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Preface

This book explores the control of systems on small length scales. Research and
development for micro- and nanoscale science and technology has grown quickly
over the last decade, particularly in the areas of microelectromechanical systems
(MEMS), microfluidics, nanoelectronics, bio-nanotechnologies, nanofabrication,
and nanomaterials. However, to date, control theory has played only a small role
in the advancement of this research. As we know from the technical progression of
macroscale intelligent systems, such as assembly robots and fly-by-wire aircraft,
control systems can maximize system performance and, in many cases, enable
capabilities that would otherwise not be possible. We expect that control systems
will play a similar enabling role in the development of the next generation of micro-
and nanoscale devices, as well as in the precision instrumentation that will be used
to fabricate and measure these devices. In support of this, each chapter of this
book provides an introduction to an application of micro- and nanotechnologies
in which control systems have already been shown to be critical to its success.
Through these examples, we aim to provide insight into the unique challenges in
controlling systems at small length scales and to highlight the benefits in merging
control systems and micro- and nanotechnologies.

We conceived of this book because we saw a strong need to bring the control
systems and micro- and nanosystems communities closer together. In our view, the
intersection between these two groups is still very small, impeding the advancement
of active, precise, and robust micro- and nanoscale systems that can meet the
demanding requirements for commercial, military, medical, and consumer products.
As an example, we attend conferences for both the control systems and micro-
and nanoscale science and technology communities and have found the overlap
between attendees to be marginal; maybe in the tens of people. Our hope is that
this book will be a step toward rectifying this situation by bridging the gap between
these two communities and demonstrating that concrete benefits for both fields
can be achieved through collaborative research. We also hope to motivate the next
generation of young engineers and scientists to pursue a career at this intersection,
which offers all of the excitement, frustration, and eventual big rewards that an
aspiring researcher could want.
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vi Preface

This book is targeted toward both control systems researchers interested in
pursuing new application in the micro- and nanoscales domains, and researchers
developing micro- and nanosystems who are interested in learning how control
systems can benefit their work. For the former, we hope these chapters will show
the serious effort required to demonstrate control in a new application area. All of
the contributing authors have acquired expertise in at least one new scientific area
in addition to control theory (e.g., atomic force microscopy, optics, microfluidics)
in order to pursue their area of research. Acquiring dual expertise can take years
of effort, but the payoff can be high by providing results that no expert in a single
domain can accomplish. Additionally, it can result in fascinating work (we hope
some of the challenges and excitement are conveyed). For researchers in micro-
and nanoscale science and technology, this book contains concrete examples of the
benefits that control can provide. These range from better control of particle size
distribution during synthesis, to high-bandwidth and reliable nanoscale positioning
and imaging of objects, to optimal control of the spin dynamics of quantum systems.
We also hope this book will be of use to those who are not yet experts in either
control systems or micro- and nanoscale systems but are interested in both. We
believe it will provide a useful and instructive introduction to the breadth of research
being performed at the intersection of these two fields.

The topics covered in this book were selected to represent the entire length scale
of miniaturized systems, ranging from hundreds of micrometers down to a fraction
of a nanometer (hence our title, Feedback Control of MEMS to Atoms). They were
also selected to cover a broad range of physical systems that will likely provide new
material to most readers.
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Chapter 1
Introduction

Jason J. Gorman and Benjamin Shapiro

The goal of this book is to illustrate how control tools can be successfully applied
to micro- and nano-scale systems. The book partially explores the wide variety of
applications where control can have a significant impact at the micro- and nanoscale,
and identifies key challenges and common approaches. This first chapter briefly
outlines the range of subjects within micro and nano control and introduces topics
that recur throughout the book.

1.1 Controlling Micro- and Nanoscale Systems

Microelectromechanical systems (MEMS) emerged, at the beginning of the 1980s,
as a cost effective and highly sensitive solution for many sensor applications,
including pressure, force, and acceleration measurements. Since then, MEMS has
grown into a $6 billion industry and a number of other microtechnologies have
followed, including microfluidics, microrobotics, and micromachining. Simulta-
neously, nanotechnology has become one of the largest areas of scientific and
engineering research, with over $12 billion invested over the last decade by the
U.S. Government alone. This research has resulted in a new set of materials and
devices that offer unique physical and chemical properties due to their nanoscale
dimensions, which are expected to yield better products and services.
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and Technology, Gaithersburg, MD 20899, USA
e-mail: gorman@nist.gov

B. Shapiro
Fischell Department of Bioengineering, Institute for Systems Research (ISR), University
of Maryland, College Park, MD 20742, USA
e-mail: benshap@umd.edu

J.J. Gorman and B. Shapiro (eds.), Feedback Control of MEMS to Atoms,
DOI 10.1007/978-1-4419-5832-7 1, © Springer Science+Business Media, LLC 2012

1



2 J.J. Gorman and B. Shapiro

Fig. 1.1 A sense of scale: the sizes of things from a single carbon atom to an integrated MEMS
gyro (Images used with permission. Copyrights Denis Kunkel Microscopy, Inc. and Springer)

Micro- and nanotechnology integrated systems refer to a combination of com-
ponents that provide enhanced functionality that would not be possible with each
component alone. Familiar examples of systems at the macroscale include robots,
aircraft, automobiles, and information networks, where each system is composed of
actuators, sensors, and computational logic that allow for complex and controlled
behavior. Micro- and nano-systems only differ from their macroscale counterparts
in that essential system behavior occurs at minute length scales. In some cases,
micro- and nanosystems are large in size but are dependent on micro- or nanoscale
phenomena (e.g., a scanning probe microscope), whereas in other cases the entire
system is miniaturized (e.g., a MEMS accelerometer). Other examples of micro-
and nanosystems include nanomechanical resonators, cell micromanipulators, and
nanofabrication tools. Clearly this is a diverse group of systems, but as will be seen
in this book, there are a variety of common threads for the integration and control
of such systems, as well as common principles to address these threads.

