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Introduction

Rarely do I take the opportunity to introduce a book that I've helped create. Normally I am content with
my place in the background where book editors rightfully belong. I make an exception this time because
the content in this book brings back so many memories from own experiences as a developer in days
gone by.

Expert PL/SQL Practices is about wielding PL/SQL effectively. It's not a book about syntax. It’s a book
about how to apply syntax and features along with good development practices to create applications
that are reliable and scalable—and maintainable over the long term.

With any tool, one of the first things to know is when to wield it. Riyaj Shamsudeen deftly tackles the
question of when to use PL/SQL in his opening chapter Do Not Use!1 put that chapter first in the book
because of personal experience: My best-ever performance optimization success came in the late 1990s
when I replaced a stack of procedural code on a client PC with a single SQL statement, taking a job from
over 36 hours to just a couple of minutes. PL/SQL was not the culprit, but the lesson I learned then is
that a set-based approach—when one is possible—is often preferable to writing procedural code.

Michael Rosenblum follows with an excellent chapter on dynamic SQL, showing how to write code
when you don’t know the SQL statements until runtime. He reminded me of a time at Dow Chemical in
the early 1990s when I wrote a data-loading application for a medical record system using Rdb’s
Extended Dynamic Cursor feature set. I still remember that as one of the most fun applications that I
ever developed.

Dominic Delmolino tackles parallel processing with PL/SQL. He covers the benefits that you can
achieve as well as the candidate workloads. Just be careful, okay? One of my biggest-ever blunders as a
DBA was when I once unthinkingly set a degree of parallelism on a key application table in order to
make a single report run faster. It was as if the Enter key was connected to my telephone, because my
phone rang within about a minute of my change. The manager on the other end of the line was most
unpleased. Needless to say, I decided then that implementing parallelism deserved just a tad bit more
thought than I had been giving it. Dominic’s chapter will help you avoid such embarrassment.

Several chapters in the book cover code hygiene and good programming practices. Stephan Petit
presents a set of useful naming and coding conventions. Torben Holm covers PL/SQL Warnings and
conditional compilation. Lewis Cunningham presents a thought-provoking chapter on code analysis
and the importance of truly understanding the code that you write and how it gets used. Robyn Sands
helps you think about flexibility and good design in her chapter on evolutionary data modeling. Melanie
Caffrey tours the various cursor types available, helping you to make the right choice of cursor for any
given situation.

Other chapters relate to debugging and troubleshooting. Sue Harper covers PL/SQL unit testing,
especially the supporting feature set that is now built into SQL Developer. (I remember writing unit test
scripts on paper back in the day). Save yourself the embarrassment of regression bugs. Automated unit
tests make it easy and convenient to verify that you’ve not broken two new things while fixing one.

John Beresniewicz follows with a chapter on contract-oriented programming. A key part of John’s
approach is the use of asserts to validate conditions that should be true at various points within your
code. I first learned of the assert technique while doing PowerBuilder programming back in the Stone
Age. I've always been happy to see John promote the technique in relation to PL/SQL.
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Arup Nanda helps you get control over dependencies and invalidations. Dependency issues can be a
source of seemingly random, difficult-to-repeat application errors. Arup shows how to get control over
what must inevitably happen, so that you aren’t caught out by unexpected errors.

We could hardly leave performance and scalability out of the picture. Ron Crisco talks about
profiling your code to find the greatest opportunities for optimization. Adrian Billington talks about the
performance aspects of invoking PL/SQL from within SQL statements. Connor McDonald covers the
tremendous performance advantages available from bulk SQL operations.

An unusual aspect of scalability not often thought about is that of application size and the number
of developers. Is PL/SQL suited for large-scale development involving dozens, perhaps hundreds of
programmers? Martin Biichi shows that PL/SQL is very much up to the task in his chapter on PL/SQL
programming in the large by recounting his success with an 11-million line application maintained by
over 170 developers.

You can probably tell that I'm excited about this book. The authors are top notch. Each has written
on an aspect of PL/SQL that they are passionate and especially knowledgeable about. If you're past the
point of learning syntax, then sit down, read this book, and step up your game in delivering applications
using the full power of PL/SQL and Oracle Database.

