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Preface

Diagnostic and therapeutic Ultrasound has recently taken an explosive growth for
better safer, economic, mobile and high quality healthcare. This technology is very
appealing for medical applications because it is non-ionizing, non-invasive and is
available in most of the medical and clinical facilities. Its low cost, when compared
with other medical image modalities, makes it one of the preferred tools for medical
monitoring, follow-up and diagnosis. Besides the traditional fields of cardiology
and obstetrics, where it is extensively used for long time, it has become also very
useful in the diagnosis of diseases of the prostate, liver and coronaries and carotids
atherosclerosis.

However, Ultrasound images present poor quality, very low signal to noise ratio
and a lot of artifacts. The extraction of useful information from Ultrasound data
for diagnosis is a challenge task that makes this medical image modality a very
active field of research. The difficulties are being overcome and novel and advanced
methods are being proposed for detection, characterization and segmentation of
abnormalities in several organs. In fact, Ultrasound application range is vast,
covering almost all organs, including the brain where Transcranial Doppler (TCD)
Ultrasound is very important to assess the brain vasculature.

This book presents some of the recent advances in Ultrasound imaging technol-
ogy covering several organs and techniques in a Biomedical Engineering (BME)
perspective. The focus of the book is in the algorithms, methodologies and systems
developed by multidisciplinary research teams of engineers and physicians for
Computer-Aided Diagnosis (CAD) purposes.

Cardiovascular and cancer, the most common life-threatening diseases in western
countries, are two of the most important topics focused in the book. However,
other advanced issues are also presented such as Intravascular Ultrasound (IVUS),
3D and 4D Ultrasound and Ultrasound in Computer-Aided Surgery (CAS). Some
chapters are direct contributions from medical research groups where Ultrasound
has also received great attention in the last decade. By this, new techniques based on
Ultrasound were introduced in the clinical practice for diagnosis and therapeutics,
mainly in hospital facilities.
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Main Feature of the Book

The book contains 14 chapters distributed by 3 sections. It covers a wide range
of topics from the physics and statistics associated with the Ultrasound data, in a
signal processing point of view, up to high level application tools for CAD based on
Ultrasound.

Section 1: Image Formation and Preprocessing

In this section the image formation process is addressed and new statistical models
describing the ultrasonic signal are proposed. Reduction of Ultrasound noise, called
de-speckling, and textural characterization of tissues are considered.

Section 2: Ultrasound Atherosclerotic Plaque Imaging

Here, the important problem of atherosclerotic plaque characterization is addressed.
Methods to assess the severity of the disease are described, such as measuring the
Intima/ Media Thickness (IMT), as well as new scores to quantify the risk of vascular
accident.

Section 3: Advanced Applications

This section covers a wide range of applications involving morphological and tex-
tural segmentation of structures from ultrasound images. Detection and characteri-
zation of focal lesions in the thyroid, breast and prostate and textural characterization
of diffuse diseases of the liver are the main topics.
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Part I
Image Formation and Preprocessing



RF Ultrasound Estimation from B-Mode Images

José Seabra and João Miguel Sanches

Abstract This chapter describes a method to estimate/recover the ultrasound RF
envelope signal from the observed B-mode images by taking into account the main
operations usually performed by the ultrasound scanner in the acquisition process.

The proposed method assumes a Rayleigh distribution for the RF signal and
a nonlinear logarithmic law, depending on unknown parameters, to model the
compression procedure performed by the scanner used to improve the visualization
of the data.

The goal of the proposed method is to estimate the parameters of the compression
law, depending on the specific brightness and contrast adjustments performed by the
operator during the acquisition process, in order to revert the process.

The method provides an accurate observation model which allows to design
robust and effective despeckling/reconstruction methods for morphological and
textural analysis of Ultrasound data to be used in Computer Aided Dagnosis (CAD)
applications.

Numerous simulations with synthetic and real data, acquired under different
conditions and from different tissues, show the robustness of the method and
the validity of the adopted observation model to describe the acquisition process
implemented in the conventional ultrasound scanners.