Feedback control is necessary at small length scales for the same reasons that it is
needed in macroscale applications: to correct for errors in system variables in real-
time to improve performance, to provide robust operation in the face of unknown
or uncertain conditions, and to enable new system capabilities. This book explores
emerging efforts to apply control systems to micro- and nanoscale systems in order
to realize these benefits and, as a result, accelerate the utility and adoption of these
technologies.

Going down in length scales, to micrometers and nanometers (Fig. 1.1), opens up
a wide set of technologies, opportunities, and challenges. Sensors and actuators at
small scales can directly access and manipulate microscopic and nanoscopic objects,
and are thus being used to study surfaces with atomic resolution and to process
individual cells. The associated system tasks are new (e.g., manipulate nanoscopic
objects), there are additional physical effects to be considered and understood
(e.g., molecule to molecule interactions and atomic spins), and previously small
phenomena can now dominate (e.g., surface effects, like surface tension, now sur-
pass bulk phenomena, like gravity or momentum). Thus system control techniques
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must be modified or newly developed, as must the modeling, sensing, actuation,
and real-time computation that supports them. As a result, the merging of control
systems with micro- and nanoscale systems represents a new field that we expect to
grow considerably over the coming decade. The intention of this book is to provide
an introductory survey.

1.2 Critical Application Areas

There is a lot of diversity in the micro and nanoscale systems where control is
playing a role. However, the majority of the applications fit within at least one of
the five following groups: micro- and nanomanufacturing, instruments for nanoscale
research, MEMS/NEMS, micro/nanofluidics, and quantum systems. This taxonomy
has influenced the structure of this book and provides a starting point for finding
the most important applications to pursue. Some of the applications and devices
where control can play an important role are listed below. Only a small percentage
of these applications have seen a concerted control implementation research effort.
Therefore, there remain considerable opportunities for control practitioners to make
important contributions to this field in the near and long term.

Micro- and Nanomanufacturing: Nanolithography including scanning probe
and nanoimprint techniques, micro- and nanoassembly, directed self-assembly,
nanoscale material deposition processes, nanoparticle growth, and formation of
composite nanomaterials.

Instruments for Nanoscale Research: Scanning probe microscopy including
atomic force microscopy, scanning tunneling microscopy, and near-field scanning
optical microscopy. Particle trapping includes optical and magnetic trapping, parti-
cle tracking and localization.

MEMS/NEMS: MEMS/NEMS (micro/nano-electro-mechanical-systems) includ-
ing inertial devices such as accelerometers and gyroscopes; micromirrors and other
optomechanical components; filters, switches, and resonators for radiofrequency
(RF) communications; probe-based data storage and hard drive read heads; bio-
chemical sensors for medical diagnostics and threat detection; and micro- and
nanorobots.

Micro/Nanofluidics: Micro/Nanofluidics include lab-on-a-chip technologies, in-
expensive medical diagnostics, embedded drug delivery systems, and inkjet valves
for high-volume printing.

Quantum Systems: Quantum systems include quantum computing, quantum com-
munication and encryption, nuclear magnetic resonance imaging, and atom trapping
and cooling.
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1.3 Overview of the Chapters

The contributors to this book were chosen because they are leaders in their
respective research areas and have either been able to demonstrate significant
experimental results, or are well on their way towards experiments. It can take a
long time to get from an initial control concept to an experimental demonstration:
all the chosen contributors have been working on control of small systems for at
least 5 to 10 years. Given that the field of micro/nanoscale systems is itself still
fairly new (30+ years in the case of MEMS) and that there was a delay between
the inception of the field and the subsequent entry of control researchers, in this
sense, these contributors are at the leading edge. Of course, we could not include
every major researcher at the intersection of controls and micro- and nanosystems,
but we believe that we have chosen a representative sampling across a diverse set of
applications that demonstrate how control is beginning to be applied on small length
scales. We expect that there will be many more researchers in the future with many
more exciting, and needed, applications and results.

