

 i

Pro Core Data for iOS
Data Access and Persistence Engine for iPhone, iPad,

and iPod touch
Second Edition

■ ■ ■

Michael Privat and
Robert Warner

Pro Core Data for iOS: Data Access and Persistence Engine for iPhone, iPad, and iPod
touch Second Edition

Copyright © 2011 by Michael Privat and Robert Warner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3656-6

ISBN-13 (electronic): 978-1-4302-3 7-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editors: Matthew Moodie and Douglas Pundick
Technical Reviewer: Robert Hamilton
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editor: Mary Behr
Compositor: MacPS, LLC
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to http://www.apress.com/source-code/.

65

To my loving wife, Kelly, and our children, Matthieu and Chloé.

—Michael Privat

To my beautiful wife, Sherry, and our wonderful children:
Tyson, Jacob, Mallory, Camie, and Leila.

—Rob Warner

iv

Contents at a Glance

Contents .. v

About the Authors ... x

About the Technical Reviewer ... xi

Acknowledgments .. xii

Introduction ... xiii

■Chapter 1: Getting Started ... 1�

■Chapter 2: Understanding Core Data ... 27�

■Chapter 3: Storing Data: SQLite and Other Options 59�

■Chapter 4: Creating a Data Model .. 111�

■Chapter 5: Working with Data Objects .. 133�

■Chapter 6: Refining Result Sets ... 187�

■Chapter 7: Tuning Performance and Memory Usage 209�

■Chapter 8: Versioning and Migrating Data .. 253�

■Chapter 9: Managing Table Views Using a Fetched Results Controller 285�

■Chapter 10: Using Core Data in Advanced Applications 307�

Index ... 367

v

Contents

Contents at a Glance .. iv�
About the Authors ... x�
About the Technical Reviewer ... xi�
Acknowledgments .. xii�
Introduction ... xiii

■Chapter 1: Getting Started ... 1�

What Is Core Data? ... 1�
History of Persistence in iOS ... 2�
Creating a Basic Core Data Application .. 3�

Understanding the Core Data Components .. 3�
Creating a New Project .. 5�
Running Your New Project ... 6�
Understanding the Application’s Components ... 9�
Fetching Results .. 10�
Inserting New Objects .. 13�
Initializing the Managed Context ... 14�

Adding Core Data to an Existing Project ... 16�
Adding the Core Data Framework .. 16�
Creating the Data Model .. 19�
Initializing the Managed Object Context .. 22�

Summary .. 25�

■Chapter 2: Understanding Core Data ... 27�
Core Data Framework Classes .. 27�

The Model Definition Classes ... 30�
The Data Access Classes ... 38�
Key-Value Observing .. 43�
The Query Classes ... 44�

How the Classes Interact .. 47�
SQLite Primer ... 53�
Reading the Data Using Core Data ... 55�

Summary .. 57�

■ CONTENTS

vi

■Chapter 3: Storing Data: SQLite and Other Options 59�
Visualizing the User Interface ... 60�
Using SQLite as the Persistent Store .. 63�

Configuring the One-to-Many Relationship .. 67�
Building the User Interface .. 69�
Configuring the Table ... 72�
Creating a Team ... 72�
The Player User Interface ... 81�
Adding, Editing, and Deleting Players .. 84�
Seeing the Data in the Persistent Store ... 89�

Using an In-Memory Persistent Store ... 92�
Creating Your Own Custom Persistent Store .. 94�

Initializing the Custom Store .. 95�
Mapping Between NSManagedOBject and NSAtomicStoreCacheNode ... 98�
Serializing the Data .. 101�
Using the Custom Store ... 106�
What About XML Persistent Stores? .. 107�

Summary .. 110�

■Chapter 4: Creating a Data Model .. 111�
Designing Your Database .. 111�

Relational Database Normalization .. 112�
Using the Xcode Data Modeler .. 113�

Viewing and Editing Attribute Details .. 119�
Viewing and Editing Relationship Details ... 120�
Using Fetched Properties ... 121�

Creating Entities .. 123�
Creating Attributes .. 125�
Creating Relationships .. 127�

Name ... 128�
Destination and Inverse ... 129�
Transient .. 129�
Optional .. 129�
To-Many Relationship .. 130�
Count (Minimum and Maximum) .. 130�
Delete Rule ... 130�

Summary .. 131�

■Chapter 5: Working with Data Objects .. 133�
Understanding CRUD ... 133�

Creating the Shape Application Data Model .. 137�
Building the Shape Application User Interface .. 145�
Enabling User Interactions with the Shapes Application ... 154�

Generating Classes ... 156�
Modifying Generated Classes ... 164�
Using the Transformable Type .. 169�
Validating Data .. 173�

