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Introduction 

Interest in developing apps for Apple’s iOS platform continues to rise, and more great apps 
appear in Apple’s App Store every day. As people like you join the app-creation party, they usually 
discover that their apps must store data on iOS devices to be useful. Enter Pro Core Data for iOS, 
written for developers who have learned the basics of iOS development and are ready to dive 
deeper into topics surrounding data storage to take their apps from pretty good to great. Core 
Data, Apple’s technology for data storage and retrieval, is both easy to approach and difficult to 
master. This book spans the gamut, starting you with the simple and taking you through the 
advanced. Read each topic, understand what it means, and incorporate it into your own Core 
Data apps.  

Why a Second Edition? 
Since the publication of the first edition of Pro Core Data for iOS, Apple has released Xcode 4, a 
major overhaul of their programming tool. Everything has moved or changed somehow, so the 
descriptions and tutorials from the first edition of this book, which used Xcode 3, no longer apply. 
All the descriptions and screenshots have been updated to the new interface. 

We didn’t stop at updating the book for Xcode 4, however. We broke the discussion of 
NSFetchedResultsController into its own chapter, giving it more treatment and coverage. We dug 
deeper into the tricky topic of migrations. We took a new approach to the section on data 
encryption, based on feedback from Brian Kohl. We responded to feedback we’ve received via 
reviews and e-mail. We think both new readers and people who have already read the first edition 
will profit from reading this edition.  

What You’ll Need 
To follow along with this book, you need an Intel Mac running Snow Leopard or Lion, and you 
need Xcode 4, which is available from the Mac App Store or from developer.apple.com for 
registered Apple developers. You’ll also do better if you have at least a basic understanding of 
Objective-C, Cocoa Touch, and iOS development. 

What You’ll Find 
This book starts by setting a clear foundation for what Core Data is and how it works, and then it 
takes you step-by-step through how to get the results you need from this powerful framework. 
You’ll learn about the components of Core Data and how they interact, how to design your data 
model, how to filter your results, how to tune performance, how to migrate your data across data 
model versions, and many other topics around and between these that will separate your apps 
from the crowd. 
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This book combines theory and code to teach its subject matter. Although you can take the 
book to your Barcalounger and read it from cover to cover, you’ll find the book is more effective if 
you’re in front of a computer, typing in and understanding the code it explains. We also hope 
that, after you read the book and work through its code, you’ll keep it handy as a reference, 
turning to it often for answers and clarification. 

How This Book Is Organized 
We’ve tried to arrange the material so that it builds from beginning topics to advanced, at least in 
a general sense, as the book progresses. The topics tend to build on each other, so you’ll likely 
benefit most by working through the book front to back, rather than skipping around. If you’re 
looking for guidance on a specific topic—versioning and migrating data, say, or tuning 
performance and memory usage—skip ahead to that chapter. Most chapters focus on a single 
topic, indicated by that chapter’s title. The final chapter covers an array of advanced topics that 
don’t fit neatly anywhere else. 

Source Code and Errata 
You can and should download the source code for this book from the Apress web site at 
www.apress.com. Feel free to use it in your own projects, whether personal or commercial. We’ll 
post any corrections to code as they’re uncovered. We’ll also post book corrections in the errata 
section. 

How to Contact Us 
We’d love to hear from you, whether it’s questions, concerns, better ways of doing things, or 
triumphant announcements of your Core Data apps landing on the App Store. You can find us 
here: 
 
Michael Privat 
E-mail: mprivat@mac.com 
Twitter: @michaelprivat 
Blog: http://michaelprivat.com 

 

Rob Warner 
E-mail: rwarner@grailbox.com 
Twitter: @hoop33 
Blog: http://grailbox.com 



 
1 

   Chapter 

Getting Started 
If you misread this book’s title, thought it discussed and deciphered core dumps, and 

hope it will help you debug a nasty application crash, you got the wrong book. Get a 

debugger, memory tools, and an appointment with the optometrist. Otherwise, you 

bought, borrowed, burglarized, or acquired this book somehow because you want to 

better understand and implement Core Data in your iOS applications. You got the right 

book.  