1 Introduction

Ultrasound statistical-based image processing for denoising, segmentation, and
tissue characterization is an attractive field of research nowadays [1–3] and may
positively influence some diagnostic decisions in the near future.

J. Seabra (�) • J.M. Sanches
Institute for Systems and Robotics, Department of Bioengineering from the Instituto
Superior Técnico/Technical University of Lisbon, Portugal
e-mail: mail2jseabra@gmail.com; jmrs@ist.utl.pt

J.M. Sanches et al. (eds.), Ultrasound Imaging: Advances and Applications,
DOI 10.1007/978-1-4614-1180-2 1, © Springer Science+Business Media, LLC 2012
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4 J. Seabra and J.M. Sanches

It is widely recognized that speckle in B-mode Ultrasound (BUS) images arises
from the coherent interaction of random scatterers within a resolution cell when
a certain anatomical region is scanned. The common model for speckle formation
assumes a large number of scatterers where the sum of signals may be formulated
according to a typical phasors random walk process [4]. This condition, known
as fully developed speckle, determines Rayleigh statistics for the Envelope Radio-
Frequency (ERF) data [5]. In addition, different nonlinear processing operators are
used to improve the visualization of the displayed image, here termed B-mode
image. In particular, the amplitude of the ERF signal is logarithmically compressed
and nonlinearly processed so that a larger dynamic range of weak to strong echoes
can be represented in the same image.

The compressed data, typically acquired in a polar grid, is in turn interpolated and
down-sampled in order to convert it to a Cartesian grid that is more appropriated
for visualization in the rectangular monitors of the scanners. Finally, in a clinical
setting, physicians typically adjust other parameters such as brightness and contrast
to improve image visualization.

Many research work has been developed for speckle reduction aiming at
providing clearer images for visualization [6]. However, very few approaches either
focusing on speckle reduction or tissue classification take into account the pre-
processing operations used to create the BUS images [7, 8]. Studies based on
image processing from BUS images naturally need to follow a rigorous acquisition
protocol, otherwise results will be non-reproducible and non-comparable since they
will depend on the kind of ultrasound equipment and on each specific operating
conditions. To avoid these difficulties some researchers [9–11] use the RF signal
extracted directly from the ultrasound machine. However, this kind of data is
not usually available at the scanners and is only provided for research purposes.
In fact, besides the previously referred transformations of re-sampling, coordinate
transformation, and logarithmic compression (cf. Fig. 1), the B-mode observed
images are the result of other proprietary nonlinear mappings specific of each
scanner that is usually not known and not documented .

In this chapter we show that, despite the lack of knowledge about the com-
plete processing operations performed in the scanner, it is possible to revert the
compression operation and compensate for the contrast and brightness adjustments
performed by the operator during the exam. The interpolation is also addressed.
The estimated Log-Compression Law (LCL) is able to provide an image more
compatible with the physics of the image formation process than the B-mode one
that may be used to design more accurate and effective denoised algorithms.

The remainder of this chapter is organized as follows. In Sect. 2 it is made a
review of the most relevant work published about ultrasound image decompression
and estimation of operating settings over the last years. Section 3 formulates the
Log-Compression model and describes the statistics associated with the compressed
image. In addition, simulations of the most significant operations affecting the
statistical properties of the original data are shown and some observations are
drawn about the way the shape of the distributions are affected. Subsequently,
Sect. 4 details the method to estimate the parameters of the compression law,
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specifically the contrast (â) and brightness (b̂) parameters. Section 5 first tests the
effectiveness of estimating the decompression parameters with the proposed method
using synthetic ultrasound data. To further investigate how realistic the proposed
model is, the decompression method is applied to a real BUS image, from which the
raw data is known, and comparison between original and estimated data is made.

The robustness of the decompression method is also evaluated using real images
acquired under different operating conditions and a detailed interpretation of
the obtained results is performed. Finally, Goodness of Fit (GoF) [12] tests are
conducted in estimated ERF images to sustain the hypothesis that most envelope
RF data can be well modeled by Rayleigh statistics. Section 6 concludes the study
about decompression and envelope RF estimation from BUS data.