Custom Validation .. 175�
Invoking Validation ... 179�

■ CONTENTS

vii

Default Values .. 179�
Undoing and Redoing .. 180�

Undo Groups .. 181�
Limiting the Undo Stack ... 181�
Disabling Undo Tracking .. 182�
Adding Undo to Shapes .. 182�

Summary .. 185�

■Chapter 6: Refining Result Sets ... 187�
Building the Test Application .. 187�

Creating the Org Chart Data ... 188�
Reading and Outputting the Data ... 191�

Filtering ... 192�
Expressions for a Single Value ... 193�
Expressions for a Collection ... 194�
Comparison Predicates .. 195�
Compound Predicates .. 198�
Subqueries ... 200�

Aggregating .. 203�
Sorting .. 204�

Returning Unsorted Data .. 204�
Sorting Data on One Criterion .. 205�
Sorting on Multiple Criteria .. 206�

Summary .. 207�

■Chapter 7: Tuning Performance and Memory Usage 209�
Building the Application for Testing .. 209�

Creating the Core Data Project .. 210�
Creating the Data Model and Data ... 213�
Creating the Testing View .. 215�
Building the Testing Framework .. 218�
Adding the Testing Framework to the Application ... 220�
Running Your First Test .. 222�

Faulting ... 223�
Firing Faults ... 224�
Faulting and Caching ... 225�
Refaulting ... 225�
Building the Faulting Test .. 226�
Taking Control: Firing Faults on Purpose ... 229�
Prefetching .. 231�

Caching ... 233�
Expiring ... 236�

Memory Consumption .. 236�
Brute-Force Cache Expiration .. 236�
Expiring the Cache Through Faulting ... 237�

Uniquing .. 237�
Improve Performance with Better Predicates ... 241�

Using Faster Computers .. 241�
Using Subqueries ... 242�

■ CONTENTS

viii

Analyzing Performance ... 245�
Launching Instruments .. 245�
Understanding the Results ... 249�

Summary .. 251�

■Chapter 8: Versioning and Migrating Data .. 253�
Versioning ... 254�
Lightweight M8igrations ... 257�

Migrating a Simple Change .. 258�
Migrating More Complex Changes ... 259�
Renaming Entities and Properties .. 260�

Creating a Mapping Model .. 262�
Understanding Entity Mappings ... 263�
Understanding Property Mappings .. 264�
Creating a New Model Version That Requires a Mapping Model ... 266�
Creating a Mapping Model ... 270�

Migrating Data .. 276�
Running Your Migration ... 277�

Custom Migrations .. 278�
Making Sure Migration Is Needed .. 280�
Setting Up the Migration Manager ... 281�
Running the Migration ... 282�

Summary .. 284�

■Chapter 9: Managing Table Views Using a Fetched Results Controller 285�
Understanding NSFetchedResultsController ... 285�

The Fetch Request ... 286�
The Managed Object Context ... 286�
The Section Name Key Path ... 286�
The Cache Name .. 287�

Understanding NSFetchedResultsController Delegates .. 287�
Using NSFetchedResultsController ... 288�
Implementing NSFetchedResultsController .. 288�
Implementing the NSFetchedResultsController .. 293�
Implementing the NSFetchedResultsControllerDelegate Protocol .. 298�

Indexing Your Table ... 298�
Responding to Data Change ... 302�

Summary .. 305�

■Chapter 10: Using Core Data in Advanced Applications 307�
Creating an Application for Note and Password Storage and Encryption ... 307�

Setting Up the Data Model ... 309�
Setting Up the Tab Bar Controller .. 310�
Adding the Tab ... 311�
Incorporating NSFetchedResultsController into MyStash .. 316�
Creating the Interface for Adding and Editing Notes and Passwords .. 322�

Splitting Data Across Multiple Persistent Stores .. 335�
Using Model Configurations ... 336�

Adding Encryption ... 340�
Persistent Store Encryption Using Data Protection .. 340�

■ CONTENTS

ix

Data Encryption .. 342�
Sending Notifications When Data Changes ... 347�

Registering an Observer .. 348�
Receiving the Notifications .. 349�

Seeding Data ... 349�
Adding Categories to Passwords ... 350�
Creating a New Version of Seeded Data .. 353�

Error Handling ... 353�
Handling Core Data Operational Errors .. 355�
Handling Validation Errors ... 357�
Handling Validation Errors in MyStash ... 360

Summary .. 365�

Index ... 367

x

About the Authors

Michael Privat is the President and CEO of Majorspot, Inc., developer of the
following iPhone and iPad apps:

■ Ghostwriter Notes

■ My Spending

■ iBudget

■ Chess Puzzle Challenge

He is also an expert developer and technical lead for Availity, LLC, based
in Jacksonville, Florida. He earned his Master’s degree in Computer Science from the University
of Nice in Nice, France. He moved to the United States to develop software in artificial
intelligence at the Massachusetts Institute of Technology. Coauthor of Beginning OS X Lion Apps
Development (Apress, 2011), he now lives in Jacksonville, Florida, with his wife, Kelly, and their
two children.

