Expert

PL/SQL Practices

for Oracle Developers and DBAs

DEEP INSIGHTS INTO DATABASE
PROGRAMMING WITH PL/SQL

John Beresniewicz, Adrian Billington, Martin Buichi, Melanie Caffrey, Ron Crisco,
Lewis Cunningham, Dominic Delmolino, Sue Harper, Torben Holm, Connor McDonald,
Arup Nanda, Stephan Petit, Michael Rosenblum, Robyn Sands, and Riyaj Shamsudeen

Apresse

Expert PL/YSQL Practices

John Beresniewicz, Adrian Billington, Martin Bichi,
Melanie Caffrey, Ron Crisco, Lewis Cunningham,
Dominic Delmolino, Sue Harper, Torben Holm,
Connor McDonald, Arup Nanda, Stephan Petit,
Michael Rosenblum, Robyn Sands, Riyaj Shamsudeen

Apress-

Expert PL/SQL Practices: for Oracle Developers and DBAs

Copyright © 2011 by John Beresniewicz, Adrian Billington, Martin Biichi, Melanie Caffrey, Ron Crisco,
Lewis Cunningham, Dominic Delmolino, Sue Harper, Torben Holm, Connor McDonald, Arup Nanda,
Stephan Petit, Michael Rosenblum, Robyn Sands, Riyaj Shamsudeen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-4302-3485-2
ISBN 978-1-4302-3486-9 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Jonathan Gennick

Technical Reviewers: Chris Beck, Mike Gangler, Toon Koppelaars

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,
Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Coordinating Editor: Corbin Collins

Copy Editor: Mary Behr

Production Support: Patrick Cunningham

Indexer: SPI Global

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

Contents at a Glance

About the AUtROrS.........ccuimmmmsmmmmms s ———————————— xvii
About the Technical REVIEWErScccsssessssmsssassmsssmssssmsssssssssssssnsssssssssssssnssssssssnsnsnns XX
INtrodUCTioNociieinisenmmsssnnmsssnnmsssnnmsssnsnsssnnssssnnnsssnnssssnnnsssnnnsssnnnsssnnnsssnnnnssnnnsnsnnnnnsnns xxi
Chapter 1: DO NOt US€.....cuusuummmmmmmmmmmmmsssnnssssssmmsssssssssnssssssssssssssssnssssssssssssssssnnnnnnssnnnnss 1
Chapter 2: Dynamic SQL: Handling the Unknowncccccuseemmmnssssnsnsnssssssssssssssnnes 19
Chapter 3: PL/SQL and Parallel Processing.....ccccurussssmsssssesssnsssssnsssssssesssnsssssnnsssnns 45
Chapter 4: Warnings and Conditional Compilation..........ccucccmmmnssennmmnsssssnmmssssssnns A
Chapter 5: PL/SQL Unit TeStiNg.....ccusemmmmmsssnnnmmssssssnmsssssnsnssssssssnsssssssnnsssssssnnsssssnnnns 97
Chapter 6: Bulk SQL Operations.........cccuuussmmsmmsssssssssssssssssssssssnsssssssssssssssssssssssssnns 121
Chapter 7: Know Your Code.......cccuuuumsmnmmmnnmmmsssssssssssssssssssssssssssnsssssssssssssssnnnnnnsnnss 171
Chapter 8: Contract-Oriented Programming.........ccccussseennmmssssnnssnsssssnsssssssssssssssnns 213
Chapter 9: PL/SQL from SQLcccoccmmisemmmsssssmsssssmssssssssssssssssssssssssssssnsssssnssssansess 235
Chapter 10: Choosing the Right CUISOrccccussemmsmssssssnnmsssssssssssssssssssssssssnssssnns 291
Chapter 11: PL/SQL Programming in the Large.........c.ccconmmnsnmmmmnssssnsnmnssssssnnsssnns 313
Chapter 12: Evolutionary Data Modelingccuccccmmmnssmmmmmmsssssnmmssssssnssssssssnsssssnnns 367
Chapter 13: Profiling for Performancecccccuseemnmnsssesnmmsssssssmssssssssmsssssssssssssans 395
Chapter 14: Coding Conventions and Error Handlingc..ccccrnnssmennnnssssnnsnsssnnns 425
Chapter 15: Dependencies and Invalidationsccccueemmmnnsssnnnmmmssssnnmmsssssmmnsn. 445

Contents

iv

About the AUtROIS........ccuiemmmsmnmmsnsmsisssssss s e nn e nnn s xvii
About the Technical REVIEWEIScusseessssansssssnssssanssssansssssnsssssnsssssnsssssnsssssnssssnnssssans XX
INtrodUCTioNociieinisenmmsssnnmsssnnmsssnnmsssnsnsssnnssssnnnsssnnssssnnnsssnnnsssnnnsssnnnsssnnnnssnnnsnsnnnnnsnns xxi
Chapter 1: DO NOt US€.....ccccurusssnmmmmmsssannnssssssnnnssssssnsnnsssssnsnssssssnsnssssssnnnssssssnnnsnsssnnnnnns 1
ROW-DY-ROW PrOCESSINGcocercerereririesiessissis s sss s s s sns e s s s s s e s s sns s snssnssnsssssssssssnssnnnes 1
Nested ROW-by-ROW ProCeSSINGcccveerverrerienienieniensessesse s s e sesessessesesessesns 4
LOOKUD QUETIES ...c.eeveerieercrre e se s se e ss s sn e sr e sn e sae e sa s nn s sae e s e nnnsennens 5
EXCESSIVE ACCESS 10 DUALcouicereerereresseisesssesssss e sss e sse s sns e sse s sns s s ssssessssnsnsssssens 8
ArthmEtiCS With DALEcoceeeeeeeererererese s 8
ACCESS 10 SBUUBNCES.cucererreueeresseeesessssesse s e s sssss s se e ss st e s sas e e s s se et esas e e e s e s e e s s e sae s s sennsannnes 9
Populating Master-Detail ROWS..........cccueeiernernicse e se s s e s ssssessssessssssssssssensssesnas 10
Excessive FUNCLION CallSccccoverinniennisesnsese e sss e sss s ssssssssssnsens 10
Unnecessary FUNCHION EXECULION.........c.coceieincinscre e s n e sn s e s s ssssennas 1
COSEIY FUNCHON CalIScucerereeseeceresseseesessnsese e sssssssesssss s e ssssssssessssssssessssssssssssssssssssnssssssnssssssssnsssssnsanes 13
Database LinK CalISccccoveermneiierniiesne s sn s sss s sn s sss s 16
EXCESSIVE USE Of THUGEIS...cvierreerererersesisse s ss s e s e ss s sss s s s ssssssssssnsnnns 17
EXCESSIVE COMMILS......cucceeiecrerec e san e 17
EXCESSIVE PArSING......ccceiiriririrsessiss st se e e sn s sn s sn s sn s sn s nn s nnsnnssnenas 17
SUMMANY ...ttt e s e ae e b s e s Re e e er e e e ae e n e nnnnns 18

