because developers need to run it a few times to see how the app
performs in many different cases.

15

16

CHAPTER 2: Benchmark Your Apps with Tools: Simulators and Real Device Test

Usages:

B This tool should be used after the Static Analyzer is used. It will cover all other
small and niche cases that the Static Analyzer missed.

| recommend that you run Static Analyzer first. If you still have some concerns over
memory usage or receive memory warning from the iOS runtime environment, you
should use Leaks Instrument.

Memory Garbage

At the first look, memory garbage may not seem to be related to performance issues.
However, having your application crash is even worse than slow performance as it stops
performance cold and kills the whole user experience that you want to create. Therefore,
you should know how make the best use of memory.

Zombie
You choose Product » Profile » Allocations.

You will be shown a running instrument. The problem is that this instrument does not
measure anything or help you with the Zombie issue, so you need to stop it. Then, you
need to configure the Allocations to work with the Zombie. In other words, when a crash
happens, the Instrument will report where the crash happens.

Instruments

\..J@@ B ZombieDebug ¢ ©0l6 0o:00:1 16 | O|D[O3] @ i Caregary
Stop Target Inspection Range | Run 10f1 > View Library Search
S st s et e o et e s 24t e e o

WM Tracker L] i Jl

>
i3] m
W Allocations % BB statistics 3 Object Summary =
* Heapshot Analysis Graph = Category Live Bytes # Living # Transitory Overall Bytes # Overallvy # Allocations (Net / Overall)
Mark Heap ™ * Al Allocations * 1.03 M8 12538 6646 2.22 MB 19184 st a
¥ Allocation Lifespan O Malloc 16 Bytes BO.27 KB 5137 571 B89.19 KB s7os I
O Al Objects Created O crsting 52.64 KB 1743 1428 116.47 KB 3171 I
@ Created & Still Living [Malloc 32 Bytes 64.50 KB 2064 980 95.12 KB 3044 N
O Created & Destroyed] Malloc 8 Bytes 5.78 KB 740 52 6.19 KB 792 N
v CaliTrea] CFString (store) 43.28K8 343 ars 380.25 KB 718l
e] Malloc 80 Bytes 11.88KB 152 465 48,20 KB 617 I
. (] CFBasicHash (value-st 20.02 KB 188 347 62.91 KB EERY |
- (] Malloc 48 Bytes 14.44 KB 308 186 23.16 KB 494 Wl
: O crarmay 1.98 K8 58 402 14.58 KB 460 |
: [l CFBasicHash 10.16 KB 223 193 18.28 KB 416
] CFBasicHash (key-store) 17.28K8 129 262 50.66 KB 391
i' e Rarie ko] Malloc 64 Bytes 8.44 KB 135 224 22.44 KB 359 :
:] Malloc 96 Bytes 17.25 KB 184 141 30.47 KB 325
: x}:‘n:'::::::] Malloc 160 Bytes 12.97 KB B3 57 21.88 KE 140 |
[] CFAray (store-deque) 4.34K8 39 85 B.7E KB 124 |
] Malloe 144 Bytes 5.48 K8 39 56 13.36 KB 95 |
] Malloc 1.00 KB 53.00 KB 53 30 83.00 KB a3 |

~eom PRETTY 2 an EWPLITY L 7N

Figure 2-10. The screen for Allocations Instrument