Rob Warner is a senior technical staff member for Availity, LLC, based in
Jacksonville, Florida, where he works with various teams and technologies to
deliver solutions in the health care sector. He coauthored Beginning OS X Lion
Apps Development (Apress, 2011) and The Definitive Guide to SWT and JFace
(Apress, 2004), and he blogs at www.grailbox.com. He earned his Bachelor’s
degree in English from Brigham Young University in Provo, Utah. He lives in
Jacksonville, Florida, with his wife, Sherry, and their five children.

xi

About the Technical Reviewer

Robert Hamilton is a seasoned information technology director for Blue Cross
Blue Shield of Florida. He is experienced in developing applications for the
iPhone and iPad; his most recent project was Ghostwriter Notes.

Before entering his leadership role at BCBSF, Robert excelled as an
application developer, having envisioned and created the first claims status
application used by their providers through Availity.

A native of Atlantic Beach, Florida, Robert received his B.S. in Information
Systems from the University of North Florida. He supports The First Tee of
Jacksonville and the Cystic Fibrosis Foundation. He is the proud father of two
daughters.

xii

Acknowledgments

There is no telling how many books never had a chance to be written because the potential
authors had other family obligations to fulfill. I thank my wife, Kelly, and my children, Matthieu
and Chloé, for allowing me to focus my time on this book for a few months and accomplish this
challenge. Without their unconditional support and encouragement, I would not have been able
to contribute to the creation of this book.

Working on this book with Rob Warner has been enlightening. I have learned a lot from him
throughout this effort. His dedication to getting the job done correctly carried me when I was
tired. His technical skills got me unstuck a few times when I was clueless. His gift for writing so
elegantly and his patience have made my engineer jargon sound like nineteenth century prose.

I also thank the friendly and savvy Apress team who made the whole process work like a well-
oiled machine. Jennifer Blackwell helped us through the entire project, guiding us through all the
tasks that are required of authors. Douglas Pundick shared his editorial wisdom to keep this work
readable, well organized and understandable; Steve Anglin, Matthew Moodie, Mary Behr, and the
rest of the Apress folks were always around for us to lean on.

Robert Hamilton was once again a reliable watchdog to correct our technical mistakes. I’d
also like to thank Brian Kohl for saving us from shaming ourselves at times with overly
complicated code.

Finally, I thank the incredibly talented people of Availity who were supportive of this book
from the very first day and make this company a great place to work at. Trent Gavazzi, Ben Van
Maanen, Taryn Tresca, Herve Devos, and all the others offered friendship and encouragement.
The last bit of thanks goes to Geoff Packwood for calling in regularly to check on the progress.

—Michael Privat

What a privilege it’s been to write a second edition of Pro Core Data for iOS! I thank Apress

for the opportunity, particularly Steve Anglin, Jennifer Blackwell, Douglas Pundick, Matthew
Moodie, Mary Behr, and Robert Hamilton. It’s good to get a second crack at an intriguing topic.

Thanks to everyone who read the first edition, provided feedback, posted reviews, e-mailed
thanks and questions, and generally made us feel that all our efforts made a dent. We’ve tried to
incorporate your feedback into this edition, and we welcome any praise, criticism, and questions.

I thank my wife, Sherry, and my children (Tyson, Jacob, Mallory, Camie, and Leila) for their
support and encouragement. I promise to take some downtime now, at least for awhile.

Working with Michael both enlightened and humbled me. I learned so much, yet was
reminded often of how much I have to learn. I thank Michael for his persistence and dedication.

Thanks also to my employer, Availity, for providing opportunities to keep my mind nimble
and engaged. Naming names creates the dilemma of knowing where to stop, so I’ll keep this
purposely short: thanks to Trent for all the challenges, opportunities, and support. Thanks to Jon
for letting me contribute to the Innovation Center. And thanks to Brian Kohl for the Code Jams!
Finally, thanks to Mom, Dad, and my siblings and in-laws for asking, “How’s the book coming?”
and then listening to me describe all the details. Or at least pretending to.

xiii

Introduction

Interest in developing apps for Apple’s iOS platform continues to rise, and more great apps
appear in Apple’s App Store every day. As people like you join the app-creation party, they usually
discover that their apps must store data on iOS devices to be useful. Enter Pro Core Data for iOS,
written for developers who have learned the basics of iOS development and are ready to dive
deeper into topics surrounding data storage to take their apps from pretty good to great. Core
Data, Apple’s technology for data storage and retrieval, is both easy to approach and difficult to
master. This book spans the gamut, starting you with the simple and taking you through the
advanced. Read each topic, understand what it means, and incorporate it into your own Core
Data apps.

