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Preface

This volume is an outgrowth of a special summer term on “Harmonic analysis,
representation theory, and integral geometry”, hosted by the Max Plank Institute
for Mathematics (MPIM) and the then newly founded Hausdorff Research Institute
for Mathematics (HIM) in Bonn in 2007. It was organized and led by S. Gindikin
and B. Krötz with the help of O. Offen and E. Sayag. The purpose of this book is
to make an essential part of the activity from the summer term available to a wider
audience.
The book contains research contributions on the following themes: connecting

periods of Eisenstein series on orthogonal groups and double Dirichlet series
(Gautam Chinta and Omer Offen); vanishing at infinity of smooth functions on
symmetric spaces (Bernhard Krötz and Henrik Schlichtkrull); a formula involving
all the Rankin–Selberg convolutions of holomorphic and non-holomorphic cusp
forms (Jay Jorgenson and Jürg Kramer); a scheme of a new proof for the so-
called Helgason conjecture on a Riemannian symmetric space X DG=K of the
non-compact type (Simon Gindikin); an algorithm for the computation of special
unipotent representations attached to certain regular K-orbits on a flag variety of the
dual group (Dan Ciubotaru, Kyo Nishiyama, and Peter E. Trapa); applications of
symplectic geometry, particularly moment maps, to the study of arithmetic issues
in invariant theory (Marcus J. Slupinski and Robert J. Stanton); and restrictions of
representations of SL2.C/ to SL2.R/ treated in a geometric way, thus providing a
useful introduction to this research area (Birgit Speh and T. N. Venkataramana).
In addition, the volume contains three papers of an expository nature that should

be considered a bonus. The first, by Joseph Bernstein, is a course for beginners
on the representation theory of Lie algebras; experts can also benefit from this.
Although Feigin and Zelevinski published an expanded version of these notes, the
original from 1976, which is much more suitable for beginners, had never been
published. The second contribution, by Jacques Faraut, introduces the work of
Okounkov and Olshanski on the asymptotics of spherical functions on symmetric
spaces of a large rank. The third, by Yuri A. Neretin, is an introduction to the Stein–
Sahi complementary series.
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Marcus J. Slupinski IRMA, Université Louis Pasteur (Strasbourg), Strasbourg
Cedex, France

B. Speh Department of Mathematics, Cornell University, Ithaca, NY, USA

Robert J. Stanton Department of Mathematics, Ohio State University, Columbus,
OH, USA

Peter E. Trapa Department of Mathematics, University of Utah, Salt Lake City,
UT, USA

T.N. Venkataramana Tata Institute for Fundamental Research, Mumbai, India



On Function Spaces on Symmetric Spaces

Bernhard Krötz and Henrik Schlichtkrull

Abstract Let Y D G=H be a semisimple symmetric space. It is shown that the
smooth vectors for the regular representation of G on Lp.Y / vanish at infinity.

Keywords Smooth vectors • Decay of matrix coefficients • RiemannLebesgue
lemma • Symmetric spaces

Mathematics Subject Classification (2010): 43A85, 43A90, 46E35

1 Vanishing at Infinity

LetG be a connected unimodular Lie group, equipped with a Haar measure dg, and
let 1 � p <1. We consider the left regular representation L of G on the function
space Ep D Lp.G/.
Recall that f 2 Ep is called a smooth vector for L if and only if the map

G ! Ep; g 7! L.g/f

is a smooth Ep-valued map.
Write g for the Lie algebra of G and U.g/ for its enveloping algebra. The

following result is well known, see [3].
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2 B. Krötz and H. Schlichtkrull

Theorem 1. The space of smooth vectors for L is

E1p D ff 2 C1.G/ j Luf 2 Lp.G/ for all u 2 U.g/g:

Furthermore, E1p � C10 .G/, the space of smooth functions on G which vanish at
infinity.