CONTENTS

Chapter 2: Dynamic SQL: Handling the UnKnowncccccussseenmmnsssssnsmnsssssnssssssnnnn 19
(-8 5 T 20
Native DYNAmIC SQL ... e et e s e e e 21
DT 1 T 0T o] 24
DBMS_SQLcvvurrrrsereruressssessssesssssssssesssssssssessssssssssesssssessasesssssessasessssessssssssssessssesssasessssssessssssssanesssnnes 27
Sample of DynamiC ThINKINQGccceeererernnereereesse e ssesss s sssssssssssssssssssssssssssssssassssssssnes 28
SECUIMLY ISSUBS ...uvereeereeirecreriesiesse s e ssesaessesnsssesae s e sss s e sassassnssn e sn s snssnssn e nn e e s nn s e s nnennnsnnnnas 33
Performance and Resource Utilizationcccocvvrvrvncnsnsncncsses e 37
ANTi=PALIEINS ...t e R R R Re e R s 38
Comparing Implementations of Dynamic SQLcccooveeerrnernrnesese s sessssenes 39
ObjeCt DEPENUENCIEScceereererrerrerrerrersesessessessesse s e rsessessessessessessessesresnesnesresnesaesressessennan 41
L0 LT (< R 41
POSITIVE EffECESucvicccr e s e e e e s 42
RS 111142 43
Chapter 3: PL/SQL and Parallel Processing........cccsusssssssssssssnssssssssnssssssssssssssssnnnnns 45
Why Parallel ProCESSING?ccvcrcrvirierrirsirsis s ses s sessss s s s sss s s sns s snssnssnsssssnssssssssnsnnns 45
Laws Affecting Parallel ProCESSINGcccvvrerrerrerrerrersensessessessesssssessessessessesssssessesssssessens 46
The Rise of Big Datacccccvcririrsrersrir s sn s s s s s snesnesnssnssnesnens 47
Parallel vs. Distributed ProCessing..........cccvereerrersessessesssssessessesses s ssssssssssesssssssssssssssnsnas 47
Parallel Hardware ArchiteCtUres.........ccoeerererserenre e s 47
Identify YOUr GOQIS........ccccvceeerercrincrrri s sa s n s s sn s s 48
SPEEUUP ..veererrrreserereseese s e as e e e R e R e A e R e A e Re e R R e R e e R R R e e e R e e e R e e e n e ane 49
Yo 111110 L OO 49
Degree of PArallliSIMcccoiieieiiirneesirnse s s sss e sesrs et sr s se s s p s nen s 49
Candidate Workloads for Parallel ProcesSing.........cccceeeeeerereesesessesssssssssssssssssssssssssssnns 50
ParalleliSm @nd OLTP.........cccceiierererrsesesersssesesessssssssessssssssessenes 50
Parallelism and Non-0LTP WOIKIOAAScccoceeruruecrerereerereseesesesse s se s sessssens 50

vi

CONTENTS

The MapReduce Programming MOdel ..o 51
Before LoOKIiNg 10 PL/SQLccoccoiersircrnc e sss e e ssssssssssssesssssssessssssssnsnsesns 51
Processes Available for Parallel ACHIVItIES..........cocvvrrrnmnennnn s 52
Using Parallel Execution Servers for MapReduCE.........c.ccccvvernrerenrssesssesessssesessesesesens 52
Pipelined Table FUNCHIONScccviiiiininini e s sae s e sa s s se s e s se s s s s s sn s e s e s s s 52
GUIANCE ...ttt e sese e se e e e e e se e se se s e e senenenene s e e e e e e e e e e e s 69
Parallel Pipelined Table FUNCLIONS SUMMANYccomiiiirrrccr e 69
RS 1] 142 69
Chapter 4: Warnings and Conditional Compilationcccucccmmnnssenmnmnsssssssmssssssnns A
PL/SQL WAIMINGScoueieiiriressessesssssessessessesssssessessessesssnssssanens 7
57 T 71
USING WAININGS......ceeeereeeecsesesiseeses s se s se s e s e e s s se e e s s se et ssae e e s s ae e e e saess e e nsnnnaes 73
Promoting Warnings 10 EITOFS ..o sa s 76
1GNOFING WAININGSecveeiececresssesesesssseesesssss e sssss s sesssssss e s s ssssesesssssssesssssssssnssssssssnsssssssessssssnsnsssnsenes 78
Compilation and WarniNgS.........cccevreererernenisessese s ss s e ss s e e e e e e s s s e s snnns 80
Final WOrds 0N WarniNgS........cecvererrererrerserersesersersssessssessesssssssssessssesssesssssssssssssssssessssessssssssssssessssessssssaes 82
Conditional ComPpilation..........ccceeeeerererere e sn e sn e sn e 83
57 T 83
What Part of the Code is RUNNING? ..o 86
Benefits 0f PreproCessing COUEccccvrermererirnesesesse s sss e sssss s sesessssssesessssssssesssssssessssssenes 87
INVALIAALIONS ..o e e e e e e 89
Controlling COMPIIALIONcccovieieceeeeeee e p s 91
INQUIFY VAKADIESeveeeeeerreereesereesereressersssessesessesessessssessssessssesassssssssssessssessssessssessensssesssssssssssessssenssnssaes 93
Final Words on Conditional Compilationcucceeernnseneseninesmsesssesse e sesss s sessssssssesesssseses 94
SUMMAIY ...ttt e e s e R e e A e e R e et R e e e ae e e nnerns 96

CONTENTS

Chapter 5: PL/SQL Unit TeSting......ccucsmsssesmsssanssssanssssanssssanssssansssssnsssssnsssssnsssssnnsssss 97
Why TeSt YOUr COARY ... 97
What IS Unit TESTING?.....c.ccceeeirerrccreeir et 98
Debugging Or TESTING?cccocrureecrereccre e e 98
When Should YOu BUIld TESIS? ... snssssnas 98
Tools for Building Unit TESTS.......ccccvrermrrernniressssesssssssessssessessssesssssssessssessssssssssssssssssssssnes 99
utPLSQL: Working with Command LiNe COUEccceurererererenenenenenessseese s ssssssnens 99
Quest Code TESLEr fOr OFACIE.........cvrerererrereecrrereseess e se e se e s s sss e s ssssenens 99
Oracle SQL DEVEIOPET ..ot se e se s a s e s e e s e e s e e e nne s 100
Preparing and Maintaining the Unit Test Environment............ccoovvvvrvrvnvnvnsensennennnnns 100
Creating the Unit TeSt REPOSITONY ..ot s 101
Maintaining the Unit TeSt REPOSITOIY.....c.ceccvererererererereeserreseresereresesesesaesersesessesessesessensssessssesassenanns 102
IMPOITING TESES....cveeeeerrriesere et e s e e s R e e e ae g s e e sn e g nennnns 103
BUIldING UNit TESTScecercerercerirsesse s s e se s se s s sennnns 03
Using the UNit TEST WIZAIcccccerereeeerirrnesesssssseessse s seese e ssssssesnssssssssssesssssssssssssssssssenes 104
Creating the First Implementation ... e e 104
Adding Startup and TeardOWN PrOCESSES.......cererrrerererererserersersssersssersssessssessssessessssssssssssssessssessssesaes 105
Collecting Code Coverage STatiStiCS.........ouuurrmnenmrersesise s 106
SPECITYING PATAMELELScovivieecririre et et e s e e e e bt s 106
Adding Process Validation............coveeeererneesesensesssessssssessssssssessssssssesssans 107
SAVING TESTS ...vveucucereeiceririeseee st e e e e e s e s Re e e s e s e e e ee e e b e s e e e e e nenneas 108
Debugging and RUNNING TESES......ccccverriererrererrerereresereseserssserassessssessssessssesssssssessssesassessssessssssasssaens 108
Broadening the Scope 0f the TEStS.......c.cccvrvrrrernninesn e 109
Creating LOOKUP VAIUEBSccccceererererereraesersesersesesaesessessssessssessssesssnssssssasssssessssessssssassessensssessssssasssnanns 109
Seeding Test IMPIEMENTatioNSooveererr s 111
Creating @ DYNAMIC QUETYc.cueeeereireercrersse e se s se s e as s a ettt e e et ne b ne b 112

vii

CONTENTS

Supporting Unit TeSt FEALUIEScccvvererrerrerrercer s se e e sessesnns 113
RUNNING REPOMSeveereerererteeree e sersesas e sss e rse e saesesae e saesa s e sas e sss e sas s sasssssesssessssesassensesassesssnssasnsnanns 113
Creating a Library of COMPONENTSccvveiererriescrereseeseress e ss e e ss e s s sssssssnns 114
Exporting, Importing, and Synchronizing TESES ... e es 117
BUIIAING SUITES......coveuererereeereerereseresessesasessssessesessesessssesssssssessssessssssasssssssssessssessssesssnsssensesessssssasnssanns 119