Why a Second Edition?
Since the publication of the first edition of Pro Core Data for iOS, Apple has released Xcode 4, a
major overhaul of their programming tool. Everything has moved or changed somehow, so the
descriptions and tutorials from the first edition of this book, which used Xcode 3, no longer apply.
All the descriptions and screenshots have been updated to the new interface.

We didn’t stop at updating the book for Xcode 4, however. We broke the discussion of
NSFetchedResultsController into its own chapter, giving it more treatment and coverage. We dug
deeper into the tricky topic of migrations. We took a new approach to the section on data
encryption, based on feedback from Brian Kohl. We responded to feedback we’ve received via
reviews and e-mail. We think both new readers and people who have already read the first edition
will profit from reading this edition.

What You’ll Need
To follow along with this book, you need an Intel Mac running Snow Leopard or Lion, and you
need Xcode 4, which is available from the Mac App Store or from developer.apple.com for
registered Apple developers. You’ll also do better if you have at least a basic understanding of
Objective-C, Cocoa Touch, and iOS development.

What You’ll Find
This book starts by setting a clear foundation for what Core Data is and how it works, and then it
takes you step-by-step through how to get the results you need from this powerful framework.
You’ll learn about the components of Core Data and how they interact, how to design your data
model, how to filter your results, how to tune performance, how to migrate your data across data
model versions, and many other topics around and between these that will separate your apps
from the crowd.

■ INTRODUCTION

xiv

This book combines theory and code to teach its subject matter. Although you can take the
book to your Barcalounger and read it from cover to cover, you’ll find the book is more effective if
you’re in front of a computer, typing in and understanding the code it explains. We also hope
that, after you read the book and work through its code, you’ll keep it handy as a reference,
turning to it often for answers and clarification.

How This Book Is Organized
We’ve tried to arrange the material so that it builds from beginning topics to advanced, at least in
a general sense, as the book progresses. The topics tend to build on each other, so you’ll likely
benefit most by working through the book front to back, rather than skipping around. If you’re
looking for guidance on a specific topic—versioning and migrating data, say, or tuning
performance and memory usage—skip ahead to that chapter. Most chapters focus on a single
topic, indicated by that chapter’s title. The final chapter covers an array of advanced topics that
don’t fit neatly anywhere else.

Source Code and Errata
You can and should download the source code for this book from the Apress web site at
www.apress.com. Feel free to use it in your own projects, whether personal or commercial. We’ll
post any corrections to code as they’re uncovered. We’ll also post book corrections in the errata
section.

How to Contact Us
We’d love to hear from you, whether it’s questions, concerns, better ways of doing things, or
triumphant announcements of your Core Data apps landing on the App Store. You can find us
here:

Michael Privat
E-mail: mprivat@mac.com
Twitter: @michaelprivat
Blog: http://michaelprivat.com

Rob Warner
E-mail: rwarner@grailbox.com
Twitter: @hoop33
Blog: http://grailbox.com

1

 Chapter

Getting Started
If you misread this book’s title, thought it discussed and deciphered core dumps, and

hope it will help you debug a nasty application crash, you got the wrong book. Get a

debugger, memory tools, and an appointment with the optometrist. Otherwise, you

bought, borrowed, burglarized, or acquired this book somehow because you want to

better understand and implement Core Data in your iOS applications. You got the right

book.

You might read these words from a paper book, stout and sturdy and smelling faintly of

binding glue. You might digitally flip through these pages on a nook, iPad, Kindle, Sony

Reader, Kobo eReader, or some other electronic book reader. You might stare at a

computer screen, whether on laptop, netbook, or monitor, reading a few words at a time

while telling yourself to ignore your Twitter feed rolling CNN-like along the screen’s

edge. As you read, you know that not only can you stop at any time but that you can

resume at any time. Any time you want to read this book, you can pick it up. If you

marked the spot where you were last reading, you can even start from where you last

stopped. We take this for granted with books.

Users take it for granted with applications.

Users expect to find their data each time they launch their applications. Apple’s Core

Data framework helps you ensure that they will. This chapter introduces you to Core

Data, explaining what it is, how it came to be, and how to build simple Core Data–based

applications for iOS. This book walks through the simplicity and complexities of Core

Data. Use the information in the book to create applications that store and retrieve data

reliably and efficiently so that users can depend on their data. Code carefully, though—

you don’t want to write buggy code and have to deal with nasty application crashes.