2 Related Work

A considerable amount of work dedicated to speckle suppression and tissue
characterization relies on accurate statistical models for RF data. Such models
albeit being ideally and robustly tailored to describe the envelope data in different
conditions throughout the image, are not feasible and practical because RF data is
usually not available. Thus, there is a need to develop realistic observation models
that incorporate the most significant nonlinear processing operations affecting the
envelope data, when only BUS images are provided. In order to compute the RF
intensity signal it becomes crucial to (1) explain the statistics of the compressed
signal and (2) invert the logarithmic compression and other nonlinear signal
processing performed by the ultrasound machine. Commercial ultrasound scanners
perform a set of operations on the RF signal, e.g., log-compression and interpolation
[13], that change the statistical distribution of the complex raw RF signal which is
no longer Circular Symmetric Complex Gaussian (CSCG) [14] and, therefore, the
Rayleigh statistics of the ERF signal are no longer valid.

Seminal work conducted in [7, 15, 16] have addressed the analytic study of
log compressed Rayleigh signals in medical ultrasound images. From thereon,
several decompression strategies were developed aiming at estimating some of the
nonlinear processing parameters [17–19] or providing an estimate of the envelope
RF data [8, 20, 21]. In order to compute the ERF intensity signal, the logarithmic
compression and other nonlinear operations must be inverted. A common model for
the compression law used in the literature is the following

IBUS = a log(IERF)+ b, (1)

where a and b are unknown parameters. The work developed in [20] demonstrated
that such mapping is able to approximately invert the compression algorithms
employed by a number of different ultrasound machine manufacturers, given that the
parameters are originally known. The additive parameter, b, does not affect the shape
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of the statistics used to speckle because it only shifts the distribution function which
does not happen with the gain parameter a. The study developed by Crawford et al.
[20] proposed a systematic method to compensate for nonlinear amplification based
on several measurements based on a calibrated phantom, while the study reported
by Kaplan et al. [15] requires accessing the data before processing which is not
feasible in most commercial machines.

The work from Prager et al. [8] introduced the fractional moments iterative
algorithm for recovering the envelope intensity signal from B-Mode data using
speckle patches. In such patches, where fully developed speckle holds, the envelope
intensity signal, Yp, can be estimated by inverting the compression mapping,

Yp = exp

(
Zp

a

)
, (2)

where Zp is the B-Mode intensity on a given patch, p. According to [5], Yp follows
approximately an exponential distribution,

p(Yp) =
1

2σ2 exp

(−Yp

2σ2

)
, (3)

where the nth order moment is given by [22],

〈Yn
p〉= (2σ2)nΓ (n+ 1) = 〈Yp〉nΓ (n+ 1), (4)

where Γ (n) is the Gamma function. Therefore, the normalized moments are,

〈Yn
p〉

〈Yp〉n = Γ (n+ 1). (5)

This approach [8] compares the measured normalized moments on known
speckle patches, Yp, with the theoretical expected values for an exponential
distribution. The optimal value of the contrast parameter, a, can then be found
by minimizing the difference between these two set of values. This algorithm
produces similar results to the faster approach proposed in [15] for pure logarithmic
compression, but also works in the presence of nonlinear mapping where the Kaplan
[15] formula does not apply.

A more recent work presented by Marques et al. [21] and used in a 3D US
reconstruction problem enables to model the nonlinear compression considering
that the ERF data is Rayleigh distributed. The estimation of the log compression
parameters is simultaneously performed with the image reconstruction procedure
by optimizing the same objective function (PDF of the unknown parameters). Such
parameters are obtained by considering the theoretical expressions for the mean and
standard deviation of the Fisher–Tippet distribution [22] early demonstrated to be a
feasible model for the compressed data [7].
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Although the estimator of b has shown to be biased, this work presented
promising results particularly in terms of image reconstruction. It has been shown
that the reconstruction algorithm performs better when compensation is considered.
The estimated images and profiles obtained by compensating the log compressed
images are sharper, presenting a larger dynamic range, and the anatomical de-
tails are more clearly visible when compared with those obtained assuming no
compression.