Running Tests from the Command Ling ... 119

3T 11142 120

Chapter 6: Bulk SQL Operations.........cccsuussssssnmssssssssssssssssssssssssssssssssnssssssssssssssssnns 121

The Hardware STOre..........covreriiennniesss s s 121

Setting for the Examples in this Chapter ... 122

Bulk Operations in PL/SQL..........cccierimiennnesess s sss e sssessssesessssesesassenens 123
Getting Started With BULK FEICN ... 124
Three Collection-Style DAtatyPescccvrrrerernneserire s s st sas e e ssns 127
WHY SOUIA | DOTNEI? ... s e s s nn s 128
Monitoring Bulk Collect OVEINEAMScccoeeererueccrireccre e 131
Refactoring Code t0 USE BUIK COIIECTccecevuerererererrrereeserseseseseseressesssserassessesessesessensssessssesassenaens 135

BUIK BINGING ... sse s sss s sssse s sss s s s e ssssssssssssessssssssssssssssnsnsssnes 143
Getting Started With BUIK BiNdccccverererererererereressessesessesessessssssessessssessssessssessssessensssessssssassssaens 144
Measuring Bulk Binding PerfOrmance............coeeeeererncncrerncscsesese e sesesesnnns 145
MoNitoring MEMOIY USAQEcccocrerurccreriseesise e se s sa s s s 148
IMPrOVEMENTS IN T1Q.. et se e e s s e s s s e e ae e saese s e sae e ae e sae e sannnanns 150

Error Handling with BulK Bind ..ot 151
SAVE EXCEPTIONS With BAtCHESccovreueererenreeseressssssesessssssesessssssssessnes 155
LOG ERRORS ClAUSEceceeereecererneeesessseesesssssesssssse e e s e e s s s s sss s e s sss s s sssssssssssssssssssssnssnes 156
RODUSE BUIK BiNQ ..o st s s s 157

A Justification for Massive COlIECLIONS...........cccvvererieresriiernseresesse e e sesnens 162

The Real Benefit: Client Bulk ProCeSSINg........ccvverververversersersensessessessessessessessessessessessesaes 164

1T 1] 1P S S SRS SS 168

viii

CONTENTS

Chapter 7: KNOW YOUr COU@.....cccurrrsssnmnnrsssssnsnssssssnnnssssssnsnssssssnnsssssssnnnsssssnnnnssssnnns 171
What This Chapter Will (and Will NOt) COVEFcccrvririnininienenenesesesesessessessesas 171
Automated Code ANAIYSISccceervierrrirernseresrrse s s se s s sns s s e naens 173
STALIC ANAIYSIS ...t e R e 173
DYNAMIC ANAIYSISveereeeircriccrre s e s s e s e s b e e a e e ae e s aesn s e n e e ene e nnn e nnnns 174
WREN 10 ANAIYZE? ...ttt sa e n e sn e r e n e s a e e n s 174
Performing Static ANalYSisccovceeinernicnrrrer e s 175
The Data DICHONAIYccceererercererieee et p e 176
PLISCOPE ...ttt et ss st e e e e b e e e d A A A A A e e e et e b e e e b e ne s 183
Performing Dynamic AN@lYSiS.........cccouverenrisernnmiensssessessssesssssssssssse s ssessssessssssssssssssnes 197
DBMS_PROFILER and DBMS_TRAGEcccccermummnerersnseesesssssesessssssesessssssssessssssssssssssssssssssssssssssssssnes 197
DBMS_HPROFouvvueeeveerueessessasssssssssssssssssssssssssssssssasssssessassssssssassssssssasessssssassssssssassssssssmsssssasessasssanes 206
11T 1] 12 S SSSRSSSR 212
Chapter 8: Contract-Oriented Programming........cccussesmsssssssssssssssnsssssasssssnnssssannsss 213
Design DY CONTIACTcccvceriirierrr e sa s sa e sa e sn e sa e naenens 213
SOTIWAIE CONIACTS.......cceeeceerceeeee sttt a st e s e e s e e e e e ne e sr s nrnenrnrneas 213
BasiC CONTraCt EIBMENTScocoeeercrercrcrcrcrcrese e s e 214
F LT (0] 3T 215
L3TC] (2] (T 1 e 215
Implementing PL/SQL CONEracCtS..........ccoveiiermneienssesess s ssessssessssnssessssssssssssessssssnes 216
BasiC ASSERT PrOCEAUIE.........coceeeeeereeereseseeseeseseseseseseseessess s s s s s s s e e s s ssssssssssssssssssssssssssssssasaeas 216
Standard Package-LoCal ASSERTcccccceererrnesesesssesesessssssesessaes 218
Enforcing Contracts USING ASSERTcoocrinincnnsse s sesss e sesssssssssssssssssessssssssesssssssnes 220
An Additional IMProVEMENTcccevererererrerererer e rrs e rae e re s e ae e ae e sae e aesesaesas e sae e sae e sanenans 222
Contract-Oriented FUNCEION Prototype........c.covirnnnincs e se e snsnens 223
Example: Testing 0dd and Even INTEQErsScoeeverrrrevnienessess s ses e 224

ix

CONTENTS

Useful Contract Patterns...........covrcnnsesnse s s s s 226
NOE-NULL IN / NOE-NULL OUToveueeeeeereeressessessessssessessessessessssssssssessessessesssssssessessessessssssssssessessssssssssees 227
FUNCTION RETURN NOE-NULL.......ccetrerraesererrssennsessnsessssssssesessssssesssnsanes 227
FUNCTION RETURN BOOLEAN NOt-NULL.........ccovererereereureuresesessesessessesesssssssessessessessssssssssessessesssssssces 228
Check Functions: RETURN TRUE OR ASSERTFAIL..........cccouureureureuressesessssessessessesssesssssessessessessesssssssees 228

Principles FOr Bug-Free COde.........cccuuriernrirsencer s ses s s s ssssns s sns s snssnssnsssssssnnnns 229
Assert Preconditions RIgOrOUSIY........c.ccerererererieressersseresersesessessssessssessssessssessssessssssssssssessssesssesssssaes 229
MOodUIAriZE RUTNIESSIY ..ottt 230
Adopt Function-Based INTEITACEScccvererirere e 231
Crash 0N ASSERTFAIL........ccoceeeeeeeee e e e e 231
Regression Test Your POSTCONUIIONSccocrerienirereneicrereecses e 231
Avoid Correctness-Performance Tradoffs ... 232
Oracle 11g Optimized COMPIIALIONccoveieeerierererrrs e se s 233

SUMMAIY ...ttt b e e a e e e e a e e R e e e ae e s e en e e e nenrnan e 233

Chapter 9: PL/SQL from SQLcconsmmsemmsmmmssmsssmsssmsssmsssssssssssssssssssssssssssssssasssasns 235

The Cost of Using PL/SQL Functions in SALcccoveeernescrnescresesessssesesssesesssesesens 235
CONEEXE-SWILCNINGcvoveeceeeeerererere e s e s 236
(=i T 241
SUDOPLIMAI DALA ACCESS.....eiueueererreeererieee e se s e e see s se s e se s e s e e e s e e e e nnnas 245
001 (1 T2 g D) g {10 - 249
The Read-ConSiSTENCY TraAP.......cccceerrrrererersrrsesesersssesesessssssssessnns 253
0T g T T 255

Reducing the Cost of PL/SQL FUNCHIONSccccceveenieresiress s sse e s snes 256
A SENSE Of PEISPECHIVEccveereererererereeeree e s e res e sae e sae e s sa s s sae e sae e s ae e sae e s s sae e sae e sae e e e e naenenes 256
USING SAL AREINALIVES ...ccveereeereerererererserersesessesesaesessesessessssessssessesssssssssessssesssssssssssssssssensssessssssasnsnaens 257