What Is Core Data?
When people use computers, they expect to preserve any progress they make toward

completing their tasks. Saving progress, essential to office software, code editors, and

games involving small plumbers, is what programmers call persistence. Most software

requires persistence, or the ability to store and retrieve data, so that users don’t have to

1

CHAPTER 1: Getting Started 2

reenter all their data each time they use their applications. Some software can survive

without any data storage or retrieval; calculators, carpenter’s levels, and apps that make

annoying or obscene sounds spring to mind. Most useful applications, however,

preserve some state, whether configuration-oriented data, progress toward achieving

some goal, or mounds of related data that users create and care about. Understanding

how to persist data to iDevices is critical to most useful iOS development.

Apple’s Core Data provides a versatile persistence framework. Core Data isn’t the only

data storage option, nor is it necessarily the best option in all scenarios, but it fits well

with the rest of the Cocoa Touch development framework and maps well to objects.

Core Data hides most of the complexities of data storage and allows you to focus on

what makes your application fun, unique, or usable.

Although Core Data can store data in a relational database (such as SQLite), it is not a

database engine. It doesn’t even have to use a relational database to store its data.

Though Core Data provides an entity-relationship diagramming tool, it is not a data

modeler. It isn’t a data access layer like Hibernate, though it provides much of the same

object-relational mapping functionality. Instead, Core Data wraps the best of all these

tools into a data management framework that allows you to work with entities,

attributes, and relationships in a way that resembles the object graphs you’re used to

working with in normal object-oriented programming.

Early iPhone programmers didn’t have the power of the Core Data framework to store

and retrieve data. The next section shows you the history behind persistence in iOS.

History of Persistence in iOS
Core Data evolved from a NeXT technology called Enterprise Objects Framework (EOF)

by way of WebObjects, another NeXT technology that still powers parts of Apple’s web

site. It debuted in 2005 as part of Mac OS X 10.4 (“Tiger”), but didn’t appear on iPhones

until version 3.0 of the SDK, released in June 2009. Before Core Data, iPhone

developers had the following options in terms of persistence:

� Use property lists, which contain nested lists of key/value pairs of

various data types.

� Serialize objects to files using the SDK’s NSCoding protocol.

� Take advantage of the iPhone’s support for the relational database

SQLite.

� Persist data to the Internet cloud.

Developers used all these mechanisms for data storage as they built the first wave of

applications that flooded Apple’s App Store. Each one of these storage options remains

viable, and developers continue to employ them as they build newer applications using

newer SDK versions.

None of these options, however, compares favorably to the power, ease of use, and

Cocoa-fitness of Core Data. Despite the invention of frameworks like FMDatabase or

CHAPTER 1: Getting Started 3

ActiveRecord to make dealing with persistence on iOS easier in the pre–Core Data days,

developers gratefully leapt to Core Data when it became available.

Although Core Data might not solve all persistence problems best and you might solve

some of your persistence scenarios using other means like the options listed earlier,

you’ll turn to Core Data more often than not. As you work through this book and learn

the problems that Core Data solves and how elegantly it solves them, you’ll likely use

Core Data any time you can. As new persistence opportunities arise, you won’t ask

yourself, “Should I use Core Data for this?” but rather, “Is there any reason not to use

Core Data?”

The next section shows you how to build a basic Core Data application using Xcode’s

project templates. Even if you’ve already generated an Xcode Core Data project and

know all the buttons and check boxes to click, don’t skip the next section. It explains

the Core Data–related sections of code that the templates generate and forms a base of

understanding on which the rest of the book builds.

Creating a Basic Core Data Application
The many facets, classes, and nuances of Core Data merit artful analysis and deep

discussions to teach you all you need to know to gain mastery of Core Data’s

complexities. Building a practical foundation to support the theory, however, is just as

essential to mastery. This section builds a simple Core Data–based application using

one of Xcode’s built-in templates and then dissects the most important parts of its Core

Data–related code to show what they do and how they interact. At the end of this

section, you will understand how this application interacts with Core Data to store and

retrieve data.

Understanding the Core Data Components
Before building this section’s basic Core Data application, you should have a high-level

understanding of the components of Core Data. Figure 1–1 illustrates the key elements

of the application you will build in this section. Review this figure for a bird’s-eye view of

what this application accomplishes, where all its pieces fit, and why you need them.

As a user of Core Data, you should never interact directly with the underlying persistent

store. One of the fundamental principles of Core Data is that the persistent store should

be abstracted from the user. A key advantage of that is the ability to seamlessly change

the backing store in the future without having to modify the rest of your code. You

should try to picture Core Data as a framework that manages the persistence of objects

rather than thinking about databases. Not surprisingly, the objects managed by the

framework must extend NSManagedObject and are typically referred to as, well, managed

objects. Don’t think, though, that the lack of imagination in the naming conventions for

the components of Core Data reveals an unimaginative or mundane framework. In fact,

Core Data does an excellent job at keeping all the object graph interdependencies,

optimizations, and caching in a predictable state so that you don’t have to worry about

CHAPTER 1: Getting Started 4

it. If you have ever tried to build your own object management framework, you

understand all the intricacies of the problem Core Data solves for you.