You might read these words from a paper book, stout and sturdy and smelling faintly of 

binding glue. You might digitally flip through these pages on a nook, iPad, Kindle, Sony 

Reader, Kobo eReader, or some other electronic book reader. You might stare at a 

computer screen, whether on laptop, netbook, or monitor, reading a few words at a time 

while telling yourself to ignore your Twitter feed rolling CNN-like along the screen’s 

edge. As you read, you know that not only can you stop at any time but that you can 

resume at any time. Any time you want to read this book, you can pick it up. If you 

marked the spot where you were last reading, you can even start from where you last 

stopped. We take this for granted with books. 

Users take it for granted with applications. 

Users expect to find their data each time they launch their applications. Apple’s Core 

Data framework helps you ensure that they will. This chapter introduces you to Core 

Data, explaining what it is, how it came to be, and how to build simple Core Data–based 

applications for iOS. This book walks through the simplicity and complexities of Core 

Data. Use the information in the book to create applications that store and retrieve data 

reliably and efficiently so that users can depend on their data. Code carefully, though—

you don’t want to write buggy code and have to deal with nasty application crashes. 

What Is Core Data? 
When people use computers, they expect to preserve any progress they make toward 

completing their tasks. Saving progress, essential to office software, code editors, and 

games involving small plumbers, is what programmers call persistence. Most software 

requires persistence, or the ability to store and retrieve data, so that users don’t have to 
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reenter all their data each time they use their applications. Some software can survive 

without any data storage or retrieval; calculators, carpenter’s levels, and apps that make 

annoying or obscene sounds spring to mind. Most useful applications, however, 

preserve some state, whether configuration-oriented data, progress toward achieving 

some goal, or mounds of related data that users create and care about. Understanding 

how to persist data to iDevices is critical to most useful iOS development. 

Apple’s Core Data provides a versatile persistence framework. Core Data isn’t the only 

data storage option, nor is it necessarily the best option in all scenarios, but it fits well 

with the rest of the Cocoa Touch development framework and maps well to objects. 

Core Data hides most of the complexities of data storage and allows you to focus on 

what makes your application fun, unique, or usable. 

Although Core Data can store data in a relational database (such as SQLite), it is not a 

database engine. It doesn’t even have to use a relational database to store its data. 

Though Core Data provides an entity-relationship diagramming tool, it is not a data 

modeler. It isn’t a data access layer like Hibernate, though it provides much of the same 

object-relational mapping functionality. Instead, Core Data wraps the best of all these 

tools into a data management framework that allows you to work with entities, 

attributes, and relationships in a way that resembles the object graphs you’re used to 

working with in normal object-oriented programming. 

Early iPhone programmers didn’t have the power of the Core Data framework to store 

and retrieve data. The next section shows you the history behind persistence in iOS. 

History of Persistence in iOS 
Core Data evolved from a NeXT technology called Enterprise Objects Framework (EOF) 

by way of WebObjects, another NeXT technology that still powers parts of Apple’s web 

site. It debuted in 2005 as part of Mac OS X 10.4 (“Tiger”), but didn’t appear on iPhones 

until version 3.0 of the SDK, released in June 2009. Before Core Data, iPhone 

developers had the following options in terms of persistence: 

� Use property lists, which contain nested lists of key/value pairs of 

various data types. 

� Serialize objects to files using the SDK’s NSCoding protocol. 

� Take advantage of the iPhone’s support for the relational database 

SQLite. 

� Persist data to the Internet cloud. 

Developers used all these mechanisms for data storage as they built the first wave of 

applications that flooded Apple’s App Store. Each one of these storage options remains 

viable, and developers continue to employ them as they build newer applications using 

newer SDK versions. 

None of these options, however, compares favorably to the power, ease of use, and 

Cocoa-fitness of Core Data. Despite the invention of frameworks like FMDatabase or 
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ActiveRecord to make dealing with persistence on iOS easier in the pre–Core Data days, 

developers gratefully leapt to Core Data when it became available. 

Although Core Data might not solve all persistence problems best and you might solve 

some of your persistence scenarios using other means like the options listed earlier, 

you’ll turn to Core Data more often than not. As you work through this book and learn 

the problems that Core Data solves and how elegantly it solves them, you’ll likely use 

Core Data any time you can. As new persistence opportunities arise, you won’t ask 

yourself, “Should I use Core Data for this?” but rather, “Is there any reason not to use 

Core Data?” 