Jonathan Gennick
Assistant Editorial Director, Apress



CHAPTER 1

Do Not Use

By Riyaj Shamsudeen

Congratulations on buying this book. PL/SQL is a great tool to have in your toolbox; however, you
should understand that use of PL/SQL is not suitable for all scenarios. This chapter will teach you when
to code your application in PL/SQL, how to write scalable code, and, more importantly, when not to
code programs in PL/SQL. Abuse of some PL/SQL constructs leads to unscalable code. In this chapter, I
will review various cases in which the misuse of PL/SQL was unsuitable and lead to an unscalable
application.

PL/SQL AND SQL

SQL is a set processing language and SQL statements scale better if the statements are written with set
level thinking in mind. PL/SQL is a procedural language and SQL statements can be embedded in PL/SQL
code.

SQL statements are executed in the SQL executor (more commonly known as the SQL engine). PL/SQL
code is executed by the PL/SQL engine. The power of PL/SQL emanates from the ability to combine the
procedural abilities of PL/SQL with the set processing abilities of SQL.

Row-by-Row Processing

In a typical row-by-row processing program, code opens a cursor, loops through the rows retrieved from
the cursor, and processes those rows. This type of loop-based processing construct is highly discouraged
as it leads to unscalable code. Listing 1-1 shows an example of a program using the construct.

Listing 1-1. Row-by-Row Processing

DECLARE
CURSOR c1 IS
SELECT prod_id, cust_id, time_id, amount_sold
FROM sales
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WHERE amount_sold > 100;
cl_rec cl%rowtype;
1 cust_first_name customers.cust_first_name%TYPE;
1 cust_lasT name customers.cust_last_name%TYPE;
BEGIN
FOR c1_rec IN c1
Loop
-- Query customer details
SELECT cust_first_name, cust_last_name
INTO 1_cust_first name, 1 _cust_last_name
FROM customers
WHERE cust_id=c1_rec.cust_id;

-- Insert in to target table

INSERT INTO top_sales_customers (
prod_id, cust_id, time_id, cust_first_name, cust_last_name,amount_sold

)
VALUES
(
cl_rec.prod_id,
cl rec.cust_id,
cl _rec.time_id,
1 cust_first_name,
1 cust_last_name,
cl_rec.amount_sold
)
END LOOP;
COMMIT;
END;
/

PL/SQL procedure successfully completed.

Elapsed: 00:00:10.93

In Listing 1-1, the program declares a cursor cl, and opens the cursor implicitly using cursor-for-
loop syntax. For each row retrieved from the cursor c1, the program queries the customers table to
populate first_name and last_name to variables. A row is subsequently inserted in to the
top_sales_customers table.

There is a problem with the coding practice exemplified in Listingl-1. Even if the SQL statements
called in the loop are highly optimized, program execution can consume a huge amount of time.
Imagine that the SQL statement querying the customers table consumes an elapsed time of 0.1 seconds,
and that the INSERT statement consumes an elapsed time of 0.1 seconds, giving a total elapsed time of 0.2
seconds per loop execution. If cursor c1 retrieves 100,000 rows, then the total elapsed time for this
program will be 100,000 multiplied by 0.2 seconds: 20,000 seconds or 5.5 hours approximately.
Optimizing this program construct is not easy. Tom Kyte termed this type of processing as slow-by-slow
processing for obvious reasons.
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Note Examples in this chapter use SH schema, one of the example schemas supplied by Oracle Corporation.
To install the example schemas, Oracle-provided software can be used. You can download it from http://
download.oracle.com/otn/solaris/oraclel1g/R2/solaris.sparc64 11gR2_examples.zip for 11gR2 Solaris
platform. Refer to the Readme document in the unzipped software directories for installation instructions. Zip files
for other platforms and versions are also available from Oracle’s web site.

There is another inherent issue with the code in Listing 1-1. SQL statements are called from PL/SQL
in aloop, so the execution will switch back and forth between the PL/SQL engine and the SQL engine.
This switch between two environments is known as a context switch. Context switches increase elapsed
time of your programs and introduce unnecessary CPU overhead. You should reduce the number of
context switches by eliminating or reducing the switching between these two environments.

You should generally avoid row-by-row processing. Better coding practice would be to convert the
program from Listing 1-1 into a SQL statement. Listing 1-2 rewrites the code, avoiding PL/SQL entirely.

