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Preface

The two decades leading up to this year’s twentieth annual Computational
Neuroscience conference (CNS) have seen a dramatic upswing in applications of
quantitative and analytical methods taken from mathematics, physics, and engineer-
ing (among others) to the traditionally more biological approaches to Neuroscience.
Much of the progress in the Computational Neurosciences, as in the broader field of
Neuroscience, has taken the form of advancements in our understanding of neural
systems at two key levels: the cellular processes underlying the dynamic electrical
and chemical behaviors of individual neurons and the complex interactions among
neurons in networks of varying composition and size, ranging from two reciprocally
connected neurons, to detailed local microcircuitry, to large scale networks of
thousands or more. One of the most difficult challenges, however, has been (and
remains) to bridge the cellular and network levels of computation, i.e., to identify
and understand how the properties of individual neurons contribute to the behaviors
of functional networks underlying perception, motor performance, memory, and
cognition. Given that neurons, like people, communicate with and influence one
another through a variety of means, this problem is quite a bit like relating the
individual personalities of two or more people to the interactions between them;
or more generally, it is like relating the psychology of individuals to the sociology
of a community.

One of the most fruitful means of addressing the interface between cellular
and network computation has been the application of phase response analysis to
neuronal systems. Neuronal phase response curves (PRCs) describe the pattern of
shifts in the timing of action potentials (spikes) that are caused by inputs to a
neuron arriving at different times within that neuron’s spike cycle. The degree to
which an input can affect spike timing depends not only on the properties of the
neuron but also on the characteristics of the input, and the relationship between the
PRCs of individual neurons and the behavior of a neuronal network additionally
depends on the connectivity structure within the network. Consequently, many of
the complexities of computation at the cellular and network levels are embodied
in the variety of applications of phase response analyses to neuronal systems. This
book provides a cross section of the considerable body of work by many of the

v



vi Preface

prominent theoreticians and experimentalists in the Computational Neurosciences
which make use of PRCs to further our understanding of neurons and networks,
more generally, the brain, and more abstractly, ourselves. Part 1 introduces the
theoretical underpinnings of phase response analysis and presents the central
concepts and context for the rest of the book; Part 2 surveys techniques for
estimating neuronal phase response curves and many of the technical considerations
necessary to do so; Part 3 presents many of the key investigations relating the
phase response properties of neurons to their cellular characteristics; and finally, the
chapters in Part 4 illustrate how phase response curves can be used to understand
and predict patterning of network activity in neuronal systems.

To make this text exciting and accessible to a diverse audience, the contributors
to this book were asked to write “across the aisle,” so-to-speak, such that the more
theoretical or “mathy” authors considered more biologically-minded readers in
preparing their contributions, and vice versa. Although this text generally proceeds
from more theoretical to more applied topics, and major themes are partitioned
into the book’s four major parts, readers are not expected to move purely linearly
through the content from start to finish. Rather, we encourage readers to familiarize
themselves with the general concepts and perspectives and then move from one
chapter to another as curiosity and perhaps relevance to their own interests dictate.

We, the editors, dedicate this volume to our mentors, in particular among them
Drs. Dieter Jaeger, Eve Marder, Jack Byrne, John Clark, Ron Calabrese, and Terry
Blumenthal, and to our families.
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Part I
Foundations of Phase Response Analysis

Introduction

The first section of this text provides an overview of the basic principles of applying
phase response analysis to the study of neurons and neuronal networks. Each
chapter describes general strategies by which phase response curves can be used
for the prediction of phase-locked states among neuronal oscillators. Chapter 1
by Schwemmer and Lewis details the theory of weakly coupled oscillators. This
theory entails the reduction of high dimensional descriptions of neurons to phase
equations, and the authors describe three approaches for obtaining such phase
model descriptions: the “seat of the pants” approach, the geometric approach, and
the singular perturbation approach. Chapter 2 by Krogh–Madsen and colleagues
presents the topological approach to phase response analysis. This is the earliest
developed method of phase response analysis. It simply assumes that biological
oscillations are stable limit cycles and considers the effects of perturbations of
a neuron’s spiking limit cycle within the surrounding phase space. Chapter 3 by
Remme and colleagues combines cable theory, used to describe the dynamics of
voltage spread in the dendritic processes of neurons, with weak coupling theory
to characterize the interactions of dendritic oscillations in different regions of
a neuron’s dendritic tree. This chapter takes a broader view of the integrative
properties of individual neurons by considering the contribution of dendrites to
neuronal computation which will be addressed further in later chapters. Finally,
in Chap. 4, Canavier and Achuthan introduce analyses of pulse-coupled networks
wherein the constituent neuronal oscillators interact at discrete times, perturbing
one another away from their respective limit cycles. This approach makes use of
maps to describe the evolution of individual neurons’ phases across network cycles
and to predict stable periodic firing modes. In some cases perturbations among
pulse-coupled networks can be significant, violating the weak-coupling assumptions
described in the first chapter. Thus, the conditions or systems that can be analyzed
with weak-coupling and pulse-coupling methods are relatively distinct.