3 Log-Compression Model

Figure 1 depicts the processing block diagram of a generic ultrasound imaging
system, including the most significant operations performed on the RF signal
generated by the ultrasound probe: (1) interpolation and grid geometry conversion,
from polar to rectangular to appropriate image display, (2) logarithmic compression,
used to reduce the dynamic range of the input echo signal to match the smaller
dynamic range of the display device and to accentuate objects with weak backscatter
[13], (3) contrast, a, and (4) brightness, b adjustments. Some equipments perform
an automatic adjustment of the parameters a and b which can further be tuned
by the operator to improve image visualization in each specific exam. The model
displayed in Fig. 1, illustrating the Log-Compressed Law, allows to simulate the
generic processing operations of the ultrasound equipment, and to recover, whenever
the original raw data is not available, an estimate of the ERF image.

As shown in Sect. 5 the interpolated data is better described by a Gamma
distribution than by a Rayleigh one. However, the results displayed also show only
a marginal improvement of the Gamma distribution with respect to the Rayleigh
model, mainly at the transitions. Therefore, here, the interpolation is not taken into
account in the designing of the ERF estimation algorithm.

The Log-Compression model (LCM) described in this section assumes a fully
developed speckle noise formation model to describe the ERF image formation
process. This condition is valid when images are reasonably homogeneous and

Fig. 1 Block diagram of the generic processing operations of an ultrasound imaging system



8 J. Seabra and J.M. Sanches

do not show high intensity scattering sites. Under these assumptions the ERF
signal intensity can be described by a Rayleigh distribution [23], whose parameters,
Σ = {σi, j}, associated with each pixel intensity of the ERF image, yi, j, are related
to the tissue acoustic properties [24] at the corresponding location, xi, j.

Let Z = {zi, j} be a N ×M BUS image corrupted by speckle where each pixel is
generated according to the following LCL,

zi, j = a log(yi, j + 1)+ b, (6)

where (a,b) are unknown parameters used to model the contrast and brightness of
the observed image, respectively. In the assumption of fully developed speckle the
pixels of the ERF image, Y = {yi, j}, are Rayleigh distributed [25]

p(yi, j) =
yi, j

σ2
i, j

exp

(
− y2

i, j

2σ2
i, j

)
, (7)

where σi, j is the parameter of the distribution to be estimated. Consequently, the

distribution of the observed pixels, zi, j, given by p(z)=
∣∣∣ dy

dz

∣∣∣ p(y) [14] corresponds to

p(zi, j) =
yi, j(yi, j + 1)

aσ2
i, j

exp

(
− y2

i, j

2σ2
i, j

)
. (8)

Figure 2a–d simulates the BUS image formation process. The pixel intensities of
the noisy image, displayed in Fig. 2b, were generated from Rayleigh distributions
with parameters corresponding to the pixel intensities of the phantom displayed in
Fig. 2a. To illustrate how the most relevant operations performed by the ultrasound
scanner affect the statistical properties of the ERF signal the following simulations
are performed. The noisy image is first interpolated and then compressed according
to (6) and the final result, displayed in Fig. 2d, represents a typical image obtained
with ultrasound equipment.

Figure 2e, f presents the shape of the data distribution throughout the processing
operations for different contrast and brightness parameters used in (6). In general,
the transformed image is significantly different from the original data from both
statistical (histogram) and visual appearance points of view.