RedUCING EXECULIONScoeeereiccericceerese s s 264

CONTENTS

ASSISEING the CBOccoviveeceeerirceseresreesesessss s e s e se s ss s sss e asas e snsasse s sen s s s ssnssssnsnsnns 273
TUNING PLISQL ...ttt e se e e st st s s e e e bR e b s et e b et nenn s 285
3T 11142 289
Chapter 10: Choosing the Right CUrsorcccusmnsmsmmssmsssmsssssssssmesssssssssnsnses 291
EXPICIT CUISOIS ... cceeeeerirsir st n e 292
The Anatomy Of an EXPlICIE CUISOK........cccerreerererrresesesssssss e sess e s s s s ssssssessssssssssssssssssssnns 293
Explicit Cursors and Bulk PrOCESSINGcoccerrerecrireneeisesseese e se s sesessssens 294
REF CUISOIS iN BrBf.....cciiiiciini s s ens 295
IMPHCIE CUISOIS... ettt n e s n e 296
The Anatomy of an IMPICIE CUISOFccceeevererererierensersssereesersesessesessessssessssessssesssssssssssssnsssessssesssnesaes 297
The Implicit Cursor and the Extra FEICh TREOIYccvvveeeererrccre s 299
StatiC REF CUISOIScucuccciinire s s sss s s sa s s 301
Cursor Variable Restrictions Laundry LiSt..........cccceceerierenesennsenesensssssssessssssssessssssssessssssssssssssssssssssssenes 303
Your Client @and REF CUISOIS........cuiuminesisssssesesssss e sesessssss s st e st e sss s ssssssasssss 304
A Few Words about PArSingcccccveeererererenieressersssessssessesessessssessssessssessesessssssssssssessssesssessensssssssaes 305
Dynamic REF CUISOIScccvcerciecircis s sns s s s s s s snssnesnesnssns s s snssnesnssnnnnens 307
EXample and BeST USE........cociiiiiiierire e ss e sn s sn s s et 308
The Threat of SQL INJECHONeereeeeee e 309
Describing REF CUrSOr COIUMNS ..o s 3N
SUMMAIY ...t s s r e e e s g s er e nsaenr s e anrnannannnnennnnnes 312
Chapter 11: PL/SQL Programming in the Large........cc.cccimmnsemnnmnssssnnnnnssssssnssssnns 313
The Database as PL/SQL-Based Application SErver...........cceemvnesniesnnsesesensessesensens 313
Case Study: The Avaloq Banking SYSTEMcccceernenmnerenessseressesesesssessse s sssesessssesssesssssssssssssssenes 313
Strengths of Business Logic in the Database with PL/SQL...........ccccocvnennnnnnnnnnesesess e 315
Limits of the Database as PL/SQL-Based Application SEIVEr...........ccccurrerererssssesesessssssesesssssssssnessnnes 318
SOFt FACLONS ... 318
Requirements of Programming in the Large........ccccvvvvrvrvnvnnnsen s ses e 319

CONTENTS

Uniformity through Conventions ... e ens 319
ADDIEVIBLIONSeeeeeereeererere ettt ne e e e e E s 320
Pre- and Suffixes for PL/SQL IAENEIErScccverereerererereereresesssrese s ssssssesessssssenens 323

Modularization of Code and Data..............ccerrrenernrcnersnesrnese e 326
Packages and Associated Tables as MOAUIESccuvcceerrnesenennseese s sss s 327
Modules Containing Multiple Packages or SUDMOAUIES...........cccoveerrirncnenennsseseses e sesesss e sesessssenes 332
SCNEMAS @S MOUUIES........ceceeeeeereececeeeeeererere s s s s s s s s s s s s sssssssssnsnsnansnsnnas 336
Modularization within SCREMAS ... s 339
Modularization with Schemas vs. Within SChEMAScccccererrererererererere s 342

Object-Oriented Programming with PL/SQLccccooeeiirresniernss s 343
Object-Oriented Programming with User-Defined TYPESccccvrrrerrrncneresnssesesss e seses e sesesssseses 344
Object-Oriented Programming with PL/SQL RECOIUSccouvrrrerererrrresesersssesssessssssesesesssssesessssssessssssens 348
ASSESSIMENT ...ttt e s e e e e e e e s e e s ae e e e e Re e e e e R e e e e e e e R e e e rnnans 356

Memory Management.............coocecerrrenienne s s sn e s sn e s sne e s ne s 356
Measuring MemOTY USAQE..........ccccceurereererereenisesseeesesssesese s seesessssee e sssss e e sss s s e sesssssssssssssssssssssnes 356
0] 0] 3 362

SUMMANY ...t r s r s p e se e s e r e e e aenrn e ne e naenan e nnnnrnnnas 365

Chapter 12: Evolutionary Data Modelingcuceermmmsssssnsmssssssnsssssssssssssssssssssssnnns 367

Lessons from Two Decades of System Development...........cccocvevnnennnnnnsnsnescsesenenens 368

The Database and Agile Development............cccovrrcrcncrcscs s 369

Evolutionary Data Modeling..........ccccevierenniesnnrnessssesessssesss s sssssssessssesssssssessssssnes 370

Refactoring the Database ... 372

Creating an Access Layer via PL/SQL.........ccccoceernrcesesses s ses e ses s snssessnssnssnsnnnns 376

The Agile MANIfEST0ccvcvvrierrirrr e 390

Using PL/SQL with Evolutionary Data Modeling..........cccucceveenrcresinsennscssesnsese e 392
Defing the INTEITACEcoeeereee s 392
THINK EXTBNSIDIE ...ttt 392

CONTENTS

Test Driven DEVEIOPMENTccceeiieererseese e se s e s s nssan e e nae e e nenns 393
Use Schemas and USErs WISEIY ... sssssens 394
3T 11142 394
Chapter 13: Profiling for Performancecccussmsesmsssmssssssssssssssssssssssssssssssasns 395
What IS PErfOrmManCe?coeeriernniresisessssssssesss s sssss e s sessssss s snssasssssssssnens 396
FUNCLiONal REQUIFEMENES......coviucceerrricereresree e s s s s sr e s e s e e s nsnns 396
RESPONSE TIME ...t e s et e e se e R e e e s nn s 397
TRROUGNPUL ... e e e e e e e e e e 397
ReSOUICE ULIIZALION.........ceeeeeeceeee e e e 397
Performance IS @ FEAUNE ... 398
L LT U E 0 (1T S 399
SEAUENCE DIAGIAMSe.eecriierecririe et e st sa s e se e s b et e e bbb e e Re e e e b e 400
The MAQIC Of ProOfilES.....ccvererererierrerererereseseseseresessssessesessssessesssssssssessssessssesassesssssssssssssssssessssesssnssaes 400
Benefits Of PrOfiliNg ..ot 401
INSTrUMENTALIONceeeecee s a e n e sn e e e e saneens 402
WhY iS ThiS Program SIOW? ..o e e s sas s ssssnns 402
Measurement INTFUSION ... —————————————— 404
L0 Lo T L0 404
Conditional COMPITALION.........c.ceeeeerrecrerer e 409
BUIlt=iN PrOfilErS....ccciiicisiiiisss s 409
Extended SQL Trace Data (EVENt 10046)........c.cuceeererrneseseressssenesessssesssessssssssessssssssessssssssssssssssssssssssenes 410
Instrumentation Library for Oracle (ILO)cocovererererereresesesesesesesesesesesesesesesesesesssessssssssssssssssssssssssssaens 410
Problem DidgnosSiS........ccrvrverieriennessensessessessesse s s e ses e s e se e s e s e s e e s e s snssassnssnsnnnns 414
MEENOU R ...ttt ettt 414
10 0. T 1] 416
Profiling EXAMPIE.......coeeeeceeeeerre et 419
SUMMAIY ...ttt e e e e e e e e e ae e s e ae e s s nn e e e nenrnaean 422