Listing 1-2. Row-by-Row Processing Rewritten

-- Insert in to target table
INSERT
INTO top_sales_customers
(
prod_id,
cust_id,
time_id,
cust_first_name,
cust_last_name,
amount_sold

)

SELECT s.prod_id,
s.cust_id,
s.time_id,
c.cust_first_name,
c.cust_last_name,
s.amount_sold

FROM sales s,

customers c
WHERE s.cust_id = c.cust_id and
s.amount_sold> 100;

135669 rows created.

Elapsed: 00:00:00.26


http://download.oracle.com/otn/solaris/oracle11g/R2/solaris.sparc64_11gR2_examples.zip
http://download.oracle.com/otn/solaris/oracle11g/R2/solaris.sparc64_11gR2_examples.zip
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The code in Listing 1-2, in addition to resolving the shortcomings of the row-by-row processing, has
a few more advantages. Parallel execution can be used to tune the rewritten SQL statement. With the use
of multiple parallel execution processes, you can decrease the elapsed time of execution sharply.
Furthermore, code becomes concise and readable.

Note If you rewrite the PL/SQL loop code to a join, you need to consider duplicates. If there are duplicates in the
customers table for the same cust_id columns, then the rewritten SQL statement will retrieve more rows then
intended. However, in this specific example, there is a primary key on cust_id column in the customers table, so
there is no danger of duplicates with an equality predicate on cust_id column.

Nested Row-by-Row Processing

You can nest cursors in PL/SQL language. It is a common coding practice to retrieve values from one
cursor, feed those values to another cursor, feed the values from second level cursor to third level cursor,
and so on. But the performance issues with a loop-based code increase if the cursors are deeply nested.
The number of SQL executions increases sharply due to nesting of cursors, leading to a longer program
runtime.

In Listing 1-3, cursors cl, c2, and c3 are nested. Cursor cl is the top level cursor and retrieves rows
from the table t1; cursor c2 is opened, passing the values from cursor c1; cursor c3 is opened, passing the
values from cursor c2. An UPDATE statement is executed for every row retrieved from cursor c3. Even if the
UPDATE statement is optimized to execute in 0.01 seconds, performance of the program suffers due to the
deeply nested cursor. Say that cursors cl, c2, and c3 retrieve 20, 50, and 100 rows, respectively. The code
then loops through 100,000 rows, and the total elapsed time of the program exceeds 1,000 seconds.
Tuning this type of program usually leads to a complete rewrite.

Listing 1-3. Row-by-Row Processing with Nested Cursors

DECLARE
CURSOR c1 AS
SELECT n1 FROM t1;
CURSOR c2 (p_n1) AS
SELECT n1, n2 FROM t2 WHERE ni=p_ni;
CURSOR c3 (p_n1, p_n2) AS
SELECT text FROM t3 WHERE ni=p_ni AND n2=p_n2;
BEGIN
FOR c1_rec IN c1
Loop
FOR c2_rec IN c2 (c1_rec.nl)
LooP
FOR c3_rec IN c3(c2_rec.nl, c2_rec.n2)
LooP
-- execute some sql here;
UPDATE .. SET ..where ni=c3_rec.n1 AND n2=c3_rec.n2;
EXCEPTION
WHEN no_data_found THEN
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INSERT into.. END;
END LOOP;
END LOOP;
END LOOP;
COMMIT;
END;
/

Another problem with the code in the Listing 1-3 is that an UPDATE statement is executed. If the
UPDATE statement results in a no_data_found exception, then an INSERT statement is executed. It is
possible to offload this type of processing from PL/SQL to the SQL engine using a MERGE statement.

Conceptually, the three loops in Listing 1-3 represent an equi-join between the tables t1,t2, and t3.
In Listing 1-4, the logic is rewritten as a SQL statement with an alias of t. The combination of UPDATE and
INSERT logic is replaced by a MERGE statement. MERGE syntax provides the ability to update a row if it exists
and insert a row if it does not exist.

Listing 1-4. Row-by-Row Processing Rewritten Using MERGE Statement

MERGE INTO fact1 USING
(SELECT DISTINCT c3.n1,c3.n2
FROM t1, t2, t3

WHERE t1.n1 = t2.n1
AND t2.n1 = t3.n1
AND t2.n2 = t3.n2
) t

ON (facti.ni=t.n1 AND facti.n2=t.n2)
WHEN matched THEN
UPDATE SET .. WHEN NOT matched THEN
INSERT .. ;
COMMIT;

Do not write code with deeply nested cursors in PL/SQL language. Review it to see if you can write
such code in SQL instead.