Chapter 1
The Theory of Weakly Coupled Oscillators

Michael A. Schwemmer and Timothy J. Lewis

Abstract This chapter focuses on the application of phase response curves (PRCs)
in predicting the phase locking behavior in networks of periodically oscillating
neurons using the theory of weakly coupled oscillators. The theory of weakly
coupled oscillators can be used to predict phase-locking in neuronal networks with
any form of coupling. As the name suggests, the coupling between cells must be
sufficiently weak for these predictions to be quantitatively accurate. This implies
that the coupling can only have small effects on neuronal dynamics over any given
cycle. However, these small effects can accumulate over many cycles and lead to
phase locking in the neuronal network. The theory of weak coupling allows one to
reduce the dynamics of each neuron, which could be of very high dimension, to a
single differential equation describing the phase of the neuron.

The main goal of this chapter is to explain how a weakly coupled neuronal
network is reduced to its phase model description. Three different ways to derive the
phase equations are presented, each providing different insight into the underlying
dynamics of phase response properties and phase-locking dynamics. The technique
is illustrated for a weakly coupled pair of identical neurons. We then show how the
phase model for a pair of cells can be extended to include weak heterogeneity and
small amplitude noise. Lastly, we outline two mathematical techniques for analyzing
large networks of weakly coupled neurons.

1 Introduction

A phase response curve (PRC) (Winfree 1980) of an oscillating neuron measures
the phase shifts in response to stimuli delivered at different times in its cycle.
PRCs are often used to predict the phase-locking behavior in networks of neurons

M.A. Schwemmer • T.J. Lewis (�)
Department of Mathematics, One Shields Ave, University of California, Davis, CA 95616, USA
e-mail: mschwemm@math.princeton.edu; tjlewis@ucdavis.edu

N.W. Schultheiss et al. (eds.), Phase Response Curves in Neuroscience: Theory,
Experiment, and Analysis, Springer Series in Computational Neuroscience 6,
DOI 10.1007/978-1-4614-0739-3 1, © Springer Science+Business Media, LLC 2012
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4 M.A. Schwemmer and T.J. Lewis

and to understand the mechanisms that underlie this behavior. There are two main
techniques for doing this. Each of these techniques requires a different kind of PRC,
and each is valid in a different limiting case. One approach uses PRCs to reduce
neuronal dynamics to firing time maps, e.g., (Ermentrout and Kopell 1998; Guevara
et al. 1986; Goel and Ermentrout 2002; Mirollo and Strogatz 1990; Netoff et al.
2005b; Oprisan et al. 2004). The second approach uses PRCs to obtain a set of
differential equations for the phases of each neuron in the network.

For the derivation of the firing time maps, the stimuli used to generate the PRC
should be similar to the input that the neuron actually receives in the network, i.e.,
a facsimile of a synaptic current or conductance. The firing time map technique
can allow one to predict phase locking for moderately strong coupling, but it
has the limitation that the neuron must quickly return to its normal firing cycle
before subsequent input arrives. Typically, this implies that input to a neuron
must be sufficiently brief and that there is only a single input to a neuron each
cycle. The derivation and applications of these firing time maps are discussed in
Chap. 4.