Only in the case of the interpolation operation the differences are not very
relevant. The histogram of the independent Rayleigh distributed pixels inside the
window ky (see Fig. 2b) is not significantly different from the histogram of pixels
inside the window ki

y (see Fig. 2b). See both histograms displayed in Fig. 2e.
The effect of the interpolation operation is mainly low pass filtering the data

leading to a slight reduction on the intensity variance of the transformed image.
Variations on the brightness parameter, b, shift the distribution of the transform data
along the gray-scale axis, as shown in (Fig. 2e). Moreover, as expected, the dynamic
range parameter, a, produces the effect of compressing or stretching the distribution
as a decreases or increases, respectively (Fig. 2f).
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Fig. 2 BUS image formation model, starting from a phantom object (a). The method for
generating synthetic BUS images includes corruption with Rayleigh noise (b), interpolation
(c), and application of the LCL (d). Probability densities in ky and ki

y, and kz when the parameters
a (e) and b (f) are made variable

In the next section the estimation procedure to estimate the parameters a and b
form (6) is described in order to decompress the data and estimate the unobserved
ERF image, yi, j, from the observed ultrasound B-mode one, zi, j, by using the
transformation

yi, j = exp

(
zi, j − b̂

â

)
− 1, (9)

where (â, b̂) are the estimated contrast and brightness parameters.
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4 Estimation of Decompression Parameters

This method described here to estimate the Log-Compression parameters in (6) is
an improved version of the method described in [21].

The estimation of the compression parameters (a,b) would be easier if the
Rayleigh parameter, σi, j, was known. However, it is not known and varies across
the image.

Let us approximate (9) by y ≈ exp
(

z−b
a

)
, the distribution (8) can be written as

follows

p(z) =
2
a

exp(−θ − exp(−θ )), (10)

where θ = log(2σ2)− 2
z− b

a
. Equation (10) defines the Fisher-Tippet distribution

[22], also known as double exponential. The mean and standard deviation (SD) of
this distribution are:

μz =
a
2
[log(2σ2)− γ]+ b, (11)

σz =
π a√

24
, (12)

where γ = 0.5772... is the Euler–Mascheroni constant.
To overcome the difficulty associated with the lack of knowledge of σi, j let

us now consider small n × m windows, wi, j , centered at each pixel (i, j). The
distribution parameters σk,l within these small windows are assumed constant and
equal to the parameter of the corresponding center pixel, σi, j , to be estimated.

If ai, j is assumed constant inside the small window wi, j it can be easily derived
from (12)

âi, j =
√

24
σzi, j

π
, (13)

where σzi, j is the standard deviation of the observations inside the small window wi, j

The parameter a, which is considered constant across the image, is estimated by
averaging the parameters âi, j:

â =
1

NM

N,M

∑
i, j=1

âi, j. (14)

The estimation process of b is more challenging than the estimation of a, thus
requiring a more elaborated and complex procedure. Let us consider the set of n×
m = L unknown non compressed pixels y = {yk,l} inside the window wi, j as being
independent and identically Rayleigh distributed with parameter σi, j

p(yk,l |σi, j) =
yk,l

σ2
i, j

exp

(
− y2

k,l

2σ2
i, j

)
. (15)



RF Ultrasound Estimation from B-Mode Images 11

As shown in [21], the distribution of the minimum of y, t = min(y), is also
Rayleigh distributed with parameter σ2

i, j/L

p(t|σ) = t

σ2
i, j/L

exp

(
− t2

2σ2
i, j/L

)
. (16)

The minimum of the observed pixels inside the window wi, j , z = {zk,l} where
zk,l = a log(yk,l + 1)+ b, is

s = min(z) = a log(min(y)+ 1)+ b

= a log(t + 1)+ b, (17)

which means

b = s− a log(t + 1). (18)

The distribution of b, computed by p(b|s,σi, j) = |dt/db|p(t|σi, j), is therefore
given by

p(b|s,σi, j) =
L

aσ2
i, j

t(t + 1)exp

(
− L

2σ2
i, j

t2

)
, (19)

where t = exp
(

s−b
a

)− 1. σi, j , the distribution parameter associated with the (i, j)
pixel, is not known neither constant across the image. However, if it is considered
constant inside the small window wi, j a local estimation of b is possible to
derive. Since y is assumed Rayleigh distributed an appropriated approximation
for σi, j is