The chapters have been organized along the lines of the application areas listed in
the previous section: micro/nanomanufacturing, instruments for nanoscale research,
MEMS, microfluidics, and quantum systems. Chapters 2 to 4 explore controlled
manufacturing. Control of nanoparticle size during synthesis is presented in Chap. 2,
and Chap. 3 discusses the estimation of nanoscale surface properties during manu-
facturing using optical measurements and Kalman filtering techniques. Automated
assembly of two-dimensional structures composed of micro- and nanoparticles is
presented in Chap. 4. The control of instruments for nanoscale research is discussed
in Chaps. 5 and 6. Improving the imaging performance of atomic force microscopes
using robust control is covered in Chap. 5 and the control of optically trapped
particles is discussed in Chap. 6. The control of MEMS and microfluidic systems is
the subject of Chaps. 7 through 9. Position control of MEMS actuators is presented
in Chap. 7, closed-loop operation of precision MEMS gyroscopes is covered in
Chap. 8, and the control of particle motion within a microfluidic system is presented
in Chap. 9. Finally, quantum control is presented in Chap. 10 with an emphasis on
controlling spin dynamics in quantum mechanical systems. In the final chapter,
a review of some of the common challenges encountered throughout the book
is presented along with prospects for future research in controlling micro- and
nanoscale systems.

1.4 Notes for the Reader

This book was written for scientists and engineers in the fields of both micro/
nanotechnologies and control systems with the intention of bridging the gap
between the two. For the former group, it shows how control is being applied



1 Introduction 5

to miniaturized systems and highlights the benefits of feedback control for these
systems. There is also an emphasis on the importance of interdisciplinary collab-
oration, physical modeling, control design mathematics, and experimentation in
realizing these benefits. For the latter group, it provides an introduction to how con-
trol is currently being applied, extended, and developed for miniaturized systems.
It also documents the need to fully understand the capabilities, requirements, and
bottlenecks in new application areas before approaching the control design problem.
It is our intention that this book provide an impetus for each group to better learn the
technical language of the other – a requirement for successful collaboration between
the two. But above all, our greatest hope is that it will spark new ideas and insights to
enable better interactions between these two fields and result in significant advances
in micro- and nanoscale systems.

Due to the multidisciplinary nature of this book, some background reading may
be helpful. Readers who are not familiar with control theory can find an introduction
written for a broad audience in [1] and practical ‘fast-track’ advice for implementing
linear feedback controllers in [2]. More rigorous treatments of control theory are
found in [3], a concise book that crucially describes not only what control can
achieve for any given system but also what it cannot. Control theory is usually
introduced in a linear system setting, where strong and comprehensive results
are available, but there are also more advanced books that deal with control for
nonlinear systems [4]. Nonlinear methods require a higher level of mathematical
sophistication, but are needed in many real-world situations where nonlinearities
cannot be neglected, as seen in several chapters in this book.

Readers not familiar with micro- and nanoscale systems can find an excellent
introduction to microelectromechanical systems (MEMS) in [5–7]. The first of these
reference includes, as its first chapter, the classic 1959 Feynman lecture ‘There is
Plenty of Room at the Bottom’ [8]. There are also a number of books that introduce
nanoscale science (e.g., [9, 10]) and nanotechnology [11, 12]. Texts relevant to
the physics of micro- and nanoscale systems span the spectrum from optics and
electronics to mechanics, fluid dynamics, and chemistry and biology. When faced
with diving into a new field of physics and learning the basics, the Feynman lectures
[13] are a fantastic resource. Each lecture provides a brilliant, concise, and accurate
introduction to an entire field.

Finally, for both the controls and micro/nanoreaders, four fairly recent reports
provide context for how control methods apply to novel systems in the areas
of atomic force microscopy and nanorobotic manipulation [14]: MEMS, biolog-
ical, chemical, and nanoscale systems [15, 16]; and networks of large and small
systems, including aerospace, transportation, information technology, robotics,
biology, medicine, and materials [17]. Many of the recommendations made in these
reports are mirrored in the research and approaches described in this book.
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Chapter 2
Feedback Control of Particle Size Distribution
in Nanoparticle Synthesis and Processing

Mingheng Li and Panagiotis D. Christofides

2.1 Introduction

Particulate processes (also known as dispersed-phase processes) are characterized
by the co-presence of and strong interaction between a continuous (gas or liquid)
phase and a particulate (dispersed) phase and are essential in making many high-
value industrial products. Particulate processes play a prominent role in a number
of process industries since about 60% of the products in the chemical industry are
manufactured as particulates with an additional 20% using powders as ingredients.
Representative examples of particulate processes for micro- and nano-particle
synthesis and processing include the crystallization of proteins for pharmaceutical
applications [2], the emulsion polymerization of nano-sized latex particles [50], the
aerosol synthesis of nanocrystalline catalysts [64], and thermal spray processing
of nanostructured functional thermal barrier coatings to protect turbine blades [1].
The industrial importance of particulate processes and the realization that the
physicochemical and mechanical properties of materials made with particulates
depend heavily on the characteristics of the underlying particle-size distribution
(PSD) have motivated significant research attention over the last ten years on model-
based control of particulate processes. These efforts have also been complemented
by recent and ongoing developments in measurement technology which allow the
accurate and fast online measurement of key process variables including important
characteristics of PSDs (e.g., [37,55,56]). The recent efforts on model-based control
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J.J. Gorman and B. Shapiro (eds.), Feedback Control of MEMS to Atoms,
DOI 10.1007/978-1-4419-5832-7 2, © Springer Science+Business Media, LLC 2012

7



8 M. Li and P.D. Christofides

Fig. 2.1 Schematic of
a continuous crystallizer

Crystals

Solute

Product

of particulate processes have also been motivated by significant advances in the
physical modeling of highly coupled reaction-transport phenomena in particulate
processes that cannot be easily captured through empirical modeling. Specifically,
population balances have provided a natural framework for the mathematical
modeling of PSDs in broad classes of particulate processes (see, for example, the
tutorial article [30] and the review article [54]), and have been successfully used
to describe PSDs in emulsion polymerization reactors (e.g., [13, 15]), crystallizers
(e.g., [4,55]), aerosol reactors (e.g., [23]), and cell cultures (e.g., [12]). To illustrate
the structure of the mathematical models that arise in the modeling and control
of particulate processes, we focus on three representative examples: continuous
crystallization, batch crystallization, and aerosol synthesis.