xiii

CONTENTS

Xiv

Chapter 14: Coding Conventions and Error Handlingc..ccccrnnssmennnnsssnnnnnsssnnns 425
Why c0oding CONVENTIONS?cvuiuiiiiiirisens s sesassns 425
FOrMAttingccccveercersercirsir s sn e r s r e r e sn e n e nn e nn e rennenne e 427
7 427
00T 31T 427
INAENTALION ... e e e e e 428
DYNAMIC COUEevererererere st e e e e n e 81
T 2T 432
STOred ProCRAUIEScucuccciirt i 433
1 T 0T 3o S 433
Parameters ... ———————————— 434
07] 435
LOCAI Vari@hIs ... 435
CONSTANTS ... s 435
L1770 T 436
GIODAI VANIADIES.......cuvrerencrsisiriess s e e e 436
Local Procedures and FUNCLIONS ..o ssssssssssesens 436
Procedure Metadata ..o s 436
1 T 0] 437
Error Handling........coceveerceiincinsersis s sn e sn s s snssn e snssnssnsnnnnns 437
(0T o] o] o OO TRPS SRR 438
(0T 2 T=T 010 o (1 TSRS 438
EITON BECOVEIY ...ttt sttt st ettt b e e e a e e a e s e e e a e b e e e s e e e e e s e e e e e e se e e e e e e e e ennans 440
Test First. DiSplay SECONG.ccverierererneere e s e rsrs s e s nn e s 441
SUMMAIY ...ttt s b e e e e e e e R e e e ae e s e en e e e nenrnae e 441

CONTENTS

Chapter 15: Dependencies and Invalidationsccucmmnnnssnnnmnisssssnmmssssnmnse. 445
(DT 0 T=T 0T (=T Ty A I8 1 T RS 445
Shortening Dependency Chains..........cccovvereniniernsenesnscse s ses e ssesesseens 452
Datatype REfErENCEccccvcercircirer i sn e nnnn 457
View for Table ARErations...........cococcerrnenrscsessese s eees 458
Adding Components into PACKAQESccocerrrerereriereseneressese e sse e ssesensens 462
Synonyms in Dependency ChaiNs.........cccouceeeenennsnsessnsessssssesssssssssssessessssessssssssssssens 466
RESOUICE LOCKING ..evueruererersersersessessessesessessessessessessesssssessessesssssssssssssssssssssssssssssssssnsens 466
Forcing Dependency in TrQOerS.....ccccuuuersersessnsans 467
Creating Triggers Disabled Initially..........c.ccooeeviernnriennsenesnessse e 471
3T 11142 473
1T 475

About the Authors

XVi

John Beresniewicz is a consulting member of the technical staff at Oracle headquarters in Redwood
Shores, CA. He joined Oracle in 2002 to work on Enterprise Manager in the database performance area
and has played significant role in the design of Diagnostic and Tuning packs, Real Application Testing,
Support Workbench, and Exadata. He has been a frequent speaker on database performance and
PL/SQL programming over many years at Oracle Openworld and other conferences. He is co-author of
Oracle Built-in Packages (O’Reilly & Associates, 1998) with Steven Feuerstein and is a founding member
of the OakTable network.

Adrian Billington is a consultant in application design, development, and performance tuning who
has been working with Oracle databases since 1999. He is the man behind www.oracle-developer.net, a
web site full of SQL and PL/SQL features, utilities, and techniques for Oracle developers. Adrian is also
an Oracle ACE and a member of the OakTable Network. He lives in the UK with his wife Anji and three
children Georgia, Oliver, and Isabella.

Martin Biichi has worked since 2004 as Lead Software Architect for Avaloq, a provider of a
standardized banking software built on the Oracle RDBMS with 11 million lines of PL/SQL code.
Together with two colleagues he defines the system architecture and reviews the designs and code of 170
full-time PL/SQL developers, looking for simplicity, efficiency, and robustness. Martin regularly speaks
at Oracle conferences. In 2009 he was named PL/SQL Developer of the Year by Oracle Magazine. Before
getting into the Oracle database, Martin worked in object-oriented systems, formal methods, and
approximate record matching. He holds an MSc from the Swiss Federal Institute of Technology and a
PhD from the Turku Center for Computer Science in Finland. In his spare time, Martin enjoys various
outdoor sports with his family.

Melanie Caffrey is a Senior Development Manager for Oracle Corporation, providing front-end and
back-end Oracle solutions for the business needs of various clients. She is co-author of several technical
publications including Oracle Web Application Programming for PL/SQL Developers, Oracle DBA
Interactive Workbook, and Oracle Database Administration: The Complete Video Course, all published by
Prentice Hall. She has instructed students in Columbia University's Computer Technology and
Applications program in New York City, teaching advanced Oracle database administration and PL/SQL
development. She is a frequent Oracle conference speaker.

Ron Crisco has been a software designer, developer, and project leader for 28 years and has worked
with Oracle databases for 21 years. He works at Method R Corporation, designing and developing
software, managing software products (like Method R Profiler, MR Tools, and MR Trace), consulting, and
teaching courses. His specialty is simplifying complex work, which is especially valuable in helping the
people around him accomplish extraordinary things.

ABOUT THE AUTHORS

Lewis Cunningham has been working in IT for over 20 years and has worked with Oracle databases
since 1993. His specialties are application design, database design, and coding of high volume, VLDB
databases. He is currently a Senior Database Architect at a financial services company in St Petersburg,
FL working on very large, high transaction rate analytical databases and applications. He spends an
inordinate amount of time keeping up with current technology and trends and speaking at user groups
and doing webinars. Lewis is also an Oracle ACE Director and Oracle Certified Professional. He has
written several articles for the Oracle Technology Network and maintains an Oracle technology blog at
http://it.toolbox.com/blogs/oracle-guide. Lewis has written two books: EnterpriseDB: The Definitive
Reference (Rampant Techpress, 2007) and SQL DML: The SQL Starter Series (CreateSpace, 2008). He lives
in Florida with his wife and two sons. You can contact him at lewisc@databasewisdom.com.

Dominic Delmolino is the Lead Oracle and Database Technologist for Agilex Technologies, a
consulting firm specializing in assisting government and private enterprises to realize the value of their
information. Dominic has over 24 years of database experience, including more than 20 years as an
Oracle Database Engineering and Development professional. He is a member of the Oak Table Network
and regularly presents at conferences, seminars, and user group meetings in Europe and the US. He also
maintains www.oraclemusings.com, a site focused on database coding and design practices related to
database application development. Dominic holds a Bachelor of Science degree in computer science
from Cornell University, Ithaca, NY.

Sue Harper is a Product Manager for Oracle SQL Developer and SQL Developer Data Modeler in the
Database Development Tools group. She has been at Oracle since 1992 and is currently based in
London. Sue is a regular contributor to magazines, maintains a technical blog, and speaks at many
conferences around the world. She has authored the technical book Oracle SQL Developer 2.1 (Packt
Publishing, 2009) When not at work, Sue is a keen walker and photographer. Sue takes time out to work
with a charity in the slums of New Delhi, where she works with the women and children.

Torben Holm has been in the computer business as a developer since 1987. He has been working with
Oracle since 1992; his first four years as system analyst and application developer (Oracle 7 and Forms
4.0/Reports 2.0 and DBA), then two years as developer (Oracle6/7, Forms 3.0 and RPT, and DBA). He
spent several years working for Oracle Denmark in the Premium Services group as a Senior Principal
Consultant performing application development and DBA tasks. He also worked as an instructor in
PL/SQL, SQL, and DBA courses. Torben now works for Miracle A/S (www.miracleas.dk) as a consultant
with a focus in application development (PLSQL, mod_plsql, Forms, ADF) and database administration.
He has been at Miracle A/S 10 years. He is an Oracle Certified Developer and a member of 0OakTable.net.