This chapter focuses on the second technique, which is often referred to as the
theory of weakly coupled oscillators (Ermentrout and Kopell 1984; Kuramoto 1984;
Neu 1979). The theory of weakly coupled oscillators can be used to predict phase
locking in neuronal networks with any form of coupling, but as the name suggests,
the coupling between cells must be sufficiently “weak” for these predictions to be
quantitatively accurate. This implies that the coupling can only have small effects
on neuronal dynamics over any given period. However, these small effects can
accumulate over time and lead to phase locking in the neuronal network. The theory
of weak coupling allows one to reduce the dynamics of each neuron, which could
be of very high dimension, to a single differential equation describing the phase of
the neuron. These “phase equations” take the form of a convolution of the input
to the neuron via coupling and the neuron’s infinitesimal PRC (iPRC). The iPRC
measures the response to a small brief (ı-function-like) perturbation and acts like an
impulse response function or Green’s function for the oscillating neurons. Through
the dimension reduction and exploiting the form of the phase equations, the theory
of weakly coupled oscillators provides a way to identify phase-locked states and
understand the mechanisms that underlie them.

The main goal of this chapter is to explain how a weakly coupled neuronal
network is reduced to its phase model description. Three different ways to derive the
phase equations are presented, each providing different insight into the underlying
dynamics of phase response properties and phase-locking dynamics. The first
derivation (the “Seat-of-the-Pants” derivation in Sect. 3) is the most accessible.
It captures the essence of the theory of weak coupling and only requires the
reader to know some basic concepts from dynamical system theory and have a
good understanding of what it means for a system to behave linearly. The second
derivation (The Geometric Approach in Sect. 4) is a little more mathematically
sophisticated and provides deeper insight into the phase response dynamics of
neurons. To make this second derivation more accessible, we tie all concepts
back to the explanations in the first derivation. The third derivation (The Singular
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Perturbation Approach in Sect. 5) is the most mathematically abstract but it provides
the cleanest derivation of the phase equations. It also explicitly shows that the iPRC
can be computed as a solution of the “adjoint” equations.

During these three explanations of the theory of weak coupling, the phase model
is derived for a pair of coupled neurons to illustrate the reduction technique. The
later sections (Sects. 6 and 7) briefly discuss extensions of the phase model to
include heterogeneity, noise, and large networks of neurons.

For more mathematically detailed discussions of the theory of weakly coupled
oscillators, we direct the reader to (Ermentrout and Kopell 1984; Hoppensteadt and
Izhikevich 1997; Kuramoto 1984; Neu 1979).

2 Neuronal Models and Reduction to a Phase Model

2.1 General Form of Neuronal Network Models

The general form of a single or multicompartmental Hodgkin–Huxley-typeneuronal
model (Hodgkin and Huxley 1952) is

dX

dt
D F.X/; (1.1)

where X is a N -dimensional state variable vector containing the membrane
potential(s) and gating variables1, and F.X/ is a vector function describing the rate
of change of the variables in time. For the Hodgkin–Huxley (HH) model (Hodgkin
and Huxley 1952), X D ŒV;m; h; n�T and

F.X/ D

2
6666666664

1

C
.�gNam

3h.V �ENa/� gKn
4.V �EK/� gL.V �EL/C I /

m1.V / �m
�m.V /

h1.V / � h
�h.V /

n1.V /� n

�n.V /
;

3
7777777775

;

(1.2)

In this chapter, we assume that the isolated model neuron (1.1) exhibits stable
T -periodic firing (e.g., top trace of Fig. 1.2). In the language of dynamical systems,
we assume that the model has an asymptotically stable T -periodic limit cycle. These
oscillations could be either due to intrinsic conductances or induced by applied
current.

1The gating variables could be for ionic membrane conductances in the neuron, as well as those
describing the output of chemical synapses.
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A pair of coupled model neurons is described by

dX1
dt

D F.X1/C "I.X1;X2/ (1.3)

dX2
dt

D F.X2/C "I.X2;X1/; (1.4)

where I.X1;X2/ is a vector function describing the coupling between the two
neurons, and " scales the magnitude of the coupling term. Typically, in models
of neuronal networks, cells are only coupled through the voltage (V ) equa-
tion. For example, a pair of electrically coupled HH neurons would have the
coupling term

I.X1;X2/ D

2
66664

1

C
.gC .V2 � V1//

0

0

0

3
77775
: (1.5)

where gC is the coupling conductance of the electrical synapse (see Chap. 14).