Figure 1–1. Overview of Core Data’s components

Much like we need a livable environment to subsist, managed objects must live within an

environment that’s livable for them, usually referred to as a managed object context, or

simply context. The context keeps track of the states of not only the object you are

altering but also all the objects that depend on it or that it depends on. The

NSManagedObjectContext object in your application provides the context and is the key

property that your code must always be able to access. You typically accomplish

exposing your NSManagedObjectContext object to your application by having your

application delegate initialize it and expose it as one of its properties. Your application

context will often give the NSManagedObjectContext object to the main view controller as

well. Without the context, you will not be able to interact with Core Data.

CHAPTER 1: Getting Started 5

Creating a New Project
To begin, launch Xcode, and create a new project by selecting File � New � New Project
from the menu. Note that you can also create a new project by pressing �+�+N. From

the list of application templates, select the Application item under iOS on the left, and

pick Master-Detail Application on the right. Click Next, and on the next screen type

BasicApplication in the Product Name field, book.coredata in the Company Identifier

field, uncheck Use Storyboard and check Use Core Data. See Figure 1–2. Click the Next

button, choose the parent directory where Xcode will create the BasicApplication

directory and project, and click Create. Xcode creates your project, generates the

project’s files, and opens its IDE window with all the files it generated, as Figure 1–3

shows.

Figure 1–2. Creating a new project with Core Data

CHAPTER 1: Getting Started 6

Figure 1–3. Xcode showing your new project

Running Your New Project
Before digging into the code, run it to see what it does. Launch the application by

clicking the Run button. The iPhone Simulator opens, and the application presents the

navigation-based interface shown in Figure 1–4, with a table view occupying the bulk of

the screen, an Edit button in the top-left corner, and the conventional Add button,

denoted by a plus sign, in the upper-right corner. The application’s table shows an

empty list indicating that the application isn’t aware of any events, which is what the

generated Xcode Core Data project stores. Create a new event stamped with the current

time by clicking the plus button in the top-right corner of the application.

CHAPTER 1: Getting Started 7

Figure 1–4. The basic application with a blank screen

Now, stop the application by clicking the Stop button in the Xcode IDE. If the application

hadn’t used Core Data persistence, it would have lost the event you just created as it

exited. Maintaining a list of events with this application and no persistence would be a

Sisyphean task—you’d have to re-create the events each time you launched the

application. Because the application uses persistence, however, it stored the event you

created using the Core Data framework. Relaunching the application shows that the

event is still there, as Figure 1–5 demonstrates.

CHAPTER 1: Getting Started 8

Figure 1–5. The basic application with a persisted event

CHAPTER 1: Getting Started 9

Understanding the Application’s Components
The anatomy of the application is relatively simple. It has a data model that describes

the entities in the data store, a view controller that facilitates interactions between the

view and the data store, and an application delegate that helps initialize and launch the

application. Figure 1–6 shows the classes involved and how they relate to each other.

Figure 1–6. Classes involved in the BasicApplication example

Note how the MasterViewController class, which is in charge of managing the user

interface, has a handle to the managed object context so that it can interact with Core

Data. As you go through the code, you’ll see that the MasterViewController class

obtains the managed object context from the application delegate. This happens in the

controller’s initWithNibName:bundle: method, shown here:

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 self.title = NSLocalizedString(@"Master", @"Master");
 id delegate = [[UIApplication sharedApplication] delegate];
 self.managedObjectContext = [delegate managedObjectContext];
 }
 return self;
}

The entry called BasicApplication.xcdatamodeld, which is actually a directory on the file

system, contains the data model, BasicApplication.xcdatamodel. The data model is

central to every Core Data application. This particular data model defines only one

entity, named Event, for the application. Events are defined as entities that contain only

one attribute named timeStamp of type Date, as shown in Figure 1–7.

CHAPTER 1: Getting Started 10

Figure 1–7. The Xcode-generated data model

The Event entity is of type NSManagedObject, which is the basic type for all entities

managed by Core Data. Chapter 2 explains the NSManagedObject type in more detail.

Fetching Results
The next class of interest is the MasterViewController. Opening its header file

(MasterViewController.h) reveals two properties:

@property (strong, nonatomic) NSFetchedResultsController *fetchedResultsController;
@property (strong, nonatomic) NSManagedObjectContext *managedObjectContext;

These properties are defined using the same syntax as the definitions of any Objective-C

class properties. The NSFetchedResultsController is a type of controller provided by the

Core Data framework that helps manage results from queries. NSManagedObjectContext

is a handle to the application’s persistent store that provides a context, or environment,

in which the managed objects can exist.