2.1.1 Continuous Crystallization

Crystallization is a particulate process, which is widely used in industry for the
production of many micro- or nano-sized products including fertilizers, proteins,
and pesticides. A typical continuous crystallization process is shown in Fig. 2.1.
Under the assumptions of isothermal operation, constant volume, well-mixed
suspension, nucleation of crystals of infinitesimal size and mixed product removal, a
dynamic model for the crystallizer can be derived from a population balance for the
particle phase and a mass balance for the solute concentration and has the following
mathematical form [32, 39]:

∂n(r, t)
∂ t

= −∂ (R(t)n(r, t))
∂ r

− n(r, t)
τ

+ δ (r− 0)Q(t),

dc(t)
dt

=
(c0 −ρ)

ε(t)τ
+

(ρ − c(t))
τ

+
(ρ − c(t))

ε(t)
dε(t)

dt
, (2.1)
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where n(r, t)dr is the number of crystals in the size range of [r,r+ dr] at time t per
unit volume of suspension, τ is the residence time, ρ is the density of the crystal,
c(t) is the solute concentration in the crystallizer, c0 is the solute concentration in
the feed, and

ε(t) = 1−
∫ ∞

0
n(r, t)

4
3

πr3dr

is the volume of liquid per unit volume of suspension. R(t) is the crystal growth
rate, δ (r− 0) is the standard Dirac function, and Q(t) is the crystal nucleation rate.
The term δ (r−0)Q(t) accounts for the production of crystals of infinitesimal (zero)
size via nucleation. An example of expressions of R(t) and Q(t) is the following:

R(t) = k1(c(t)− cs), Q(t) = ε(t)k2e
− k3

(c(t)/cs−1)2 , (2.2)

where k1, k2, and k3 are constants and cs is the concentration of solute at saturation.
For a variety of operating conditions (see [6] for model parameters and detailed
studies), the continuous crystallizer model of (2.1) exhibits highly oscillatory
behavior (the main reason for this behavior is that the nucleation rate is much
more sensitive to supersaturation relative to the growth rate – i.e., compare the
dependence of R(t) and Q(t) on the values of c(t) and cs), which suggests the use
of feedback control to ensure stable operation and attain a crystal size distribution
(CSD) with desired characteristics. To achieve this control objective, the inlet solute
concentration can be used as the manipulated input and the crystal concentration as
the controlled and measured output.

2.1.2 Batch Protein Crystallization

Batch crystallization plays an important role in the pharmaceutical industry. We
consider a batch crystallizer, which is used to produce tetragonal HEW (hen-
egg-white) lysozyme crystals from a supersaturated solution [62]. A schematic of
the batch crystallizer is shown in Fig. 2.2. Applying population, mass and energy
balances to the process, the following mathematical model is obtained:

∂n(r, t)
∂ t

+G(t)
∂n(r, t)

∂ r
= 0, n(0, t) =

B(t)
G(t)

,

dC(t)
dt

=−24ρkvG(t)μ2(t),

dT (t)
dt

=− UA
MCp

(T (t)−Tj(t)), (2.3)
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Fig. 2.2 Schematic
of a batch cooling crystallizer

Solute (at t < 0)

Crystals

Water inWater out

where n(r, t) is the CSD, B(t) is the nucleation rate, G(t) is the growth rate, C(t)
is the solute concentration, T (t) is the crystallizer temperature, Tj(t) is the jacket
temperature, ρ is the density of crystals, kv is the volumetric shape factor, U is
the overall heat-transfer coefficient, A is the total heat-transfer surface area, M is
the mass of solvent in the crystallizer, Cp is the heat capacity of the solution, and

μ2(t) =
∫ ∞

0
r2n(r, t)dr is the second moment of the CSD. The nucleation rate, B(t),

and the growth rate, G(t), are given by [62]:

B(t) = kaC(t)exp

(
− kb

σ2(t)

)
, G(t) = kgσg(t), (2.4)

where σ(t), the supersaturation, is a dimensionless variable and is defined as σ(t) =
ln(C(t)/Cs(T (t))), C(t) is the solute concentration, g is the exponent relating growth
rate to the supersaturation, and Cs(T ) is the saturation concentration of the solute,
which is a nonlinear function of the temperature of the form:

Cs(T ) = 1.0036× 10−3T 3 + 1.4059× 10−2T 2 − 0.12835T + 3.4613. (2.5)

The existing experimental results [68] show that the growth condition of tetragonal
HEW lysozyme crystal is significantly affected by the supersaturation. Low super-
saturation will lead to the cessation of the crystal growth. On the other hand, rather
than forming tetragonal crystals, large amount of needle crystals will form when the
supersaturation is too high. Therefore, a proper range of supersaturation is necessary
to guarantee the product’s quality. The jacket temperature, Tj, is manipulated to
achieve the desired crystal shape and size distribution.
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2.1.3 Aerosol Synthesis