Our concern is with the corresponding result for a homogeneous space Y of G.
By that we mean a connected manifold Y with a transitive action of G. In other
words,

Y D G=H

with H � G a closed subgroup. We shall require that Y carries a G-invariant
positive measure dy. Such a measure is unique up to scale and commonly referred
to as Haar measure. With respect to dy, we form the Banach spaces Ep WD
Lp.Y /. The group G acts continuously by isometries on Ep via the left regular
representation:

ŒL.g/f �.y/ D f .g�1y/ .g 2 G; y 2 Y; f 2 Ep/:

We are concerned with the space E1p of smooth vectors for this representation. The
first part of Theorem 1 is generalized as follows, see [3], Theorem 5.1.

Theorem 2. The space of smooth vectors for L is

E1p D ff 2 C1.Y / j Luf 2 Lp.Y / for all u 2 U.g/g:

We write C10 .Y / for the space of smooth functions vanishing at infinity. Our
goal is to investigate an assumption under which the second part of Theorem 1
generalizes, that is,

E1p � C10 .Y /: (1)

Notice that if H is compact, then we can regard Lp.G=H/ as a closed
G-invariant subspace of Lp.G/, and (1) follows immediately from Theorem 1.
Likewise, if Y D G regarded as a homogeneous space for G � G with the

left�right action, then again (1) follows from Theorem 1, since a left�right smooth
vector is obviously also left smooth.
However, (1) is false in general as the following class of examples shows.

Assume that Y has finite volume but is not compact, e.g. Y D Sl.2;R/=Sl.2;Z/.
Then the constant function 1Y is a smooth vector for Ep , but it does not vanish at
infinity.
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2 Proof by Convolution

We give a short proof of (1) for the case Y D G, based on the theorem of Dixmier
and Malliavin (see [2]). According to this theorem, every smooth vector in a Fréchet
representation .�;E/ belongs to the Gårding space, that is, it is spanned by vectors
of the form �.f /v, where f 2 C1c .G/ and v 2 E . Let such a vectorL.f /g, where
g 2 Ep D Lp.G/ be given. Then by unimodularity

ŒL.f /g�.y/ D
Z

G

f .x/g.x�1y/ dx D
Z

G

f .yx�1/g.x/ dx: (2)

For simplicity, we assume p D 1. The general case is similar. Let � � G be
compact such that jgj integrates to < � over the complement. Then for y outside of
the compact set suppf ��, we have

yx�1 2 suppf ) x … �;

and hence

jL.f /g.y/j � sup jf j
Z

x…�
jg.x/j dx � sup jf j �:

It follows that L.f /g 2 C0.G/.
Notice that the assumption Y D G is crucial in this proof, since the convolution

identity (2) makes no sense in the general case.

3 Semisimple Symmetric Spaces

Let Y D G=H be a semisimple symmetric space. By this, we mean:

• G is a connected semisimple Lie group with finite center.
• There exists an involutive automorphism � ofG such thatH is an open subgroup
of the group G� D fg 2 G j �.g/ D gg of �-fixed points.

We will verify (1) for this case. In fact, our proof is valid also under the more general
assumption that G=H is a reductive symmetric space of Harish–Chandra’s class,
see [1].

Theorem 3. Let Y D G=H be a semisimple symmetric space, and letEp D Lp.Y /
where 1 � p <1. Then

E1p � C10 .Y /:
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Proof. A little bit of standard terminology is useful. As customary we use the
same symbol for an automorphism of G and its derived automorphism of the Lie
algebra g. Let us write g D hC q for the decomposition in �-eigenspaces according
to eigenvaluesC1 and �1.
Denote by K a maximal compact subgroup of G. We may and shall assume

that K is stable under � . Write � for the Cartan-involution on G with fixed
point group K , and write g D k C p for the eigenspace decomposition for the
corresponding derived involution. We fix a maximal abelian subspace a � p \ q.
The simultaneous eigenspace decomposition of g under ad a leads to a (possibly

reduced) root system † � a�nf0g. Write areg for a with the root hyperplanes
removed, i.e.:

areg D fX 2 a j .8˛ 2 †/ ˛.X/ ¤ 0g:

LetM D ZH\K.a/ andWH D NH\K.a/=M .
Recall the polar decomposition of Y . With y0 D H 2 Y the base point of Y it

asserts that the mapping

� W K=M � a! Y; .kM;X/ 7! k exp.X/ � y0

is differentiable, onto and proper. Furthermore, the element X in the decomposition
is unique up to conjugation byWH , and the induced map

K=M �WH areg ! Y

is a diffeomorphism onto an open and dense subset of Y .
Let us return now to our subject proper, the vanishing at infinity of functions

in E1p . Let us denote functions on Y by lowercase roman letters, and by the
corresponding uppercase letters their pull backs toK=M�a, for exampleF D f ı�.
Then f vanishes at infinity on Y translates into

lim
X!1
X2a

sup
k2K
jF.kM;X/j D 0: (3)

We recall the formula for the pull back by � of the invariant measure dy on Y .
For each ˛ 2 † we denote by g˛ � g the corresponding root space. We note
that g˛ is stable under the involution �� . Define p˛ , resp. q˛, as the dimension
of the ��-eigenspace in g˛ according to eigenvalues C1;�1. Define a function
J on a by

J.X/ D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y

˛2†C
Œcosh ˛.X/�q˛ � Œsinh˛.X/�p˛

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
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With d.kM/ the Haar-measure on K=M and dX the Lebesgue-measure on a
one then gets, up to normalization:

��.dy/ D J.X/ d.k;X/ WD J.X/ d.kM/ dX:

We shall use this formula to relate certain Sobolev norms on Y and onK=M �a.
Fix a basis X1; : : : ; Xn for g. For an n-tupel m D .m1; : : : ; mn/ 2 Nn0 , we define
elements Xm 2 U.g/ by

Xm WD Xm1
1 � : : : �Xmn

n :

These elements form a basis for U.g/. We introduce the Lp-Sobolev norms on Y ,

Sm;�.f / WD
X

jmj�m

�

Z

�

jL.Xm/f .y/jp dy
�1=p

where � � Y , and where jmj WD m1 C : : : C mn. Then a function f 2 C1.Y /
belongs to E1p if and only if Sm;Y .f / <1 for all m.
Likewise, for V � a we denote

S�m;V .F / WD
X

jmj�m

�

Z

K�V
jL.Zm/F.kM; X/jp J.X/ d.k;X/

�1=p

:

Here Z refers to members of some fixed bases for k and a, acting from the left on
the two variables, and againm is a multiindex.
Observe that for Z 2 a we have for the action on a,

ŒL.Z/F �.kM;X/ D ŒL.Zk/f �.k exp.X/ � y0/;

whereZk WD Ad.k/.Z/ can be written as a linear combination of the basis elements
in g, with coefficients which are continuous on K . It follows that for every m there
exists a constant Cm > 0 such that for all F D f ı �,

S�m;V .F / � CmSm;�.f /; (4)

where� D �.K=M;V / D K exp.V / � y0.
Let � > 0 and set

a� WD fX 2 a j .8˛ 2 †/ j˛.X/j � �g:

Observe that there exists a constant C� > 0 such that

.8X 2 a�/ J.X/ � C�: (5)
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We come to the main part of the proof. Let f 2 E1p . We shall first establish that

lim
X!1
X2a�

F .eM; X/ D 0: (6)