CHAPTER 1: Getting Started 11

The implementation of the MasterViewController, found in MasterViewController.m,

shows how to interact with the Core Data framework to store and retrieve data. The

MasterViewController implementation provides an explicit getter for the

fetchedResultsController property that preconfigures it to fetch data from the data store.

The first step in creating the fetch controller consists of creating a request that will retrieve

Event entities, as shown in this code from the fetchedResultsController accessor:

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"
 inManagedObjectContext:self.managedObjectContext];
[fetchRequest setEntity:entity];

The result of the request can be ordered using the sort descriptor from the Cocoa

Foundation framework. The sort descriptor defines the field to use for sorting and

whether the sort is ascending or descending. In this case, you sort by descending

chronological order, like so:

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:
@"timeStamp" ascending:NO];
NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil];
[fetchRequest setSortDescriptors:sortDescriptors];

Once you define the request, you can use it to construct the fetch controller. Because

the MasterViewController implements NSFetchedResultsControllerDelegate, it can be

set as the NSFetchedResultsController’s delegate so that it is automatically notified as

the result set changes and so that it updates its view appropriately. You could get the

same results by invoking the executeFetchRequest of the managed object context, but

you would not benefit from the other advantages that come from using the

NSFetchedResultsController such as the seamless integration with the UITableView, as

you’ll see later in this section and in Chapter 9. Here is the code that constructs the

fetch controller:

NSFetchedResultsController *aFetchedResultsController = [[NSFetchedResultsController
 alloc] initWithFetchRequest:fetchRequest managedObjectContext:
self.managedObjectContext sectionNameKeyPath:nil cacheName:@"Master"];
aFetchedResultsController.delegate = self;
self.fetchedResultsController = aFetchedResultsController;

NOTE: You may have noticed that the initWithFetchRequest shown earlier uses a
parameter called cacheName. You could pass nil for the cacheName parameter to prevent
caching, but naming a cache indicates to Core Data to check for a cache with a name matching

the passed name and see whether it already contains the same fetch request definition. If it does
find a match, it will reuse the cached results. If it finds a cache entry by that name but the
request doesn’t match, then it is deleted. If it doesn’t find it at all, then the request is executed,

and the cache entry is created for the next time. This is obviously an optimization that aims to
prevent executing the same request over and over. Core Data manages its caches intelligently so

that if the results are updated by another call, the cache is removed if affected.

CHAPTER 1: Getting Started 12

Finally, you tell the controller to execute its query to start retrieving results. To do this,

use the performFetch method.

NSError *error = nil;
if (![self.fetchedResultsController performFetch:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
}

You can see the entire getter method for fetchedResultsController in Listing 1–1.

Listing 1–1. The Entire Getter Method for fetchedResultsController

- (NSFetchedResultsController *)fetchedResultsController
{
 if (__fetchedResultsController != nil)
 {
 return __fetchedResultsController;
 }

 /*
 Set up the fetched results controller.
 */
 // Create the fetch request for the entity.
 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
 // Edit the entity name as appropriate.
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"
inManagedObjectContext:self.managedObjectContext];
 [fetchRequest setEntity:entity];

 // Set the batch size to a suitable number.
 [fetchRequest setFetchBatchSize:20];

 // Edit the sort key as appropriate.
 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"timeStamp"
ascending:NO];
 NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil];

 [fetchRequest setSortDescriptors:sortDescriptors];

 // Edit the section name key path and cache name if appropriate.
 // nil for section name key path means "no sections".
 NSFetchedResultsController *aFetchedResultsController = [[NSFetchedResultsController
alloc] initWithFetchRequest:fetchRequest managedObjectContext:self.managedObjectContext
sectionNameKeyPath:nil cacheName:@"Master"];
 aFetchedResultsController.delegate = self;
 self.fetchedResultsController = aFetchedResultsController;

 NSError *error = nil;
 if (![self.fetchedResultsController performFetch:&error])
 {
 /*
 Replace this implementation with code to handle the error appropriately.

 abort() causes the application to generate a crash log and terminate. You should
not use this function in a shipping application, although it may be useful during
development. If it is not possible to recover from the error, display an alert panel
that instructs the user to quit the application by pressing the Home button.

CHAPTER 1: Getting Started 13

 */
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return __fetchedResultsController;
}

NSFetchedResultsController behaves as a collection of managed objects, similar to an

NSArray, which makes it easy to use. In fact, it exposes a read-only property called

fetchedObjects that is of type NSArray to make things even easier to access the objects

it fetches. The MasterViewController class, which also extends UITableViewController,

demonstrates just how suited the NSFetchedResultsController is to manage the table’s

content.