σ̃i, j =

√
1

2nm∑k,l
ỹ2

k,l , (20)

where

ỹk,l = exp

(
zk,l − b̃

a

)
− 1, (21)

and

b̃ = min(z). (22)

Since b is not known b̃ ≈ b is used in (21) instead of b. As it will be shown in the
section of experimental results this approximation is valid.
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Let b̂i, j be the estimated value of b, computed from the pixels within the small
window wi, j. Its value is nothing more than the expected value of b with respect to
the distribution (19) with the parameter computed in (20),

b̂i, j =

∫ ∞

−∞
bi, j p(bi, j|s, σ̃i, j)dbi, j. (23)

The closed form solution of (23) is difficult to compute and a numeric approach
is adopted, such that:

b̂i, j =
L

∑
k=1

bi, j(k)p(bi, j(k)|s, σ̃i, j), (24)

where bi, j(k) = k s/(L− 1),k = 0,1, ...,L− 1 are L uniformly distributed values in
the interval [0,s], since it is assumed that b ≥ 0 and from (18), b ≤ s.

The global value of b, once again, is obtained by averaging the estimated b̂i, j:

b̂ =
1

NM

N,M

∑
i, j=1

b̂i, j. (25)

The estimated parameters (â, b̂) are then used to revert the Log-compression
performed by the ultrasound equipment in order to recover the original RF signal:

yi, j = exp

(
zi, j − b̂

â

)
− 1, (26)

which is assumed, in the remainder of this chapter, to be Rayleigh distributed.

5 Experimental Results

In this section, different results are presented aiming to assess the performance of
the proposed method. First, the accuracy on the decompression parameters (a,b)
estimation procedure is computed by using synthetic ultrasound data. The validity
of the decompression method is also assessed by using real data. A comparison is
made between the original ERF image, obtained from raw data, and the estimated
ERF image, obtained from the BUS image.

In addition, the adequacy and robustness of the ERF image retrieval method is
investigated in the real case using two sets of experiments, including the application
of the decompression method in (1) different BUS images acquired with fixed
brightness and contrast parameters and (2) static BUS images acquired with variable
operating parameters.
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Finally, GoF tests with Rayleigh and Gamma distributions are conducted in
estimated ERF images which enables to support the hypothesis that most envelope
RF data can be well modeled by these two distributions. The interpretation of the
obtained results suggest the use of the simpler Rayleigh distribution to decompress
that data.

The decompression method is initially tested in synthetic data by using Monte
Carlo tests. Particularly, in this experiment it is intended to assess the estimation
accuracy of the decompression parameters, (a,b), for different images and amounts
of noise. For each pair of decompression parameters 50 Monte Carlo runs were
performed. In each run, two different types of synthetic images are used to revert the
compression method and estimate the parameters (â, b̂), uniform and non uniform.
Three uniform synthetic images are corrupted with Rayleigh noise with parameters
σ2 = {102,103,5 ·103}. The non uniform image is the Shepp–Logan phantom also
corrupted by the same three different amounts of noise used with the uniform
phantoms. In both cases the noisy images are interpolated and log-compressed
according to (6).

Figure 3 presents the average and SD of the 50 estimated decompression
parameters, (â, b̂), obtained for each true pair (a,b), by using the first phantom
(Fig. 3a) and the non-uniform Shepp–Logan phantom (Fig. 3b).

Similar results are obtained in both cases which suggests that the decompression
method has similar behavior for uniform and non-uniform images, and its perfor-
mance is apparently independent on the severity of speckle noise contamination.
The later conclusion is confirmed in Fig. 3a where the observed results do not
depend on the value of the Rayleigh parameter σ used to generate the noisy image.

In general, the estimation â is non biased and its SD increase mainly with a0 (see
Fig. 3a, b, top left). The variability of â tends to be less significant as b increases
(see Fig. 3a, b, bottom left). The average values of the uncertainties associated
with â, SD(â)/a0, are: 0.54%, 0.60%, and 0.60% for the uniform image with
σ2 = 100,1,000, and 5,000, respectively, and 0.61% for the non-uniform image.
As far as the ratio SD(â)/a is concerned, the uncertainty associated with â is almost
residual.