Aerosol processes are increasingly being used for the large-scale production of
nano- and micron-sized particles. A typical aerosol flow reactor for the synthesis
of titania aerosol with simultaneous chemical reaction, nucleation, condensation,
coagulation, and convective transport is shown in Fig. 2.3. A general mathematical
model, which describes the spatiotemporal evolution of the particle size distribution
in such aerosol processes can be obtained from a population balance and consists of
the following nonlinear partial integro-differential equation [33, 34]:

∂n(v,z, t)
∂ t

+ vz
∂n(v,z, t)

∂ z
+

∂ (G(x̄,v,z)n(v,z, t))
∂v

− I(v∗)δ (v− v∗)

=
1
2

∫ v

0
β (v− v̄, v̄, x̄)n(v− v̄, t)n(v̄,z, t)dv̄− n(v,z, t)

∫ ∞

0
β (v, v̄, x̄)n(v̄,z, t)dv̄, (2.6)

where n(v,z, t) denotes the particle size distribution function, v is the particle
volume, t is the time, z ∈ [0,L] is the spatial coordinate, L is the length scale
of the process, v∗ is the size of the nucleated aerosol particles, vz is the velocity
of the fluid, x̄ is the vector of the state variables of the continuous phase,
G(·, ·, ·), I(·),β (·, ·, ·) are nonlinear scalar functions which represent the growth,
nucleation, and coagulation rates and δ (·) is the standard Dirac function. The model
of (2.6) is coupled with a mathematical model, which describes the spatiotemporal
evolution of the concentrations of species and temperature of the gas phase (x̄) that
can be obtained from mass and energy balances. The control problem is to regulate
process variables such as inlet flow rates and wall temperature to produce aerosol
products with desired size distribution characteristics.

The mathematical models of (2.1), (2.3) and (2.6) demonstrate that particulate
process models are nonlinear and distributed parameter in nature. These properties
have motivated extensive research on the development of efficient numerical
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methods for the accurate computation of their solution (see, for example, [12, 23,
25, 38, 48, 54, 63]). However, in spite of the rich literature on population balance
modeling, numerical solution, and dynamical analysis of particulate processes, up
to about ten years ago, research on model-based control of particulate processes
had been very limited. Specifically, early research efforts had mainly focused on
the understanding of fundamental control-theoretic properties (controllability and
observability) of population balance models [58] and the application of conventional
control schemes (such as proportional-integral and proportional-integral-derivative
control, self-tuning control) to crystallizers and emulsion polymerization processes
(see, for example, [13, 57, 59] and the references therein). The main difficulty in
synthesizing nonlinear model-based feedback controllers for particulate processes
is the distributed parameter nature of the population balance models, which does
not allow their direct use for the synthesis of low-order (and therefore, practically
implementable) model-based feedback controllers. Furthermore, a direct application
of the aforementioned solution methods to particulate process models leads to
finite dimensional approximations of the population balance models (i.e., nonlinear
ordinary differential equation (ODE) systems in time) which are of very high order,
and thus inappropriate for the synthesis of model-based feedback controllers that
can be implemented in realtime. This limitation had been the bottleneck for model-
based synthesis and real-time implementation of model-based feedback controllers
on particulate processes.

2.2 Model-Based Control of Particulate Processes

2.2.1 Overview

Motivated by the lack of population balance-based control methods for particulate
processes and the need to achieve tight size distribution control in many particulate
processes, we developed, over the last ten years, a general framework for the
synthesis of nonlinear, robust, and predictive controllers for particulate processes
based on population balance models [6–9, 16, 33, 35, 60, 62]. Specifically, within
the developed framework, nonlinear low-order approximations of the particulate
process models are initially derived using order reduction techniques and are used
for controller synthesis. Subsequently, the infinite-dimensional closed-loop system
stability, performance and robustness properties were precisely characterized in
terms of the accuracy of the approximation of the low-order models. Furthermore,
controller designs were proposed that deal directly with the key practical issues
of uncertainty in model parameters, unmodeled actuator/sensor dynamics and
constraints in the capacity of control actuators and the magnitude of the process
state variables. It is also important to note that owing to the low-dimensional
structure of the controllers, the computation of the control action involves the
solution of a small set of ODEs, and thus, the developed controllers can be readily
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Fig. 2.4 Summary of our research on model-based control of particulate processes

implemented in realtime with reasonable computing power, thereby resolving the
main issue on model-based control of particulate processes. In addition to theoretical
developments, we also successfully demonstrated the application of the proposed
methods to size distribution control in continuous and batch crystallization, aerosol,
and thermal spray processes and documented their effectiveness and advantages
with respect to conventional control methods. Figure 2.4 summarizes these efforts.
The reader may refer to [4, 12, 15] for recent reviews of results on simulation and
control of particulate processes.