It follows from the Sobolev lemma, applied in local coordinates, that the
following holds for a sufficiently large integer m (depending only on p and the
dimensions of K=M and a). For each compact symmetric neighborhood V of 0 in
a, there exists a constant C > 0 such that

jF.eM; 0/j

� C
X

jmj�m

�

Z

K=M�V
jŒL.Zm/F �.kM; X/jp d.k;X/

�1=p

(7)

for all F 2 C1.K=M � a/. We choose V such that a� C V � a�=2.
Let ı > 0. Since f 2 Ep, it follows from (4) and the properness of � that there

exists a compact set B � a with complement Bc � a, such that

S�m;Bc .F / � CmSm;�.f / < ı; (8)

where� D K exp.Bc/ � y0.
Let X1 2 a� \ .B C V /c . Then X1CX 2 a�=2 \Bc for X 2 V . Applying (7) to

the function
F1.kM;X/ D F.kM;X1 CX/;

and employing (5) for the set a�=2, we derive

jF.eM;X1/j

� C
X

jmj�m

�

Z

K=M�V
jŒL.Zm/F1�.kM;X/jp d.k;X/

�1=p

� C 0
X

jmj�m

�

Z

K=M�Bc
jŒL.Zm/F �.kM;X/jp J.X/ d.k;X/

�1=p

D C 0S�m;Bc .F / � C 0ı;

from which (6) follows.
In order to conclude the theorem, we need a version of (6) which is uniform for

all functionsL.q/f , for q in a fixed compact subsetQ of G.
Let ı > 0 be given, and as before let B � a be such that (8) holds. By the

properness of �, there exists a compact set B 0 � a such that

QK exp.B/ � y0 � K exp.B 0/ � y0:
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We may assume that B 0 is WH -invariant. Then for each k 2 K , X … B 0 and
q 2 Q we have that

q�1k exp.X/ � y0 … K exp.B/ � y0; (9)

since otherwise we would have

k exp.X/ � y0 2 qK exp.B/ � y0 � K exp.B 0/ � y0
and hence X 2 B 0.
We proceed as before, with B replaced by B 0, and with f , F replaced by fq D

Lqf , Fq D fq ı �. We thus obtain for X1 2 a� \ .B 0 C V /c ,

jFq.eM; X1/j � CS�m;.B0/c .Fq/ � C CmSm;�0.fq/

where�0 D K exp..B 0/c/ � y0.
Observe that for each X in g the derivative L.X/fq can be written as a linear

combination of derivatives of f by basis elements from g, with coefficients which
are uniformly bounded onQ. We conclude that Sm;�0.fq/ is bounded by a constant
times Sm;Q�1�0.f /, with a uniform constant for q 2 Q. By (9) and (8), we conclude
that the latter Sobolev norm is bounded from the above by ı.
We derive the desired uniformity of the limit (6) for q 2 Q,

lim
X!1
X2a�

sup
q2Q
jFq.eM;X/j D 0: (10)

Finally, we choose an appropriate compact set Q. Let C1; : : : ; CN � a be the
closed chambers relative to †. For each chamber Cj , we choose Xj 2 Cj such that
Xj C Cj � a� . It follows that

a D
N
[

jD1
.�Xj C a�/: (11)

Set aj D exp.Xj / 2 A and define

Q WD
N
[

jD1
ajK:

Note that for q D aj k we have

Fq.eM; X/ D F.k�1M;X �Xj /:
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Let ı > 0 be given. It follows from (10) that there exists R > 0 such that
jFq.eM; Y /j < ı for all q 2 Q and all Y 2 a� with jY j � R. For every X 2 a with
jX j � R C maxj jXj j, we have X 2 �Xj C a� for some j and jX C Xj j � R.
Hence for all k 2 K ,

jF.kM;X/j D jFq.eM; X CXj /j < ı;

where q D aj k�1. Thus,
lim
X!1F.kM;X/ D 0;

uniformly over k 2 K , as was to be shown. �

Remark. Let f 2 L2.Y / be aK-finite function which is also finite for the center of
U.g/. Then it follows from [4] that f vanishes at infinity. The present result is more
general, since such a function necessarily belongs to E12 .
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L-Functions of Cusp Forms and Maass Forms