2.2 Phase Models, the G -Function, and Phase Locking

The power of the theory of weakly coupled oscillators is that it reduces the dynamics
of each neuronal oscillator in a network to single phase equation that describes the
rate of change of its relative phase, �j . The phase model corresponding to the pair
of coupled neurons (1.3)–(1.4) is of the form

d�1
dt

D "H.�2 � �1/ (1.6)

d�2
dt

D "H.�.�2 � �1//: (1.7)

The following sections present three different ways of deriving the function H ,
which is often called the interaction function.

Subtracting the phase equation for cell 1 from that of cell 2, the dynamics can
be further reduced to a single equation that governs the evolution of the phase
difference between the cells, � D �2 � �1

d�

dt
D ".H.��/�H.�// D "G.�/: (1.8)
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Fig. 1.1 Example G function. The G function for two model Fast–Spiking (FS) interneurons
(Erisir et al. 1999) coupled with gap junctions on the distal ends of their passive dendrites is plotted.
The arrows show the direction of the trajectories for the system. This system has four steady state
solutions �S D 0; T (synchrony), �AP D T=2 (antiphase), and two other nonsynchronous states.
One can see that synchrony and antiphase are stable steady states for this system (filled in circles)
while the two other nonsynchronous solutions are unstable (open circles). Thus, depending on the
initial conditions, the two neurons will fire synchronously or in antiphase

In the case of a pair of coupled Hodgkin–Huxley neurons (as described above),
the number of equations in the system is reduced from the original 8 describing
the dynamics of the voltage and gating variables to a single equation. The reduction
method can also be readily applied to multicompartment model neurons, e.g., (Lewis
and Rinzel 2004; Zahid and Skinner 2009), which can render a significantly larger
dimension reduction. In fact, the method has been applied to real neurons as well,
e.g., (Mancilla et al. 2007).

Note that the function G.�/ or “G-function” can be used to easily determine
the phase-locking behavior of the coupled neurons. The zeros of the G-function,
��, are the steady state phase differences between the two cells. For example, if
G.0/ D 0, this implies that the synchronous solution is a steady state of the system.
To determine the stability of the steady state note that when G.�/ > 0, � will
increase and when G.�/ < 0, � will decrease. Therefore, if the derivative of G is
positive at a steady state (G0.��/ > 0), then the steady state is unstable. Similarly,
if the derivative ofG is negative at a steady state (G0.��/ < 0), then the steady state
is stable. Figure 1.1 shows an example G-function for two coupled identical cells.
Note that this system has 4 steady states corresponding to � D 0; T (synchrony),
� D T=2 (antiphase), and two other nonsynchronous states. It is also clearly seen
that � D 0; T and � D T=2 are stable steady states and the other nonsynchronous
states are unstable. Thus, the two cells in this system exhibit bistability, and they
will either synchronize their firing or fire in antiphase depending upon the initial
conditions.
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In Sects. 3, 4, and 5, we present three different ways of derive the interac-
tion function H and therefore the G-function. These derivations make several
approximations that require the coupling between neurons to be sufficiently weak.
“Sufficiently weak” implies that the neurons’ intrinsic dynamics dominate the
effects due to coupling at each point in the periodic cycle, i.e., during the
periodic oscillations, jF.Xj .t//j should be an order of magnitude greater than
j"I.X1.t/; X2.t//j. However, it is important to point out that, even though the phase
models quantitatively capture the dynamics of the full system for sufficiently small
", it is often the case that they can also capture the qualitative behavior for moderate
coupling strengths (Lewis and Rinzel 2003; Netoff et al. 2005a).

3 A “Seat-of-the-Pants” Approach

This section will describe perhaps the most intuitive way of deriving the phase
model for a pair of coupled neurons (Lewis and Rinzel 2003). The approach
highlights the key aspect of the theory of weakly coupled oscillators, which is that
neurons behave linearly in response to small perturbations and therefore obey the
principle of superposition.