2.2.2 Particulate Process Model

To present the main elements of our approach to model-based control of particulate
processes, we focus on a general class of spatially homogeneous particulate pro-
cesses with simultaneous particle growth, nucleation, agglomeration, and breakage.
Examples of such processes have been introduced in the previous section. Assuming
that particle size is the only internal particle coordinate and applying a dynamic
material balance on the number of particles of size r to r+dr (population balance),
we obtain the following general nonlinear partial integro-differential equation,
which describes the rate of change of the PSD, n(r, t):

∂n
∂ t

= −∂ (G(x,r)n)
∂ r

+w(n,x,r), (2.7)

where n(r, t) is the particle number size distribution, r ∈ [0,rmax] is the particle size,
and rmax is the maximum particle size (which may be infinity), t is the time and
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x ∈ IRn is the vector of state variables, which describe properties of the continuous
phase (for example, solute concentration, temperature, and pH in a crystallizer);
see (2.8) for the system that describes the dynamics of x. G(x,r) and w(n,x,r) are
nonlinear scalar functions whose physical meaning can be explained as follows:
G(x,r) accounts for particle growth through condensation and is usually referred
to as growth rate. It usually depends on the concentrations of the various species
present in the continuous phase, the temperature of the process, and the particle size.
On the other hand, w(n,x,r) represents the net rate of introduction of new particles
into the system. It includes all the means by which particles appear or disappear
within the system including particle agglomeration (merging of two particles into
one), breakage (division of one particle to two) as well as nucleation of particles of
size r ≥ 0 and particle feed and removal. The rate of change of the continuous-phase
variables x can be derived by a direct application of mass and energy balances to the
continuous phase and is given by a nonlinear integro-differential equation system of
the general form:

ẋ = f (x)+ g(x)u(t)+A
∫ rmax

0
a(n,r,x)dr, (2.8)

where f (x) and a(n,r,x) are nonlinear vector functions, g(x) is a nonlinear matrix
function, A is a constant matrix and u(t) = [u1 u2 · · · um] ∈ IRm is the vector of

manipulated inputs. The term A
∫ rmax

0
a(n,r,x)dr accounts for mass and heat transfer

from the continuous phase to all the particles in the population (see [8] for details).

2.2.3 Model Reduction of Particulate Process Models

While the population balance models are infinite dimensional systems, the dominant
dynamic behavior of many particulate process models has been shown to be low
dimensional. Manifestations of this fundamental property include the occurrence
of oscillatory behavior in continuous crystallizers [32] and the ability to capture the
long-term behavior of aerosol systems with self-similar solutions [23]. Motivated by
this, we introduced a general methodology for deriving low-order ODE systems that
accurately reproduce the dominant dynamics of the nonlinear integro-differential
equation system of (2.7) and (2.8) [6]. The proposed model reduction methodology
exploits the low-dimensional behavior of the dominant dynamics of the system of
(2.7) and (2.8) and is based on a combination of the method of weighted residuals
with the concept of approximate inertial manifolds.

Specifically, the proposed approach initially employs the method of weighted
residuals (see [54] for a comprehensive review of results on the use of this
method for solving population balance equations) to construct a nonlinear, possibly
high-order, ODE system that accurately reproduces the solutions and dynamics of
the distributed parameter system of (2.7) and (2.8). We first consider an orthogonal
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set of basis functions φk(r), where r ∈ [0,rmax), k = 1, . . . ,∞, and expand the particle
size distribution function n(r, t) in an infinite series in terms of φk(r) as follows:

n(r, t) =
∞

∑
k=1

ak(t)φk(r), (2.9)

where ak(t) are time-varying coefficients. In order to approximate the system of
(2.7) and (2.8) with a finite set of ODEs, we obtain a set of N equations by
substituting (2.9) into (2.7) and (2.8), multiplying the population balance with N
different weighting functions ψν(r) (that is, ν = 1, . . . ,N), and integrating over the
entire particle size spectrum. In order to obtain a finite dimensional model, the series
expansion of n(r, t) is truncated up to order N. The infinite dimensional system of
(2.7) reduces to the following finite set of ODEs:

∫ rmax

0
ψν (r)

N

∑
k=1

φk(r)
∂akN(t)

∂ t
dr =

N

∑
k=1

akN(t)
∫ rmax

0
ψν (r)

∂ (G(xN ,r)φk(r))
∂ r

dr,

+

∫ rmax

0
ψν(r)w

( N

∑
k=1

akN(t)φk(r),xN ,r

)
dr, ν = 1, . . . ,N

ẋN = f (xN)+ g(xN)u(t)+A
∫ rmax

0
a

( N

∑
k=1

akN(t)φk(r),r,xN

)
dr, (2.10)

where xN and akN are the approximations of x and ak obtained by an N-th order
truncation. From (2.10), it is clear that the form of the ODEs that describe the rate
of change of akN(t) depends on the choice of the basis and weighting functions,
as well as on N. The system of (2.10) was obtained from a direct application of
the method of weighted residuals (with arbitrary basis functions) to the system
of (2.7) and (2.8), and thus, may be of very high order in order to provide an
accurate description of the dominant dynamics of the particulate process model.
High-dimensionality of the system of (2.10) leads to complex controller design
and high-order controllers, which cannot be readily implemented in practice.
To circumvent these problems, we exploited the low-dimensional behavior of the
dominant dynamics of particulate processes and proposed an approach based on
the concept of inertial manifolds to derive low-order ODE systems that accurately
describe the dominant dynamics of the system of (2.10) [6]. This order reduction
technique initially employs singular perturbation techniques to construct nonlinear
approximations of the modes neglected in the derivation of the finite dimensional
model of (2.10) (i.e., modes of order N+1 and higher) in terms of the first N modes.
Subsequently, these steady-state expressions for the modes of order N+1 and higher
(truncated up to appropriate order) are used in the model of (2.10) (instead of setting
them to zero) and significantly improve the accuracy of the model of (2.10) without
increasing its dimension; details on this procedure can be found in [6].