The next section shows you how to build a basic Core Data application using Xcode’s 

project templates. Even if you’ve already generated an Xcode Core Data project and 

know all the buttons and check boxes to click, don’t skip the next section. It explains 

the Core Data–related sections of code that the templates generate and forms a base of 

understanding on which the rest of the book builds. 

Creating a Basic Core Data Application 
The many facets, classes, and nuances of Core Data merit artful analysis and deep 

discussions to teach you all you need to know to gain mastery of Core Data’s 

complexities. Building a practical foundation to support the theory, however, is just as 

essential to mastery. This section builds a simple Core Data–based application using 

one of Xcode’s built-in templates and then dissects the most important parts of its Core 

Data–related code to show what they do and how they interact. At the end of this 

section, you will understand how this application interacts with Core Data to store and 

retrieve data. 

Understanding the Core Data Components 
Before building this section’s basic Core Data application, you should have a high-level 

understanding of the components of Core Data. Figure 1–1 illustrates the key elements 

of the application you will build in this section. Review this figure for a bird’s-eye view of 

what this application accomplishes, where all its pieces fit, and why you need them. 

As a user of Core Data, you should never interact directly with the underlying persistent 

store. One of the fundamental principles of Core Data is that the persistent store should 

be abstracted from the user. A key advantage of that is the ability to seamlessly change 

the backing store in the future without having to modify the rest of your code. You 

should try to picture Core Data as a framework that manages the persistence of objects 

rather than thinking about databases. Not surprisingly, the objects managed by the 

framework must extend NSManagedObject and are typically referred to as, well, managed 

objects. Don’t think, though, that the lack of imagination in the naming conventions for 

the components of Core Data reveals an unimaginative or mundane framework. In fact, 

Core Data does an excellent job at keeping all the object graph interdependencies, 

optimizations, and caching in a predictable state so that you don’t have to worry about 
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it. If you have ever tried to build your own object management framework, you 

understand all the intricacies of the problem Core Data solves for you. 

 

Figure 1–1. Overview of Core Data’s components  

Much like we need a livable environment to subsist, managed objects must live within an 

environment that’s livable for them, usually referred to as a managed object context, or 

simply context. The context keeps track of the states of not only the object you are 

altering but also all the objects that depend on it or that it depends on. The 

NSManagedObjectContext object in your application provides the context and is the key 

property that your code must always be able to access. You typically accomplish 

exposing your NSManagedObjectContext object to your application by having your 

application delegate initialize it and expose it as one of its properties. Your application 

context will often give the NSManagedObjectContext object to the main view controller as 

well. Without the context, you will not be able to interact with Core Data. 
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Creating a New Project 
To begin, launch Xcode, and create a new project by selecting File � New � New Project 
from the menu. Note that you can also create a new project by pressing �+�+N. From 

the list of application templates, select the Application item under iOS on the left, and 

pick Master-Detail Application on the right. Click Next, and on the next screen type 

BasicApplication in the Product Name field, book.coredata in the Company Identifier 

field, uncheck Use Storyboard and check Use Core Data. See Figure 1–2. Click the Next 

button, choose the parent directory where Xcode will create the BasicApplication 

directory and project, and click Create. Xcode creates your project, generates the 

project’s files, and opens its IDE window with all the files it generated, as Figure 1–3 

shows. 

 

Figure 1–2. Creating a new project with Core Data 
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Figure 1–3. Xcode showing your new project  

Running Your New Project 
Before digging into the code, run it to see what it does. Launch the application by 

clicking the Run button. The iPhone Simulator opens, and the application presents the 

navigation-based interface shown in Figure 1–4, with a table view occupying the bulk of 

the screen, an Edit button in the top-left corner, and the conventional Add button, 

denoted by a plus sign, in the upper-right corner. The application’s table shows an 

empty list indicating that the application isn’t aware of any events, which is what the 

generated Xcode Core Data project stores. Create a new event stamped with the current 

time by clicking the plus button in the top-right corner of the application. 
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Figure 1–4. The basic application with a blank screen 

Now, stop the application by clicking the Stop button in the Xcode IDE. If the application 

hadn’t used Core Data persistence, it would have lost the event you just created as it 

exited. Maintaining a list of events with this application and no persistence would be a 

Sisyphean task—you’d have to re-create the events each time you launched the 

application. Because the application uses persistence, however, it stored the event you 

created using the Core Data framework. Relaunching the application shows that the 

event is still there, as Figure 1–5 demonstrates. 
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Figure 1–5. The basic application with a persisted event  
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Understanding the Application’s Components 
The anatomy of the application is relatively simple. It has a data model that describes 

the entities in the data store, a view controller that facilitates interactions between the 

view and the data store, and an application delegate that helps initialize and launch the 

application. Figure 1–6 shows the classes involved and how they relate to each other.  