3.1 Defining Phase

T -periodic firing of a model neuronal oscillator (1.1) corresponds to repeated
circulation around an asymptotically stable T -periodic limit cycle, i.e., a closed orbit
in state space X . We will denote this T -periodic limit cycle solution as XLC.t/. The
phase of a neuron is a measure of the time that has elapsed as the neuron’s moves
around its periodic orbit, starting from an arbitrary reference point in the cycle. We
define the phase of the periodically firing neuron j at time t to be

�j .t/ D .t C �j / mod T; (1.9)

where �j D 0 is set to be at the peak of the neurons’ spike (Fig. 1.2).2 The constant
�j , which is referred to as the relative phase of the j th neuron, is determined by
the position of the neuron on the limit cycle at time t D 0. Note that each phase
of the neuron corresponds to a unique position on the cell’s T -periodic limit cycle,
and any solution of the uncoupled neuron model that is on the limit cycle can be
expressed as

Xj .t/ D XLC.�j .t// D XLC.t C �j /: (1.10)

2Phase is often normalized by the period T or by T=2� , so that 0 � � < 1 or 0 � � < 2�

respectively. Here, we do not normalize phase and take 0 � � < T .
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Fig. 1.2 Phase. (a) Voltage trace for the Fast-Spiking interneuron model from Erisir et al. (1999)
with Iappl D 35 �A/cm2 showing T -periodic firing. (b) The phase �.t/ of these oscillations
increases linearly from 0 to T , and we have assumed that zero phase occurs at the peak of the
voltage spike

When a neuron is perturbed by coupling current from other neurons or by
any other external stimulus, its dynamics no longer exactly adhere to the limit
cycle, and the exact correspondence of time to phase (1.9) is no longer valid.
However, when perturbations are sufficiently weak, the neuron’s intrinsic dynamics
are dominant. This ensures that the perturbed system remains close to the limit
cycle and the interspike intervals are close to the intrinsic period T . Therefore, we
can approximate the solution of neuron j by Xj .t/ ' XLC.t C �j .t//, where the
relative phase �j is now a function of time t . Over each cycle of the oscillations,
the weak perturbations to the neurons produce only small changes in �j . These
changes are negligible over a single cycle, but they can slowly accumulate over
many cycles and produce substantial effects on the relative firing times of the
neurons.

The goal now is to understand how the relative phase �j .t/ of the coupled
neurons evolves slowly in time. To do this, we first consider the response of a neuron
to small abrupt current pulses.

3.2 The Infinitesimal Phase Response Curve

Suppose that a small brief square current pulse of amplitude "I0 and duration �t
is delivered to a neuron when it is at phase ��. This small, brief current pulse
causes the membrane potential to abruptly increase by ıV ' "I0�t=C , i.e., the
change in voltage will approximately equal the total charge delivered to the cell by
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Fig. 1.3 Measuring the Phase Response Curve from Neurons. The voltage trace and correspond-
ing PRC is shown for the same FS model neuron from Fig. 1.2. The PRC is measured from a
periodically firing neuron by delivering small current pulses at every point, ��, along its cycle and
measuring the subsequent change in period, �� , caused by the current pulse

the stimulus, "I0�t , divided by the capacitance of the neuron, C . In general, this
perturbation can cause the cell to fire sooner (phase advance) or later (phase delay)
than it would have fired without the perturbation. The magnitude and sign of this
phase shift depends on the amplitude and duration of the stimulus, as well as the
phase in the oscillation at which the stimulus was delivered, ��. This relationship is
quantified by the Phase Response Curve (PRC), which gives the phase shift �� as
a function of the phase �� for a fixed "I0�t (Fig. 1.3).

For sufficiently small and brief stimuli, the neuron will respond in a linear
fashion, and the PRC will scale linearly with the magnitude of the current stimulus

��.��/ ' ZV .�
�/ ıV D ZV .�

�/
�
1

C
"I0�t

�
; 0 � �� < T; (1.11)

where ZV .��/ describes the proportional phase shift as a function of the phase of
the stimulus. The functionZV .�/ is known as the infinitesimal phase response curve
(iPRC) or the phase-dependent sensitivity function for voltage perturbations. The
iPRC ZV .�/ quantifies the normalized phase shift due to an infinitesimally small
ı-function-like voltage perturbation delivered at any given phase on the limit cycle.