Connor McDonald has worked with Oracle since the early 1990s, cutting his teeth on Oracle versions
6.0.36 and 7.0.12. Over the past 11 years, Connor has worked with systems in Australia, the U.K.,
Southeast Asia, Western Europe, and the United States. He has come to realize that although the systems
and methodologies around the world are very diverse, there tend to be two common themes in the
development of systems running on Oracle: either to steer away from the Oracle-specific functions or to
use them in a haphazard or less-than-optimal fashion. It was this observation that led to the creation of
a personal hints and tips web site (www.oracledba.co.uk) and more presenting on the Oracle speaker
circuit in an endeavor to improve the perception and usage of PL/SQL in the industry.

xvii

ABOUT THE AUTHORS

Xviii

Arup Nanda has been an Oracle DBA since 1993, which has exposed him to all facets of database
administration, from modeling to disaster recovery. He currently leads the global DBA team at Starwood
Hotels, the parent of chains such as Sheraton and Westin, in White Plains, NY. He serves as a
contributing editor of SELECT Journal, the publication of Independent Oracle Users Group (IOUG);
speaks at many Oracle Technology events such as Oracle World and local user groups such as New York
Oracle User Group; and has written many articles for both print publications such as Oracle Magazine
and online publications such as Oracle Technology Network. Arup has coauthored two books: Oracle
Privacy Security Auditing (Rampant, 2003) and Oracle PL/SQL for DBAs (O'Reilly, 2005). Recognizing his
professional accomplishments and contributions to user community, Oracle chose him as the DBA of
the Year in 2003. Arup lives in Danbury, Connecticut, with his wife Anindita and son Anish. He can be
reached at arup@proligence.com.

Stephan Petit began his career in 1995 at CERN, the European Laboratory for Particle Physics, located
in Geneva, Switzerland. He is now in charge of a team of software engineers and students delivering
applications and tools to the laboratory and beyond. One of these tools is the Engineering and
Equipment Data Management System, also known as the CERN EDMS. Projects like CERN'’s Large
Hadron Collider (LHC) have a lifetime of 40 years or more. The EDMS is the digital engineering memory
of the laboratory. More than a million documents relating to more than a million pieces of equipment
are stored in the EDMS, which is also used as CERN’s Product Lifecycle Management (PLM) and Asset
Tracking system. EDMS is based almost entirely on PL/SQL and is intended to have a lifetime at least as
long as the LHC.

Stephan and his team have been polishing coding conventions and best practices in PL/SQL in
order to meet their very interesting mix of challenges: maintainability over decades, reliability, efficient
error handling, scalability, and reusability of the modules. These challenges are compounded by the
frequent rotation of team members, most of whom are students only temporarily at CERN. The oldest
piece of code was written in 1995 and is still in use — with success! Apart from polishing PL/SQL,
Stephan also enjoys being on stage from time to time as rock band singer at the CERN's rock & roll
summer festival and as actor in various plays.

Michael Rosenblum is a Software Architect/Development DBA at Dulcian, Inc. where he is
responsible for system tuning and application architecture. Michael supports Dulcian developers by
writing complex PL/SQL routines and researching new features. He is the co-author of PL/SQL for
Dummies (Wiley Press, 2006) and author of a number of database-related articles IOUG Select Journal,
ODTUG Tech Journal). Michael is an Oracle ACE, a frequent presenter at various regional and national
Oracle user group conferences (Oracle OpenWorld, ODTUG, IOUG Collaborate, RMOUG, NYOUG, etc),
and winner of the ODTUG Kaleidoscope 2009 Best Speaker Award. In his native Ukraine, he received the
scholarship of the President of Ukraine, a Master of Science degree in Information Systems, and a
diploma with honors from the Kiev National University of Economics.

Robyn Sands is a Software Engineer for Cisco Systems, where she designs and develops embedded
Oracle database products for Cisco customers. She has been working with Oracle since 1996 and has
extensive experience in application development, large system implementations, and performance
measurement. Robyn began her work career in industrial and quality engineering, and she has
combined her prior education and experience with her love of data by searching for new ways to build
database systems with consistent performance and minimal maintenance requirements. She is a
member of the OakTable Network and a coauthor of two books on Oracle: Expert Oracle Practices and
Pro Oracle SQL (both Apress, 2010). Robyn occasionally posts random blog entries at
http://adhdocddba.blogspot.com.

ABOUT THE AUTHORS

Riyaj Shamsudeen is the Principal Database Administrator and President of Oralnternals, a
performance/recovery/EBS11i consulting company. He specializes in real application clusters,
performance tuning, and database internals. He also frequently blogs about these technology areas in
his blog http://orainternals.wordpress.com. He is also a regular presenter in many international
conferences such as HOTSOS, COLLABORATE, RMOUG, SIOUG, UKOUG, etc. He is a proud member of
OakTable Network. He has over 16 years of experience using Oracle technology products and over 15
years as an Oracle/Oracle applications database administrator.

About the Technical Reviewers

Chris Beck has a degree in computer science from Rutgers University and has been working with
multiple DBMS’s for more than 20 years. He has spent the last 16 years as an Oracle employee where he
is currently a Master Principal Technologist focusing on core database technologies. He is a co-inventor
of two US Patents on software methodologies that were the basis for what is now known as Oracle
Application Express. Chris has reviewed other Oracle books including Expert One-On-One (Peer
Information Inc., 2001) and Expert Oracle Database Architecture (Apress, 2005), both by Tom Kyte and is
himself the co-author of two books, Beginning Oracle Programming (Wrox Press, 2005) and Mastering
Oracle PL/SQL (Apress, 2005). He resides in Northern Virginia with his wife Marta and four children;
when not spending time with them, he can usually be found wasting time playing video games or
watching Series A football.

Mike Gangler is a Database Specialist and Infrastructure Architect with over 30 years of data
processing industry experience, primarily as a Database Technical Lead, Systems Analyst, and DBA on
large corporate Information Systems projects. As a past President of the Detroit Oracle Users Group and
Ann Arbor Oracle User groups, and charter member of the Board of Directors of the International Oracle
Users Group, Mike has attained worldwide recognition as an accomplished and Certified Oracle DBA
and relational database expert.

Toon Koppelaars is a long-time Oracle technology user, having used the Oracle database and tools
software since 1987 (Oracle version 4). During this time, he has been involved in application
development and database administration. He is an ACE Director (database development) and frequent
speaker at Oracle-related events. He’s also the declarer of “The Helsinki Declaration (IT version)” which
describes a database-centric approach to modern application development. Together with Lex de Haan,
Toon has co-authored Applied Mathematics for Database Professionals (Apress, 2007).

Introduction

Rarely do I take the opportunity to introduce a book that I've helped create. Normally I am content with
my place in the background where book editors rightfully belong. I make an exception this time because
the content in this book brings back so many memories from own experiences as a developer in days
gone by.

Expert PL/SQL Practices is about wielding PL/SQL effectively. It's not a book about syntax. It’s a book
about how to apply syntax and features along with good development practices to create applications
that are reliable and scalable—and maintainable over the long term.

With any tool, one of the first things to know is when to wield it. Riyaj Shamsudeen deftly tackles the
question of when to use PL/SQL in his opening chapter Do Not Use!1 put that chapter first in the book
because of personal experience: My best-ever performance optimization success came in the late 1990s
when I replaced a stack of procedural code on a client PC with a single SQL statement, taking a job from
over 36 hours to just a couple of minutes. PL/SQL was not the culprit, but the lesson I learned then is
that a set-based approach—when one is possible—is often preferable to writing procedural code.

Michael Rosenblum follows with an excellent chapter on dynamic SQL, showing how to write code
when you don’t know the SQL statements until runtime. He reminded me of a time at Dow Chemical in
the early 1990s when I wrote a data-loading application for a medical record system using Rdb’s
Extended Dynamic Cursor feature set. I still remember that as one of the most fun applications that I
ever developed.

Dominic Delmolino tackles parallel processing with PL/SQL. He covers the benefits that you can
achieve as well as the candidate workloads. Just be careful, okay? One of my biggest-ever blunders as a
DBA was when I once unthinkingly set a degree of parallelism on a key application table in order to
make a single report run faster. It was as if the Enter key was connected to my telephone, because my
phone rang within about a minute of my change. The manager on the other end of the line was most
unpleased. Needless to say, I decided then that implementing parallelism deserved just a tad bit more
thought than I had been giving it. Dominic’s chapter will help you avoid such embarrassment.