It is important to note that the method of weighted residuals reduces to the
method of moments when the basis functions are chosen to be Laguerre polynomials
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and the weighting functions are chosen as ψν = rν . The moments of the particle size
distribution are defined as:

μν =

∫ ∞

0
rνn(r, t)dr, ν = 0, . . . ,∞ (2.11)

and the moment equations can be directly generated from the population balance
model by multiplying it by rν , ν = 0, . . . ,∞ and integrating from 0 to ∞. The
procedure of forming moments of the population balance equation very often leads
to terms that may not reduce to moments, terms that include fractional moments, or
to an unclosed set of moment equations. To overcome this problem, the particle size
distribution may be expanded in terms of Laguerre polynomials defined in L2[0,∞)
and the series solution using a finite number of terms may be used to close the
set of moment equations (this procedure has been successfully used for models of
crystallizers with fine traps used to remove small crystals [7]).

2.2.4 Model-Based Control Using Low-Order Models

2.2.4.1 Nonlinear Control

Low-order models can be constructed using the techniques described in the previous
section. We describe an application to the continuous crystallization process of
Sect. 2.1.1. First, the method of moments is used to derive the following infinite-
order dimensionless system from (2.1) for the continuous crystallization process:

dx̃0

dt
= −x̃0 +(1− x̃3)Dae−F/ỹ2

,

dx̃1

dt
= −x̃1 + ỹx̃0,

dx̃2

dt
= −x̃2 + ỹx̃1,

dx̃3

dt
= −x̃3 + ỹx̃2,

dx̃ν
dt

= −x̃ν + ỹx̃ν−1, ν = 4,5,6 . . . ,

dỹ
dt

=
1− ỹ− (α − ỹ)ỹx̃2

1− x̃3
, (2.12)

where x̃i and ỹ are the dimensionless i-th moment and solute concentration,
respectively, and Da and F are dimensionless parameters [6]. On the basis of the
system of (2.12), it is clear that the moments of order four and higher do not affect



2 Feedback Control of Particle Size Distribution... 17

those of order three and lower, and moreover, the state of the infinite dimensional
system:

dx̃ν
dt

= −x̃ν + ỹx̃ν−1, ν = 4, . . . , (2.13)

is bounded when x3 and y are bounded, and it converges to a globally exponentially
stable equilibrium point when lim

t→∞
x3 = c1 and lim

t→∞
ỹ = c2, where c1 and c2 are

constants. This implies that the dominant dynamics (that is, dynamics associated
with eigenvalues that are close to the imaginary axis) of the process of (2.1) can be
adequately captured by the following fifth-order moment model:

dx̃0

dt
= −x̃0 +(1− x̃3)Dae−F/ỹ2

,

dx̃1

dt
= −x̃1 + ỹx̃0,

dx̃2

dt
= −x̃2 + ỹx̃1,

dx̃3

dt
= −x̃3 + ỹx̃2,

dỹ
dt

=
1− ỹ− (α − ỹ)ỹx̃2

1− x̃3
. (2.14)

The ability of the above fifth-order moment model to reproduce the dynamics,
and to some extent the solutions, of the distributed parameter model of (2.1) is
shown in Fig. 2.5, where the profiles of the total particle concentration generated by
the two models are compared (both models start from the same initial conditions).
Even though the discrepancy of the total particle concentration profiles predicted by
the two models increases with time (this is expected due to the open-loop instability
of the process), it is clear that the fifth-order moment model of (2.14) provides
a very good approximation of the distributed parameter model of (2.1), thereby
establishing that the dominant dynamics of the system of (2.1) are low dimensional
and motivating the use of the moment model for nonlinear controller design.

For the batch crystallization process, the following low-order model can be
derived from (2.3) using the method of moments:

dμ0

dt
=

(
1− 4

3
πμ3

)
k2e

− k3
(c/cs−1)2 e−

Eb
RT ,

dμ1

dt
= k1(c− cs)e−

Eg
RT μ0,

dμ2

dt
= 2k1(c− cs)e

− Eg
RT μ1,
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Fig. 2.5 Comparison of open-loop profiles of (a) crystal concentration, (b) total crystal size, and
(c) solute concentration obtained from the distributed parameter model and the moment model
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dμ3

dt
= 3k1(c− cs)e−

Eg
RT μ2,

dc
dt

=
−4π(c− cs)μ2(ρ − c)(

1− 4
3 πμ3

) ,

dT
dt

= −ρcΔHc

ρCp
4πk1(c− cs)e−

Eg
RT μ2 − UAc

ρCpV
(T −Tc), (2.15)

where Eg and Eb denote the activation energies for growth and nucleation,
respectively. The objective is to control the interplay between the particle nucleation
and growth rates such that a CSD with a larger average particle size is obtained at
the end of the batch run by manipulating the cooling water temperature.