Lookup Queries

Lookup queries are generally used to populate some variable or to perform data validation. Executing
lookup queries in a loop causes performance issues.

In the Listing 1-5, the highlighted query retrieves the country_name using a lookup query. For every
row from the cursor cl1, a query to fetch the country_name is executed. As the number of rows retrieved
from the cursor cl increases, executions of the lookup query also increases, leading to a poorly
performing code.

Listing 1-5. Lookup Queries, a Modified Copy of Listing 1-1

DECLARE
CURSOR c1 IS
SELECT prod_id, cust_id, time_id, amount_sold
FROM sales
WHERE amount_sold > 100;



CHAPTER 1/ DO NOT USE

1 cust_first name customers.cust first name%TYPE;
1 cust_last_name customers.cust_last_name%TYPE;
1 Country_id countries.country id%TYPE;
1 country name countries.country name%TYPE;
BEGIN
FOR c1_rec IN c1
LooP
-- Query customer details
SELECT cust_first_name, cust_last_name, country id
INTO 1 _cust_first name, 1 cust_last name, 1 _country id
FROM customers
WHERE cust_id=c1_rec.cust_id;

-- Query to get country_name

SELECT country_name

INTO 1_country_name

FROM countries WHERE country_id=1_country_id;

-- Insert in to target table
INSERT
INTO top_sales_customers

prod_id, cust_id, time_id, cust_first_name,
cust_last _name, amount_sold, country name

)

VALUES

(
c1 _rec.prod_id, c1_rec.cust_id, c1_rec.time_id, 1 _cust_first_name,
1 cust_last_name, c1_rec.amount_sold, 1_country name

)
END LOOP;
COMMIT;
END;
/
PL/SQOL procedure successfully completed.
Elapsed: 00:00:16.18

The example in Listing 1-5 is simplistic. The lookup query for the country_name can be rewritten as
ajoin in the main cursor c1 itself. As a first step, you should modify the lookup query into a join. In a real
world application, this type of rewrite is not always possible, though.

If you can’t rewrite the code to reduce the executions of a lookup query, then you have another
option. You can define an associative array to cache the results of the lookup query and reuse the array
in later executions, thus effectively reducing the executions of the lookup query.

Listing 1-6 illustrates the array-caching technique. Instead of executing the query to retrieve the
country_name for every row from the cursor cl, a key-value pair, (country_id, country_name) in this
example) is stored in an associative array named 1_country_names. An associative array is similar to an
index in that any given value can be accessed using a key value.

Before executing the lookup query, an existence test is performed for an element matching the
country_id key value using an EXISTS operator. If an element exists in the array, then the country_name
is retrieved from that array without executing the lookup query. If not, then the lookup query is executed
and a new element added to the array.
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You should also understand that this technique is suitable for statements with few distinct values for
the key. In this example, the number of executions of the lookup query will be probably much lower as
the number of unique values of country_id column is lower. Using the example schema, the maximum
number of executions for the lookup query will be 23 as there are only 23 distinct values for the
country_id column.

Listing 1-6. Lookup Queries with Associative Arrays

DECLARE
CURSOR c1
IS
SELECT prod_id, cust_id, time_id, amount_sold
FROM sales WHERE amount_sold > 100;
1 country names country names_type;
1 Country_id countries.country id%TYPE;
1 country _name countries.country name%TYPE;
1 cust_first_name customers.cust_first_name%TYPE;
1 cust_lasT_name customers.cust_last_name%TYPE;
TYPE country_names_type IS
TABLE OF VARCHAR2(40) INDEX BY pls_integer;
1_country_names country_names_type;
BEGIN
FOR c1_rec IN c1 LOOP
-- Query customer details
SELECT cust_first _name, cust_last_name, country id
INTO 1_cust_first_name, 1_cust_last_name, 1_country id
FROM customers
WHERE cust_id=c1_rec.cust_id;
-- Check array first before executing a SQL statement

IF ( 1_country names.EXISTS(1_country id)) THEN

1_country_name := 1_country_names(1l_country_id);
ELSE

SELECT country_name INTO 1_country_name

FROM countries

WHERE country_id = 1_country_id;
-- Store in the array for further reuse

1_country_names(1_country_id) := 1_country_name;
END IF;

-- Insert in to target table

INSERT
INTO top_sales_customers

(
prod_id, cust_id, time_id, cust_first_name,
cust_last_name, amount_sold, country_ name

)