Several chapters in the book cover code hygiene and good programming practices. Stephan Petit
presents a set of useful naming and coding conventions. Torben Holm covers PL/SQL Warnings and
conditional compilation. Lewis Cunningham presents a thought-provoking chapter on code analysis
and the importance of truly understanding the code that you write and how it gets used. Robyn Sands
helps you think about flexibility and good design in her chapter on evolutionary data modeling. Melanie
Caffrey tours the various cursor types available, helping you to make the right choice of cursor for any
given situation.

Other chapters relate to debugging and troubleshooting. Sue Harper covers PL/SQL unit testing,
especially the supporting feature set that is now built into SQL Developer. (I remember writing unit test
scripts on paper back in the day). Save yourself the embarrassment of regression bugs. Automated unit
tests make it easy and convenient to verify that you’ve not broken two new things while fixing one.

John Beresniewicz follows with a chapter on contract-oriented programming. A key part of John’s
approach is the use of asserts to validate conditions that should be true at various points within your
code. I first learned of the assert technique while doing PowerBuilder programming back in the Stone
Age. I've always been happy to see John promote the technique in relation to PL/SQL.

INTRODUCTION

xxii

Arup Nanda helps you get control over dependencies and invalidations. Dependency issues can be a
source of seemingly random, difficult-to-repeat application errors. Arup shows how to get control over
what must inevitably happen, so that you aren’t caught out by unexpected errors.

We could hardly leave performance and scalability out of the picture. Ron Crisco talks about
profiling your code to find the greatest opportunities for optimization. Adrian Billington talks about the
performance aspects of invoking PL/SQL from within SQL statements. Connor McDonald covers the
tremendous performance advantages available from bulk SQL operations.

An unusual aspect of scalability not often thought about is that of application size and the number
of developers. Is PL/SQL suited for large-scale development involving dozens, perhaps hundreds of
programmers? Martin Biichi shows that PL/SQL is very much up to the task in his chapter on PL/SQL
programming in the large by recounting his success with an 11-million line application maintained by
over 170 developers.

You can probably tell that I'm excited about this book. The authors are top notch. Each has written
on an aspect of PL/SQL that they are passionate and especially knowledgeable about. If you're past the
point of learning syntax, then sit down, read this book, and step up your game in delivering applications
using the full power of PL/SQL and Oracle Database.

Jonathan Gennick
Assistant Editorial Director, Apress

CHAPTER 1

Do Not Use

By Riyaj Shamsudeen

Congratulations on buying this book. PL/SQL is a great tool to have in your toolbox; however, you
should understand that use of PL/SQL is not suitable for all scenarios. This chapter will teach you when
to code your application in PL/SQL, how to write scalable code, and, more importantly, when not to
code programs in PL/SQL. Abuse of some PL/SQL constructs leads to unscalable code. In this chapter, I
will review various cases in which the misuse of PL/SQL was unsuitable and lead to an unscalable
application.

PL/SQL AND SQL

SQL is a set processing language and SQL statements scale better if the statements are written with set
level thinking in mind. PL/SQL is a procedural language and SQL statements can be embedded in PL/SQL
code.

SQL statements are executed in the SQL executor (more commonly known as the SQL engine). PL/SQL
code is executed by the PL/SQL engine. The power of PL/SQL emanates from the ability to combine the
procedural abilities of PL/SQL with the set processing abilities of SQL.

Row-by-Row Processing

In a typical row-by-row processing program, code opens a cursor, loops through the rows retrieved from
the cursor, and processes those rows. This type of loop-based processing construct is highly discouraged
as it leads to unscalable code. Listing 1-1 shows an example of a program using the construct.

Listing 1-1. Row-by-Row Processing

DECLARE
CURSOR c1 IS
SELECT prod_id, cust_id, time_id, amount_sold
FROM sales

CHAPTER 1/ DO NOT USE

WHERE amount_sold > 100;
cl_rec cl%rowtype;
1 cust_first_name customers.cust_first_name%TYPE;
1 cust_lasT name customers.cust_last_name%TYPE;
BEGIN
FOR c1_rec IN c1
Loop
-- Query customer details
SELECT cust_first_name, cust_last_name
INTO 1_cust_first name, 1 _cust_last_name
FROM customers
WHERE cust_id=c1_rec.cust_id;

-- Insert in to target table

INSERT INTO top_sales_customers (
prod_id, cust_id, time_id, cust_first_name, cust_last_name,amount_sold

)
VALUES
(
cl_rec.prod_id,
cl rec.cust_id,
cl _rec.time_id,
1 cust_first_name,
1 cust_last_name,
cl_rec.amount_sold
)
END LOOP;
COMMIT;
END;
/

PL/SQL procedure successfully completed.

Elapsed: 00:00:10.93

In Listing 1-1, the program declares a cursor cl, and opens the cursor implicitly using cursor-for-
loop syntax. For each row retrieved from the cursor c1, the program queries the customers table to
populate first_name and last_name to variables. A row is subsequently inserted in to the
top_sales_customers table.

There is a problem with the coding practice exemplified in Listingl-1. Even if the SQL statements
called in the loop are highly optimized, program execution can consume a huge amount of time.
Imagine that the SQL statement querying the customers table consumes an elapsed time of 0.1 seconds,
and that the INSERT statement consumes an elapsed time of 0.1 seconds, giving a total elapsed time of 0.2
seconds per loop execution. If cursor c1 retrieves 100,000 rows, then the total elapsed time for this
program will be 100,000 multiplied by 0.2 seconds: 20,000 seconds or 5.5 hours approximately.
Optimizing this program construct is not easy. Tom Kyte termed this type of processing as slow-by-slow
processing for obvious reasons.

CHAPTER 1 = DO NOT USE

Note Examples in this chapter use SH schema, one of the example schemas supplied by Oracle Corporation.
To install the example schemas, Oracle-provided software can be used. You can download it from http://
download.oracle.com/otn/solaris/oraclel1g/R2/solaris.sparc64 11gR2_examples.zip for 11gR2 Solaris
platform. Refer to the Readme document in the unzipped software directories for installation instructions. Zip files
for other platforms and versions are also available from Oracle’s web site.

There is another inherent issue with the code in Listing 1-1. SQL statements are called from PL/SQL
in aloop, so the execution will switch back and forth between the PL/SQL engine and the SQL engine.
This switch between two environments is known as a context switch. Context switches increase elapsed
time of your programs and introduce unnecessary CPU overhead. You should reduce the number of
context switches by eliminating or reducing the switching between these two environments.

You should generally avoid row-by-row processing. Better coding practice would be to convert the
program from Listing 1-1 into a SQL statement. Listing 1-2 rewrites the code, avoiding PL/SQL entirely.

Listing 1-2. Row-by-Row Processing Rewritten

-- Insert in to target table
INSERT
INTO top_sales_customers
(
prod_id,
cust_id,
time_id,
cust_first_name,
cust_last_name,
amount_sold

)

SELECT s.prod_id,
s.cust_id,
s.time_id,
c.cust_first_name,
c.cust_last_name,
s.amount_sold

FROM sales s,

customers c
WHERE s.cust_id = c.cust_id and
s.amount_sold> 100;

135669 rows created.

Elapsed: 00:00:00.26

http://download.oracle.com/otn/solaris/oracle11g/R2/solaris.sparc64_11gR2_examples.zip
http://download.oracle.com/otn/solaris/oracle11g/R2/solaris.sparc64_11gR2_examples.zip

CHAPTER 1/ DO NOT USE

The code in Listing 1-2, in addition to resolving the shortcomings of the row-by-row processing, has
a few more advantages. Parallel execution can be used to tune the rewritten SQL statement. With the use
of multiple parallel execution processes, you can decrease the elapsed time of execution sharply.
Furthermore, code becomes concise and readable.