The estimation of b, b̂, is also non biased (see Fig. 3a, b, top right). In particular,
the average values of the uncertainties associated with b̂, SD(b̂)/b, are: 2.4%, 2.4%,
and 2.4% for the uniform image with σ2 = 100,1,000, and 5,000, respectively, and
2.3% for the non-uniform image. The uncertainty associated with the decompres-
sion parameter b̂ increases linearly with a. In fact, this behavior is similar to the
one obtained for â, except for very small values of a, where the uncertainty about b̂
increases with b (see Fig. 3a, b, bottom right).

The method here proposed is able to invert the compression operations when
synthetic images are given. Moreover, it is important to study the feasibility of the
method when raw data is provided by the manufacturer. Notice that the challenge of
decompression from BUS images is only raised because raw data is generally not
available in a clinical setting, thus limiting the application of algorithms which are
based on statistical modeling of speckle or RF data.
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Fig. 3 Estimation of the decompression parameters using Monte Carlo tests. Performance is
assessed by computing the mean and SD of (â,b̂) in simulated log compressed images of a noisy
uniform image created with Rayleigh parameters (a) and noisy Shepp–Logan phantom (b)
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Fig. 4 Application of the RF image retrieval (decompression) method to a BUS image represent-
ing a coronary artery. PDFs of the BUS, original ERF, and estimated ERF images, extracted from
a given ROI

Hence, in this study it was used an IVUS BUS image corresponding to a cut
of the coronary artery (Fig. 4a) together with the RF image obtained from raw RF
data, obtained with specialized equipment (Galaxy II IVUS Imaging System, Boston
Scientific, Natick, MA, United States). The RF image retrieval(decompression)
method is applied to the BUS image, resulting in an estimate of the envelope data,
the ˆERF image. As shown in Fig. 4b, the statistical properties of the original and
estimated ERF images are closely similar. This observation supports the adequacy
of the proposed method to provide an estimate of the envelope RF data which
resembles the original one.

So far the decompression method was validated using an IVUS image from
which the raw data was known. Moreover, it is also pertinent to investigate the
robustness of the method according to different acquisition settings and scenarios.
To this purpose, the RF image retrieval method is tested under two different con-
ditions: first, by changing the probe position and keeping the operating parameters
constant, and second by maintaining the probe steady and varying the contrast and
brightness parameters.

Figure 5a–c presents results of the application of the decompression method
proposed in this chapter. In particular, three image sets were acquired for different
anatomical structures/tissues by slightly changing the probe position between each
image acquisition. For each set of RF estimated images, a homogeneous region
was selected and its intensity histogram computed as shown in Fig. 6a–c (left).
These results show that the statistical properties of the estimated RF images are
comparable, suggesting that the decompression method is robust to small changes
in image appearance. The decompression parameters from each image set are
depicted in Fig. 6a–c (right). The SDs for â and b̂ are (3.83;2.97), (4.26;2.01),
and (1.96;1.80), respectively for each set of decompressed images, which shows
that the uncertainty about the estimated LCL parameters is low in different imaging
conditions.
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Fig. 5 Application of the decompression method to different sets of images acquired from
different tissues using fixed operating conditions
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Fig. 7 Application of the decompression method to sets of images acquired from different tissues,
acquired with a steady probe and variable operating parameters