Inserting New Objects
A quick glance at the insertNewObject: method shows how new events (the managed

objects) are created and added to the persistent store. Managed objects are defined by

the entity description from the data model and can live only within a context. The first

step is to get a hold of the current context as well as the entity definition. In this case,

instead of explicitly naming the entity, you reuse the entity definitions that are attached

to the fetched results controller:

NSManagedObjectContext *context = [self.fetchedResultsController managedObjectContext];
NSEntityDescription *entity = [[self.fetchedResultsController fetchRequest] entity];

Now that you’ve gathered all the elements needed to bring the new managed object to

existence, you create the Event object and set its timeStamp value.

NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName:[entity name] inManagedObjectContext:context];
[newManagedObject setValue:[NSDate date] forKey:@"timeStamp"];

The last step of the process is to tell Core Data to save changes to its context. The

obvious change is the object you just created, but keep in mind that calling the save.

method will also affect any other unsaved changes to the context.

NSError *error = nil;
if (![context save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
}

The complete method for inserting the new Event object is shown in Listing 1–2.

Listing 1–2. The Complete Method for Inserting the New Event Object

- (void)insertNewObject {
 // Create a new instance of the entity managed by the fetched results controller.
 NSManagedObjectContext *context = [self.fetchedResultsController
managedObjectContext];
 NSEntityDescription *entity = [[self.fetchedResultsController fetchRequest] entity];
 NSManagedObject *newManagedObject = [NSEntityDescription
insertNewObjectForEntityForName:[entity name] inManagedObjectContext:context];

CHAPTER 1: Getting Started 14

 // If appropriate, configure the new managed object.
 // Normally you should use accessor methods, but using KVC here avoids the need to add
a custom class to the template.
 [newManagedObject setValue:[NSDate date] forKey:@"timeStamp"];

 // Save the context.
 NSError *error = nil;
 if (![context save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
}

Initializing the Managed Context
Obviously, none of this can happen without initializing the managed context first. This is

the role of the application delegate. In a Core Data–enabled application, the delegate

must expose three properties.

@property (readonly, strong, nonatomic) NSManagedObjectContext *managedObjectContext;
@property (readonly, strong, nonatomic) NSManagedObjectModel *managedObjectModel;
@property (readonly, strong, nonatomic) NSPersistentStoreCoordinator
*persistentStoreCoordinator;

Note that they are all marked as read-only, which prevents any other component in the

application from setting them directly. A closer look at BasicApplicationAppDelegate.m

shows that all three properties have explicit getter methods.

First, the managed object model is derived from the data model

(BasicApplication.xcdatamodel) and loaded.

- (NSManagedObjectModel *)managedObjectModel
{
 if (__managedObjectModel != nil)
 {
 return __managedObjectModel;
 }
 NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"BasicApplication"
withExtension:@"momd"];
 __managedObjectModel = [[NSManagedObjectModel alloc]
initWithContentsOfURL:modelURL];
 return __managedObjectModel;
}

Then a persistent store is created to support the model. In this case, as well as in most

Core Data scenarios, the persistent store is backed by a SQLite database. The managed

object model is a logical representation of the data store, while the persistent store is

the materialization of that data store.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (__persistentStoreCoordinator != nil) {
 return __persistentStoreCoordinator;
 }

CHAPTER 1: Getting Started 15

 NSURL *storeURL = [[self applicationDocumentsDirectory]
URLByAppendingPathComponent:@"BasicApplication.sqlite"];

 NSError *error = nil;
 __persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel:[self managedObjectModel]];
 if (![__persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil URL:storeURL options:nil error:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return __persistentStoreCoordinator;
}

Finally, the managed object context is created.

- (NSManagedObjectContext *)managedObjectContext {
 if (__managedObjectContext != nil) {
 return __managedObjectContext;
 }

 NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];
 if (coordinator != nil) {
 __managedObjectContext = [[NSManagedObjectContext alloc] init];
 [__managedObjectContext setPersistentStoreCoordinator:coordinator];
 }
 return __managedObjectContext;
}

The context is used throughout the application as the single interface with the Core Data

framework and the persistent store, as Figure 1–8 demonstrates.

Figure 1–8. Core Data initialization sequence

Lastly, everything is put in motion when the application delegate’s

application:didFinishLaunchingWithOptions: method is called.

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.

 MasterViewController *controller = [[MasterViewController alloc]
initWithNibName:@"MasterViewController" bundle:nil];
 self.navigationController = [[UINavigationController alloc]
initWithRootViewController:controller];
 self.window.rootViewController = self.navigationController;
 [self.window makeKeyAndVisible];
 return YES;
}