Note If you rewrite the PL/SQL loop code to a join, you need to consider duplicates. If there are duplicates in the
customers table for the same cust_id columns, then the rewritten SQL statement will retrieve more rows then
intended. However, in this specific example, there is a primary key on cust_id column in the customers table, so
there is no danger of duplicates with an equality predicate on cust_id column.

Nested Row-by-Row Processing

You can nest cursors in PL/SQL language. It is a common coding practice to retrieve values from one
cursor, feed those values to another cursor, feed the values from second level cursor to third level cursor,
and so on. But the performance issues with a loop-based code increase if the cursors are deeply nested.
The number of SQL executions increases sharply due to nesting of cursors, leading to a longer program
runtime.

In Listing 1-3, cursors cl, c2, and c3 are nested. Cursor cl is the top level cursor and retrieves rows
from the table t1; cursor c2 is opened, passing the values from cursor c1; cursor c3 is opened, passing the
values from cursor c2. An UPDATE statement is executed for every row retrieved from cursor c3. Even if the
UPDATE statement is optimized to execute in 0.01 seconds, performance of the program suffers due to the
deeply nested cursor. Say that cursors cl, c2, and c3 retrieve 20, 50, and 100 rows, respectively. The code
then loops through 100,000 rows, and the total elapsed time of the program exceeds 1,000 seconds.
Tuning this type of program usually leads to a complete rewrite.

Listing 1-3. Row-by-Row Processing with Nested Cursors

DECLARE
CURSOR c1 AS
SELECT n1 FROM t1;
CURSOR c2 (p_n1) AS
SELECT n1, n2 FROM t2 WHERE ni=p_ni;
CURSOR c3 (p_n1, p_n2) AS
SELECT text FROM t3 WHERE ni=p_ni AND n2=p_n2;
BEGIN
FOR c1_rec IN c1
Loop
FOR c2_rec IN c2 (c1_rec.nl)
LooP
FOR c3_rec IN c3(c2_rec.nl, c2_rec.n2)
LooP
-- execute some sql here;
UPDATE .. SET ..where ni=c3_rec.n1 AND n2=c3_rec.n2;
EXCEPTION
WHEN no_data_found THEN

CHAPTER 1 = DO NOT USE

INSERT into.. END;
END LOOP;
END LOOP;
END LOOP;
COMMIT;
END;
/

Another problem with the code in the Listing 1-3 is that an UPDATE statement is executed. If the
UPDATE statement results in a no_data_found exception, then an INSERT statement is executed. It is
possible to offload this type of processing from PL/SQL to the SQL engine using a MERGE statement.

Conceptually, the three loops in Listing 1-3 represent an equi-join between the tables t1,t2, and t3.
In Listing 1-4, the logic is rewritten as a SQL statement with an alias of t. The combination of UPDATE and
INSERT logic is replaced by a MERGE statement. MERGE syntax provides the ability to update a row if it exists
and insert a row if it does not exist.

Listing 1-4. Row-by-Row Processing Rewritten Using MERGE Statement

MERGE INTO fact1 USING
(SELECT DISTINCT c3.n1,c3.n2
FROM t1, t2, t3

WHERE t1.n1 = t2.n1
AND t2.n1 = t3.n1
AND t2.n2 = t3.n2
) t

ON (facti.ni=t.n1 AND facti.n2=t.n2)
WHEN matched THEN
UPDATE SET .. WHEN NOT matched THEN
INSERT .. ;
COMMIT;

Do not write code with deeply nested cursors in PL/SQL language. Review it to see if you can write
such code in SQL instead.

Lookup Queries

Lookup queries are generally used to populate some variable or to perform data validation. Executing
lookup queries in a loop causes performance issues.

In the Listing 1-5, the highlighted query retrieves the country_name using a lookup query. For every
row from the cursor cl1, a query to fetch the country_name is executed. As the number of rows retrieved
from the cursor cl increases, executions of the lookup query also increases, leading to a poorly
performing code.

Listing 1-5. Lookup Queries, a Modified Copy of Listing 1-1

DECLARE
CURSOR c1 IS
SELECT prod_id, cust_id, time_id, amount_sold
FROM sales
WHERE amount_sold > 100;

CHAPTER 1/ DO NOT USE

1 cust_first name customers.cust first name%TYPE;
1 cust_last_name customers.cust_last_name%TYPE;
1 Country_id countries.country id%TYPE;
1 country name countries.country name%TYPE;
BEGIN
FOR c1_rec IN c1
LooP
-- Query customer details
SELECT cust_first_name, cust_last_name, country id
INTO 1 _cust_first name, 1 cust_last name, 1 _country id
FROM customers
WHERE cust_id=c1_rec.cust_id;

-- Query to get country_name

SELECT country_name

INTO 1_country_name

FROM countries WHERE country_id=1_country_id;

-- Insert in to target table
INSERT
INTO top_sales_customers

prod_id, cust_id, time_id, cust_first_name,
cust_last _name, amount_sold, country name

)

VALUES

(
c1 _rec.prod_id, c1_rec.cust_id, c1_rec.time_id, 1 _cust_first_name,
1 cust_last_name, c1_rec.amount_sold, 1_country name

)
END LOOP;
COMMIT;
END;
/
PL/SQOL procedure successfully completed.
Elapsed: 00:00:16.18

The example in Listing 1-5 is simplistic. The lookup query for the country_name can be rewritten as
ajoin in the main cursor c1 itself. As a first step, you should modify the lookup query into a join. In a real
world application, this type of rewrite is not always possible, though.

If you can’t rewrite the code to reduce the executions of a lookup query, then you have another
option. You can define an associative array to cache the results of the lookup query and reuse the array
in later executions, thus effectively reducing the executions of the lookup query.

Listing 1-6 illustrates the array-caching technique. Instead of executing the query to retrieve the
country_name for every row from the cursor cl, a key-value pair, (country_id, country_name) in this
example) is stored in an associative array named 1_country_names. An associative array is similar to an
index in that any given value can be accessed using a key value.

Before executing the lookup query, an existence test is performed for an element matching the
country_id key value using an EXISTS operator. If an element exists in the array, then the country_name
is retrieved from that array without executing the lookup query. If not, then the lookup query is executed
and a new element added to the array.

CHAPTER 1 = DO NOT USE

You should also understand that this technique is suitable for statements with few distinct values for
the key. In this example, the number of executions of the lookup query will be probably much lower as
the number of unique values of country_id column is lower. Using the example schema, the maximum
number of executions for the lookup query will be 23 as there are only 23 distinct values for the
country_id column.

Listing 1-6. Lookup Queries with Associative Arrays

DECLARE
CURSOR c1
IS
SELECT prod_id, cust_id, time_id, amount_sold
FROM sales WHERE amount_sold > 100;
1 country names country names_type;
1 Country_id countries.country id%TYPE;
1 country _name countries.country name%TYPE;
1 cust_first_name customers.cust_first_name%TYPE;
1 cust_lasT_name customers.cust_last_name%TYPE;
TYPE country_names_type IS
TABLE OF VARCHAR2(40) INDEX BY pls_integer;
1_country_names country_names_type;
BEGIN
FOR c1_rec IN c1 LOOP
-- Query customer details
SELECT cust_first _name, cust_last_name, country id
INTO 1_cust_first_name, 1_cust_last_name, 1_country id
FROM customers
WHERE cust_id=c1_rec.cust_id;
-- Check array first before executing a SQL statement

IF (1_country names.EXISTS(1_country id)) THEN

1_country_name := 1_country_names(1l_country_id);
ELSE

SELECT country_name INTO 1_country_name

FROM countries

WHERE country_id = 1_country_id;
-- Store in the array for further reuse

1_country_names(1_country_id) := 1_country_name;
END IF;

-- Insert in to target table

INSERT
INTO top_sales_customers

(
prod_id, cust_id, time_id, cust_first_name,
cust_last_name, amount_sold, country_ name

)