As previously mentioned, the second experiment consisted in acquiring a series
of BUS images by keeping the probe steady and varying the operating parameters.
Results of the application of the decompression method in two different image sets
are shown in Fig. 7. In terms of gray-scale image appearance, the obtained ERF
images present similar dynamic range and brightness. Histogram analysis of data
extracted from homogeneous regions in such images (Fig. 8a, b on the left) suggests
similar statistical properties among the estimated ERF images. A comparison
between the contrast and brightness parameters given by the US scanner with the
estimated decompression parameters is given in Fig. 8a, b on the right. Although a
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machine operating settings

numerical comparison is naturally unfeasible because the equipment’s settings may
not directly correspond to the values assigned to the operating parameters being
estimated, it is pertinent to investigate how the estimated parameters change with
respect to the original settings of the machine. Considering the estimated parameters
â these appear to change approximately in inverse proportion with respect to the
original dynamic range settings a. Moreover, the estimated parameters b̂ vary
roughly in direct proportion according to the original linear gain settings b. These
results support the ability of the proposed method to estimate the decompression
parameters, evoking a similarity association between these values and the settings
defined with the ultrasound equipment.

Results aiming at assessing the adequacy and robustness of the proposed
decompression method in the aforementioned real cases are detailed in Table 1.
Besides the decompression parameters obtained for each image of the data set, it is
also shown the Kullback–Leibler distance [26] of each distribution with respect to
the first distribution of each set. Observations taken from Table 1 support, from a
quantitative point of view, the robustness of the decompression method in estimating
precisely the decompression parameters and the ERF images.

It is relevant to investigate whether the assumptions made initially about the
adequacy of the Rayleigh distribution to model the pixel intensities in ERF images
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Table 1 Decompression parameters (â, b̂), and Kullback–Leibler distances computed from ERF
data histograms, as result of the application of the RF image retrieval under two different conditions
(constant and variable operating parameters)

Thyroid cross-section Thyroid longitudinal Liver

Parameters ID â b̂ dKL(h1,hID) â b̂ dKL(h1,hID) â b̂ dKL(h1,hID)

Constant RF1 35.71 7.05 − 24.65 5.07 − 46.09 3.91 −
RF2 35.64 1.14 −1.61 24.04 2.10 0.02 46.22 4.98 −0.01
RF3 30.14 1.13 0.26 28.30 1.85 0.01 42.12 2.92 2.62
RF4 39.60 1.08 −0.84 33.30 0.22 −0.28 47.04 5.04 0.42
RF5 43.64 4.95 1.72
RF6 47.10 1.02 0.25

Variable RF1 57.17 3.18 − 34.09 10.22 −
RF2 44.20 7.38 2.40 23.41 10.09 0.11
RF3 40.02 10.32 2.10 36.35 0.02 3.28
RF4 12.60 0.28 4.02 17.88 7.55 0.81
RF5 34.07 14.15 5.01 22.23 12.90 1.02
RF6 30.26 20.89 1.27

are realistic or not. It is known that the assumption of fully developed speckle
determines Rayleigh statistics for the amplitude of the envelope RF data, although
the Gamma distribution seems to provide a better approximation [27, 28], mainly
when interpolation is involved, which is the case.

Hence, the purpose of the study presented in Fig. 10 is to investigate whether the
Rayleigh and Gamma distributions are capable of locally describing the estimated
ERF images (Fig. 9). Given this, the Maximum Likelihood (ML) estimates of the
Rayleigh and Gamma distribution were computed locally for each image. This
computation is done in 8 × 8 sliding blocks with 2 × 2 overlapping borders,
throughout the images. For each block the probability density functions (PDFs) are
computed according to the ML-based Rayleigh and Gamma estimates. Moreover, a
correlation coefficient measure is computed to compare each distribution with the
data histogram, given by:

ρxy =
δxy

σxσy
, (27)

where δxy is the covariance matrix of the mentioned PDFs and σx and σy are
their standard deviations. When the correlation coefficient, ρxy, is 1 it means
the distribution under investigation (either Rayleigh or Gamma) perfectly models
the local data. Figure 10 consists of color-scaled GoF maps, including the local
comparison of ERF data vs. ML estimated Rayleigh distribution (Fig. 10a), ERF
data vs. ML estimated Gamma distribution (Fig. 10b) and finally, Rayleigh vs.
Gamma distribution (Fig. 10c).

In both cases, the Gamma distribution is able to better describe the data when
compared to the Rayleigh distribution. An interesting observation is that the