3.3 The Phase Model for a Pair of Weakly Coupled Cells

Now we can reconsider the pair of weakly coupled neuronal oscillators (1.3)–(1.4).
Recall that, because the coupling is weak, the neurons’ intrinsic dynamics dominate
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the dynamics of the coupled-cell system, and Xj .t/ ' XLC.�j .t// D XLC.t C
�j .t// for j D 1; 2. This assumes that the coupling current can only affect the
speed at which cells move around their limit cycle and does not affect the amplitude
of the oscillations. Thus, the effects of the coupling are entirely captured in the slow
time dynamics of the relative phases of the cells �j .t/.

The assumption of weak coupling also ensures that the perturbations to the
neurons are sufficiently small so that the neurons respond linearly to the coupling
current. That is, (i) the small phase shifts of the neurons due to the presence of the
coupling current for a brief time �t can be approximated using the iPRC (1.11),
and (ii) these small phase shifts in response to the coupling current sum linearly
(i.e., the principle of superposition holds). Therefore, by (1.11), the phase shift due
to the coupling current from t to t C�t is

��j .t/ D �j .t C�t/ � �j .t/

' ZV .�j .t// ."I.Xj .t/; Xk.t///�t:

D ZV .t C �j .t//
�
"I.XLC.t C �j .t//; XLC.t C �k.t///

�
�t: (1.12)

By dividing the above equation by �t and taking the limit as �t ! 0, we obtain
a system of differential equations that govern the evolution of the relative phases of
the two neurons

d�j
dt

D " ZV .tC�j / I.XLC.tC�j /; XLC.tC�k//; j; k D 1; 2I j ¤ k: (1.13)

Note that, by integrating this system of differential equations to find the solution
�j .t/, we are assuming that phase shifts in response to the coupling current sum
linearly.

The explicit time dependence on the right-hand side of (1.13) can be eliminated
by “averaging” over the period T . Note that ZV .t/ and XLC.t/ are T -periodic
functions, and the scaling of the right-hand side of (1.13) by the small parameter
" indicates that changes in the relative phases �j occur on a much slower timescale
than T . Therefore, we can integrate the right-hand side over the full period T
holding the values of �j constant to find the average rate of change of �j over a
cycle. Thus, we obtain equations that approximate the slow time evolution of the
relative phases �j ,

d�j
dt

D "
1

T

Z T

0

ZV .Qt/
�
I.XLC.Qt/; XLC.Qt C �k � �j //

�
dQt

D "H.�k � �j /; j; k D 1; 2I j ¤ k; (1.14)

i.e., the relative phases �j are assumed to be constant with respect to the integral
over T in Qt , but they vary in t . This averaging process is made rigorous by averaging
theory (see Ermentrout and Kopell 1991; Guckenheimer and Holmes 1983).
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We have reduced the dynamics of a pair of weakly coupled neuronal oscillators
to an autonomous system of two differential equations describing the phases of
the neurons and therefore finished the first derivation of the equations for a pair
of weakly coupled neurons.3 Note that the above derivation can be easily altered
to obtain the phase model of a neuronal oscillator subjected to T -periodic external
forcing as well. The crux of the derivation was identifying the iPRC and exploiting
the approximately linear behavior of the system in response to weak inputs. In fact,
it is useful to note that the interaction function H takes the form of a convolution
of the iPRC and the coupling current, i.e., the input to the neuron. Therefore, one
can think of the iPRC of an oscillator as acting like an impulse response function or
Green’s function.

3.3.1 Averaging Theory

Averaging theory (see Ermentrout and Kopell 1991; Guckenheimer and Holmes
1983) states that there is a change of variables that maps solutions of

d�

dQt D "g.�; Qt /; (1.15)

where g.�; Qt / is a T -periodic function in � and Qt , to solutions of

d'

dt
D " Ng.'/C O."2/; (1.16)

where

Ng.'/ D 1

T

Z T

0

g.'; Qt/dQt ; (1.17)

and O."2/ is Landau’s “Big O” notation, which represents terms that either have a
scaling factor of "2 or go to zero at the same rate as "2 goes to zero as " goes to zero.