 

Figure 1–6. Classes involved in the BasicApplication example  

Note how the MasterViewController class, which is in charge of managing the user 

interface, has a handle to the managed object context so that it can interact with Core 

Data. As you go through the code, you’ll see that the MasterViewController class 

obtains the managed object context from the application delegate. This happens in the 

controller’s initWithNibName:bundle: method, shown here: 

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil 
{ 
  self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil]; 
  if (self) { 
    self.title = NSLocalizedString(@"Master", @"Master"); 
    id delegate = [[UIApplication sharedApplication] delegate]; 
    self.managedObjectContext = [delegate managedObjectContext]; 
  } 
  return self; 
} 

The entry called BasicApplication.xcdatamodeld, which is actually a directory on the file 

system, contains the data model, BasicApplication.xcdatamodel. The data model is 

central to every Core Data application. This particular data model defines only one 

entity, named Event, for the application. Events are defined as entities that contain only 

one attribute named timeStamp of type Date, as shown in Figure 1–7. 
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Figure 1–7. The Xcode-generated data model  

The Event entity is of type NSManagedObject, which is the basic type for all entities 

managed by Core Data. Chapter 2 explains the NSManagedObject type in more detail. 

Fetching Results 
The next class of interest is the MasterViewController. Opening its header file 

(MasterViewController.h) reveals two properties: 

@property (strong, nonatomic) NSFetchedResultsController *fetchedResultsController; 
@property (strong, nonatomic) NSManagedObjectContext *managedObjectContext; 

These properties are defined using the same syntax as the definitions of any Objective-C 

class properties. The NSFetchedResultsController is a type of controller provided by the 

Core Data framework that helps manage results from queries. NSManagedObjectContext 

is a handle to the application’s persistent store that provides a context, or environment, 

in which the managed objects can exist. 
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The implementation of the MasterViewController, found in MasterViewController.m, 

shows how to interact with the Core Data framework to store and retrieve data. The 

MasterViewController implementation provides an explicit getter for the 

fetchedResultsController property that preconfigures it to fetch data from the data store. 

The first step in creating the fetch controller consists of creating a request that will retrieve 

Event entities, as shown in this code from the fetchedResultsController accessor: 

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init]; 
NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event" 
 inManagedObjectContext:self.managedObjectContext]; 
[fetchRequest setEntity:entity]; 

The result of the request can be ordered using the sort descriptor from the Cocoa 

Foundation framework. The sort descriptor defines the field to use for sorting and 

whether the sort is ascending or descending. In this case, you sort by descending 

chronological order, like so: 

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey: 
@"timeStamp" ascending:NO]; 
NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil]; 
[fetchRequest setSortDescriptors:sortDescriptors]; 

Once you define the request, you can use it to construct the fetch controller. Because 

the MasterViewController implements NSFetchedResultsControllerDelegate, it can be 

set as the NSFetchedResultsController’s delegate so that it is automatically notified as 

the result set changes and so that it updates its view appropriately. You could get the 

same results by invoking the executeFetchRequest of the managed object context, but 

you would not benefit from the other advantages that come from using the 

NSFetchedResultsController such as the seamless integration with the UITableView, as 

you’ll see later in this section and in Chapter 9. Here is the code that constructs the 

fetch controller: 

NSFetchedResultsController *aFetchedResultsController = [[NSFetchedResultsController 
 alloc] initWithFetchRequest:fetchRequest managedObjectContext: 
self.managedObjectContext sectionNameKeyPath:nil cacheName:@"Master"]; 
aFetchedResultsController.delegate = self; 
self.fetchedResultsController = aFetchedResultsController; 

NOTE: You may have noticed that the initWithFetchRequest shown earlier uses a 
parameter called cacheName. You could pass nil for the cacheName parameter to prevent 
caching, but naming a cache indicates to Core Data to check for a cache with a name matching 

the passed name and see whether it already contains the same fetch request definition. If it does 
find a match, it will reuse the cached results. If it finds a cache entry by that name but the 
request doesn’t match, then it is deleted. If it doesn’t find it at all, then the request is executed, 

and the cache entry is created for the next time. This is obviously an optimization that aims to 
prevent executing the same request over and over. Core Data manages its caches intelligently so 

that if the results are updated by another call, the cache is removed if affected. 
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Finally, you tell the controller to execute its query to start retrieving results. To do this, 

use the performFetch method. 