Based on the low-order models, nonlinear finite-dimensional state and output
feedback controllers have been synthesized that guarantee stability and enforce
output tracking in the closed-loop finite dimensional system. It has also been
established that these controllers exponentially stabilize the closed-loop particulate
process model. The output feedback controller is constructed through a standard
combination of the state feedback controller with a state observer. Specifically, in
the case of the continuous crystallization example, the nonlinear output feedback
controller has the following form:

dω0

dt
= −ω0 +(1−ω3)Dae−F/ω2

4 +L0(h̃(x̃)− h̃(ω)),

dω1

dt
= −ω1 +ω4ω0 +L1(h̃(x̃)− h̃(ω)),

dω2

dt
= −ω2 +ω4ω1 +L2(h̃(x̃)− h̃(ω)),

dω3

dt
= −ω3 +ω4ω2 +L3(h̃(x̃)− h̃(ω)),

dω4

dt
=

1−ω4− (α −ω4)ω4ω2

1−ω3
+L4(h̃(x̃)− h̃(ω))

+
[β2Lg̃L f̃ h̃(ω)]−1

{
v−β0h̃(ω)−β1L f̃ h̃(ω)−β2L2

f̃
h̃(ω)

}

1−ω3
,

ū(t) = [β2Lg̃L f̃ h̃(ω)]−1
{

v−β0h̃(ω)−β1L f̃ h̃(ω)−β2L2
f̃ h̃(ω)

}
, (2.16)

where v is the set-point, β0, β1, β2 and L = [L0 L1 L2 L3 L4]
T are controller

parameters and h̃(ω) = ω0 or h̃(ω) = ω1.
The nonlinear controller of (2.16) was also combined with a PI controller (that

is, the term v−β0h̃(ω) was substituted by v−β0h̃(x̃)+
1
τ ′i

ξ , where ξ̇ = v− h̃(x̃),

ξ (0)= 0 and τ ′i is the integral time constant) to ensure offsetless tracking in the pres-
ence of constant uncertainty in process parameters. The practical implementation of
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the nonlinear controller of (2.16) requires online measurements of the controlled
outputs x̃0 or x̃1; in practice, such measurements can be obtained by using, for
example, light scattering [3, 55]. In (2.16), the feedback controller is synthesized
via geometric control methods and the state observer is an extended Luenberger-
type observer [6].

Several simulations have been performed in the context of the continuous crys-
tallizer process model presented before to evaluate the performance and robustness
properties of the nonlinear controllers designed based on the reduced order models,
and to compare them with the ones of a PI controller. In all the simulation runs, the
initial condition:

n(r,0) = 0.0, c(0) = 990.0 kg/m3

was used for the process model of (2.1) and (2.2) and the finite difference method
with 1,000 discretization points was used for its simulation. The crystal concentra-
tion, x̃0, was considered to be the controlled output and the inlet solute concentration
was chosen to be the manipulated input. Initially, the set-point tracking capability of
the nonlinear controller was evaluated under nominal conditions for a 0.5 increase
in the value of the set-point.

Figure 2.6 shows the closed-loop output (left plot) and manipulated input (right
plot) profiles obtained by using the nonlinear controller (solid lines). For the sake of
comparison, the corresponding profiles under proportional-integral (PI) control are
also included (dashed lines); the PI controller was tuned so that the closed-loop
output response exhibits the same level of overshoot to the one of the closed-
loop output under non-linear control. Clearly, the nonlinear controller drives the
controlled output to its new set-point value in a significantly shorter time than the
one required by the PI controller, while both controlled outputs exhibit very similar
overshoot. For the same simulation run, the evolution of the closed-loop profile and
the final steady-state profile of the CSD are shown in Fig. 2.7. An exponentially
decaying CSD is obtained at the steady state. The reader may refer to [6] for
extensive simulation results.

2.2.4.2 Hybrid Predictive Control

In addition to handling nonlinear behavior, an important control problem is to
stabilize the crystallizer at an unstable steady-state (which corresponds to a desired
PSD) using constrained control action. Currently, the achievement of high perfor-
mance, under control and state constraints, relies to a large extent on the use of
model predictive control (MPC) policies. In this approach, a model of the process
is used to make predictions of the future process evolution and compute control
actions, through repeated solution of constrained optimization problems, which
ensure that the process state variables satisfy the imposed limitations. However,
the ability of the available model predictive controllers to guarantee closed-loop
stability and enforce constraint satisfaction is dependent on the assumption of
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Fig. 2.6 (a) Closed-loop output and (b) manipulated input profiles under nonlinear and PI control,
for a 0.5 increase in the set-point (x̃0 is the controlled output) [6]

feasibility (i.e., existence of a solution) of the constrained optimization problem.
This limitation strongly impacts the practical implementation of the MPC policies
and limits the a priori (i.e., before controller implementation) characterization
of the set of initial conditions starting from where the constrained optimization
problem is feasible and closed-loop stability is guaranteed. This problem typically
results in the need for extensive closed-loop simulations and software verification
(before online implementation) to search over the whole set of possible initial
operating conditions that guarantee stability. This in turn can lead to prolonged
periods for plant commissioning. Alternatively, the lack of a priori knowledge of
the stabilizing initial conditions may necessitate limiting process operation within a