4 A Geometric Approach

In this section, we describe a geometric approach to the theory of weakly coupled
oscillators originally introduced by Kuramoto (1984). The main asset of this
approach is that it gives a beautiful geometric interpretation of the iPRC and deepens
our understanding of the underlying mechanisms of the phase response properties
of neurons.

3Note that this reduction is not valid when T is of the same order of magnitude as the timescale
for the changes due to the weak coupling interactions (e.g., close to a SNIC bifurcation), however
an alternative dimension reduction can be performed in this case (Ermentrout 1996).
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4.1 The One-to-One Map Between Points on the Limit Cycle
and Phase

Consider again a model neuron (1.1) that has a stable T -periodic limit cycle solution
XLC.t/ such that the neuron exhibits a T -periodic firing pattern (e.g., top trace of
Fig. 1.2). Recall that the phase of the oscillator along its limit cycle is defined as
�.t/ D .t C �/ mod T , where the relative phase � is a constant that is determined
by the initial conditions. Note that there is a one-to-one correspondence between
phase and each point on the limit cycle. That is, the limit cycle solution takes phase
to a unique point on the cycle, X D XLC.�/, and its inverse maps each point on the
limit cycle to a unique phase, � D X�1

LC .X/ D ˆ.X/.
Note that it follows immediately from the definition of phase (1.9) that the rate of

change of phase in time along the limit cycle is equal to 1, i.e., d�
dt D 1. Therefore,

if we differentiate the mapˆ.X/ with respect to time using the chain rule for vector
functions, we obtain the following useful relationship

d�

dt
D rXˆ.XLC.t// � dXLC

dt
D rXˆ.XLC.t// � F.XLC.t/// D 1; (1.18)

where rXˆ is the gradient of the map ˆ.X/ with respect to the vector of the
neuron’s state variables X D .x1; x2; : : : ; xN /

rXˆ.X/ D
��

@ˆ

@x1
;
@ˆ

@x2
; :::;

@ˆ

@xN

�ˇ̌
ˇ̌
X

�T

: (1.19)

(We have defined the gradient as a column vector for notational reasons).

4.2 Asymptotic Phase and the Infinitesimal Phase
Response Curve

The map � D ˆ.X/ is well defined for all points X on the limit cycle. We can
extend the domain of ˆ.X/ to points off the limit cycle by defining asymptotic
phase. If X0 is a point on the limit cycle and Y0 is a point in a neighborhood
of the limit cycle4, then we say that Y0 has the same asymptotic phase as X0 if
jjX.t IX0/ � X.t IY0/jj ! 0 as t ! 1. This means that the solution starting at the
initial point Y0 off the limit cycle converges to the solution starting at the point X0
on the limit cycle as time goes to infinity. Therefore, ˆ.Y0/ D ˆ.X0/. The set of

4In fact, the point Y0 can be anywhere in the basin of attraction of the limit cycle.
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Fig. 1.4 Example Isochron Structure. (a) The limit cycle and isochron structure for the Morris–
Lecar neuron (Morris and Lecar 1981) is plotted along with the nullclines for the system. (b) Blow
up of a region on the left-hand side of the limit cycle showing how the same strength perturbation
in the voltage direction can cause different phase delays or phase advances. (c) Blow up of a region
on the right-hand side of the limit cycle showing also that the same size voltage perturbation can
cause phase advances of different sizes

all points off the limit cycle that have the same asymptotic phase as the point X0 on
the limit cycle is known as the isochron (Winfree 1980) for phase � D ˆ.X0/.
Figure 1.4 shows some isochrons around the limit cycle for the Morris–Lecar
neuron (Morris and Lecar 1981). It is important to note that the figure only plots
isochrons for a few phases and that every point on the limit cycle has a corresponding
isochron.