NSError *error = nil; 
if (![self.fetchedResultsController performFetch:&error]) { 
  NSLog(@"Unresolved error %@, %@", error, [error userInfo]); 
  abort(); 
} 

You can see the entire getter method for fetchedResultsController in Listing 1–1.  

Listing 1–1. The Entire Getter Method for fetchedResultsController  

- (NSFetchedResultsController *)fetchedResultsController 
{ 
  if (__fetchedResultsController != nil) 
  { 
    return __fetchedResultsController; 
  } 
   
  /* 
   Set up the fetched results controller. 
   */ 
  // Create the fetch request for the entity. 
  NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init]; 
  // Edit the entity name as appropriate. 
  NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event" 
inManagedObjectContext:self.managedObjectContext]; 
  [fetchRequest setEntity:entity]; 
   
  // Set the batch size to a suitable number. 
  [fetchRequest setFetchBatchSize:20]; 
   
  // Edit the sort key as appropriate. 
  NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"timeStamp" 
ascending:NO]; 
  NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil]; 
   
  [fetchRequest setSortDescriptors:sortDescriptors]; 
   
  // Edit the section name key path and cache name if appropriate. 
  // nil for section name key path means "no sections". 
  NSFetchedResultsController *aFetchedResultsController = [[NSFetchedResultsController 
alloc] initWithFetchRequest:fetchRequest managedObjectContext:self.managedObjectContext 
sectionNameKeyPath:nil cacheName:@"Master"]; 
  aFetchedResultsController.delegate = self; 
  self.fetchedResultsController = aFetchedResultsController; 
   
 NSError *error = nil; 
 if (![self.fetchedResultsController performFetch:&error]) 
  { 
    /* 
     Replace this implementation with code to handle the error appropriately. 
      
     abort() causes the application to generate a crash log and terminate. You should 
not use this function in a shipping application, although it may be useful during 
development. If it is not possible to recover from the error, display an alert panel 
that instructs the user to quit the application by pressing the Home button. 
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     */ 
    NSLog(@"Unresolved error %@, %@", error, [error userInfo]); 
    abort(); 
 } 
   
  return __fetchedResultsController; 
}    

NSFetchedResultsController behaves as a collection of managed objects, similar to an 

NSArray, which makes it easy to use. In fact, it exposes a read-only property called 

fetchedObjects that is of type NSArray to make things even easier to access the objects 

it fetches. The MasterViewController class, which also extends UITableViewController, 

demonstrates just how suited the NSFetchedResultsController is to manage the table’s 

content. 

Inserting New Objects 
A quick glance at the insertNewObject: method shows how new events (the managed 

objects) are created and added to the persistent store. Managed objects are defined by 

the entity description from the data model and can live only within a context. The first 

step is to get a hold of the current context as well as the entity definition. In this case, 

instead of explicitly naming the entity, you reuse the entity definitions that are attached 

to the fetched results controller: 

NSManagedObjectContext *context = [self.fetchedResultsController managedObjectContext]; 
NSEntityDescription *entity = [[self.fetchedResultsController fetchRequest] entity]; 

Now that you’ve gathered all the elements needed to bring the new managed object to 

existence, you create the Event object and set its timeStamp value. 

NSManagedObject *newManagedObject = [NSEntityDescription 
 insertNewObjectForEntityForName:[entity name] inManagedObjectContext:context]; 
[newManagedObject setValue:[NSDate date] forKey:@"timeStamp"]; 

The last step of the process is to tell Core Data to save changes to its context. The 

obvious change is the object you just created, but keep in mind that calling the save. 

method will also affect any other unsaved changes to the context. 