Equipped with the concept of asymptotic phase, we can now show that the iPRC
is in fact the gradient of the phase map rXˆ.XLC.t// by considering the following
phase resetting “experiment”. Suppose that, at time t , the neuron is on the limit
cycle in state X.t/ D XLC.�

�/ with corresponding phase �� D ˆ.X.t//. At this
time, it receives a small abrupt external perturbation "U , where " is the magnitude
of the perturbation and U is the unit vector in the direction of the perturbation in
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state space. Immediately after the perturbation, the neuron is in the stateXLC.�
�/C

"U , and its new asymptotic phase is Q� D ˆ.XLC.�
�/ C "U /. Using Taylor

series,

Q� D ˆ.XLC.�
�/C "U / D ˆ.XLC.�

�//C rXˆ.XLC.�
�// � ."U /CO."2/: (1.20)

Keeping only the linear term (i.e., O."/ term), the phase shift of the neuron as a
function of the phase �� at which it received the "U perturbation is given by

��.��/ D Q� � �� ' rXˆ.XLC.�
�// � ."U /: (1.21)

As was done in Sect. 3.2, we normalize the phase shift by the magnitude of the
stimulus,

��.��/
"

' rXˆ.XLC.�
�// � U D Z.��/ � U: (1.22)

Note that Z.�/ D rXˆ.XLC.�// is the iPRC. It quantifies the normalized phase
shift due to a small delta-function-like perturbation delivered at any given on the
limit cycle. As was the case for the iPRC ZV derived in the previous section
[see (1.11)], rXˆ.XLC.�// captures only the linear response of the neuron and is
quantitatively accurate only for sufficiently small perturbations. However, unlike
ZV , rXˆ.XLC.�// captures the response to perturbations in any direction in
state space and not only in one variable (e.g., the membrane potential). That is,
rXˆ.XLC.�// is the vector iPRC; its components are the iPRCs for every variable
in the system (see Fig. 1.5).

In the typical case of a single-compartment HH model neuron subject to an
applied current pulse (which perturbs only the membrane potential), the perturbation
would be of the form "U D .u; 0; 0; : : : ; 0/ where x1 is the membrane potential V .
By (1.20), the phase shift is

��.�/ D @ˆ

@V
.XLC.�// u D ZV .�/ u; (1.23)

which is the same as (1.11) derived in the previous section.
With the understanding that rXˆ.XLC.t// is the vector iPRC, we now derive the

phase model for two weakly coupled neurons.

4.3 A Pair of Weakly Coupled Oscillators

Now consider the system of weakly coupled neurons (1.3)–(1.4). We can use the
map ˆ to take the variables X1.t/ and X2.t/ to their corresponding asymptotic
phase, i.e., �j .t/ D ˆ.Xj .t// for j D 1; 2. By the chain rule, we obtain the change
in phase with respect to time
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Fig. 1.5 iPRCs for the Morris–Lecar Neuron. The voltage, V .t/ and channel, w.t /, components
of the limit cycle for the same Morris–Lecar neuron as in Fig. 1.4 are plotted along with their
corresponding iPRCs. Note that the shape of voltage iPRC can be inferred from the insets of
Fig. 1.4. For example, the isochronal structure in Fig. 1.4c reveals that perturbations in the voltage
component will cause phase advances when the voltage is �30 to 38 mV

d�j
dt

D rXˆ.Xj .t// � dXj
dt

D rXˆ.Xj .t// � �F.Xj .t//C "I.Xj .t/; Xk.t//
	

D rXˆ.Xj .t// � F.Xj .t//C rXˆ.Xj .t// � �"I.Xj .t/; Xk.t//
	

D 1C "rXˆ.Xj .t// � I.Xj .t/; Xk.t//; (1.24)

where we have used the “useful” relation (1.18). Note that the above equations are
exact. However, in order to solve the equations for �j .t/, we would already have
to know the full solutions X1.t/ and X2.t/, in which case you wouldn’t need to
reduce the system to a phase model. Therefore, we exploit that fact that " is small
and make the approximation Xj .t/ � XLC.�j .t// D XLC.t C �j .t//, i.e., the
coupling is assumed to be weak enough so that it does not affect the amplitude of
the limit cycle, but it can affect the rate at which the neuron moves around its limit
cycle. By making this approximation in (1.24) and making the change of variables
�j .t/ D t C �j .t/, we obtain the equations for the evolution of the relative phases
of the two neurons

d�j
dt

D "rXˆ.XLC.t C �j .t/// � I.XLC.t C �j .t//; XLC.t C �k.t///: (1.25)

Note that these equations are the vector versions of (1.13) with the iPRC written as
rXˆ.XLC.t//. As described in the previous section, we can average these equations
over the period T to eliminate the explicit time dependence and obtain the phase
model for the pair of coupled neurons