NSError *error = nil; 
if (![context save:&error]) { 
  NSLog(@"Unresolved error %@, %@", error, [error userInfo]); 
  abort(); 
} 

The complete method for inserting the new Event object is shown in Listing 1–2.  

Listing 1–2. The Complete Method for Inserting the New Event Object 

- (void)insertNewObject { 
  // Create a new instance of the entity managed by the fetched results controller. 
  NSManagedObjectContext *context = [self.fetchedResultsController 
managedObjectContext]; 
  NSEntityDescription *entity = [[self.fetchedResultsController fetchRequest] entity]; 
  NSManagedObject *newManagedObject = [NSEntityDescription 
insertNewObjectForEntityForName:[entity name] inManagedObjectContext:context]; 
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  // If appropriate, configure the new managed object. 
  // Normally you should use accessor methods, but using KVC here avoids the need to add 
a custom class to the template. 
  [newManagedObject setValue:[NSDate date] forKey:@"timeStamp"]; 
     
  // Save the context. 
  NSError *error = nil; 
  if (![context save:&error]) { 
    NSLog(@"Unresolved error %@, %@", error, [error userInfo]); 
    abort(); 
  } 
} 

Initializing the Managed Context 
Obviously, none of this can happen without initializing the managed context first. This is 

the role of the application delegate. In a Core Data–enabled application, the delegate 

must expose three properties. 

@property (readonly, strong, nonatomic) NSManagedObjectContext *managedObjectContext; 
@property (readonly, strong, nonatomic) NSManagedObjectModel *managedObjectModel; 
@property (readonly, strong, nonatomic) NSPersistentStoreCoordinator 
*persistentStoreCoordinator; 

Note that they are all marked as read-only, which prevents any other component in the 

application from setting them directly. A closer look at BasicApplicationAppDelegate.m 

shows that all three properties have explicit getter methods. 

First, the managed object model is derived from the data model 

(BasicApplication.xcdatamodel) and loaded. 

- (NSManagedObjectModel *)managedObjectModel 
{ 
    if (__managedObjectModel != nil) 
    { 
        return __managedObjectModel; 
    } 
    NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"BasicApplication" 
withExtension:@"momd"]; 
    __managedObjectModel = [[NSManagedObjectModel alloc] 
initWithContentsOfURL:modelURL];     
    return __managedObjectModel; 
} 

Then a persistent store is created to support the model. In this case, as well as in most 

Core Data scenarios, the persistent store is backed by a SQLite database. The managed 

object model is a logical representation of the data store, while the persistent store is 

the materialization of that data store. 

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator { 
  if (__persistentStoreCoordinator != nil) { 
    return __persistentStoreCoordinator; 
  } 
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  NSURL *storeURL = [[self applicationDocumentsDirectory] 
URLByAppendingPathComponent:@"BasicApplication.sqlite"]; 
     
  NSError *error = nil; 
  __persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]]; 
  if (![__persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType 
configuration:nil URL:storeURL options:nil error:&error]) { 
    NSLog(@"Unresolved error %@, %@", error, [error userInfo]); 
    abort(); 
  }     
     
  return __persistentStoreCoordinator; 
} 

Finally, the managed object context is created. 

- (NSManagedObjectContext *)managedObjectContext { 
  if (__managedObjectContext != nil) { 
    return __managedObjectContext; 
  } 
     
  NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator]; 
  if (coordinator != nil) { 
    __managedObjectContext = [[NSManagedObjectContext alloc] init]; 
    [__managedObjectContext setPersistentStoreCoordinator:coordinator]; 
  } 
  return __managedObjectContext; 
} 

The context is used throughout the application as the single interface with the Core Data 

framework and the persistent store, as Figure 1–8 demonstrates. 

 

Figure 1–8. Core Data initialization sequence 

Lastly, everything is put in motion when the application delegate’s 

application:didFinishLaunchingWithOptions: method is called.  

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions 
{ 
    self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]]; 
    // Override point for customization after application launch. 
 
  MasterViewController *controller = [[MasterViewController alloc] 
initWithNibName:@"MasterViewController" bundle:nil]; 
  self.navigationController = [[UINavigationController alloc] 
initWithRootViewController:controller]; 
  self.window.rootViewController = self.navigationController; 
    [self.window makeKeyAndVisible]; 
    return YES; 
} 