Jay Jorgenson and Jürg Kramer

Abstract In previous articles, an identity relating the canonical metric to the
hyperbolic metric associated with any compact Riemann surface of genus at least
two has been derived and studied. In this article, this identity is extended to any
hyperbolic Riemann surface of finite volume. The method of proof is to study
the identity given in the compact case through degeneration and to understand
the limiting behavior of all quantities involved. In the second part of the paper,
the Rankin–Selberg transform of the noncompact identity is studied, meaning that
both sides of the relation after multiplication by a nonholomorphic, parabolic
Eisenstein series are being integrated over the Riemann surface in question. The
resulting formula yields an asymptotic relation involving the Rankin–Selberg
L-functions of weight two holomorphic cusp forms, of weight zero Maass forms,
and of nonholomorphic weight zero parabolic Eisenstein series.
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10 J. Jorgenson and J. Kramer

1 Introduction

1.1 Background

Beginning with the article [13], we derived and studied a basic identity, stated in
(1) below, coming from the spectral theory of the Laplacian associated with any
compact hyperbolic Riemann surface. In the subsequent papers, this identity was
employed to address a number of problems, including the following: Establishing
precise relations between analytic invariants arising in the Arakelov theory of
algebraic curves and hyperbolic geometry (see [13]), proving the noncompleteness
of a newly defined metric on the moduli space of algebraic curves of a fixed
genus (see [14]), deriving bounds for canonical and hyperbolic Green’s functions
(see [15]), and obtaining bounds for Faltings’s delta function with applications
associated with Arakelov theory (see [16]). In this article, we expand our application
of the results from [13] to analytic number theory. In brief, we first generalize
the identity (1) to general noncompact, finite volume hyperbolic Riemann surfaces
without elliptic fixed points; this relation is stated in equation (2) below. We then
compute the Rankin–Selberg convolution with respect to (2), and show that the
result yields a new relation involving Rankin–SelbergL-functions of cusp forms of
weight two and Maass forms, as well as the scattering matrix of the nonholomorphic
Eisenstein series of weight zero.

1.2 The Basic Identity

Let X denote a compact hyperbolic Riemann surface, necessarily of genus g � 2.
Let ffj g be a basis of the g-dimensional space of cusp forms of weight two, which
we assume to be orthonormal with respect to the Petersson inner product. Then
we set

	can.z/ D 1

g
� i
2

g
X

jD1
jfj .z/j2dz ^ dz

for any point z 2 X . Let
hyp denote the hyperbolic Laplacian acting on the space of
smooth functions on X , and K.t I z;w/ the corresponding heat kernel; set K.t I z/ D
K.t I z; z/. We use 	shyp to denote the .1; 1/-form of the constant negative curvature
metric on X such that X has volume one, and 	hyp to denote the .1; 1/-form of the
metric on X with constant negative curvature equal to �1. With this notation, the
key identity of [13] states

	can.z/ D 	shyp.z/C 1

2g

Z 1

0


hypK.t I z/ dt	hyp.z/ .z 2 X/: (1)
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The first result in this paper is to generalize (1) to general noncompact, finite volume
hyperbolic Riemann surfaces without elliptic fixed points. Specifically, if X is such
a noncompact, finite volume hyperbolic Riemann surface of genus g with p cusps
and no elliptic fixed points, then

	can.z/ D
�

1C p

2g

�

	shyp.z/C 1

2g

Z 1

0


hypK.t I z/ dt 	hyp.z/ .z 2 X/:
(2)

The proof of (2) we present here is to study (1) for a degenerating family of
hyperbolic Riemann surfaces and to use known results for the asymptotic behavior
of the canonical metric form 	can (see [12]), the hyperbolic heat kernel (see [18]),
and small eigenvalues and eigenfunctions of the Laplacian (see [21]).
In [2], the author extends the identity (2) to general finite volume quotients of

the hyperbolic upper half-plane, allowing for the presence of elliptic elements. The
proof does not employ degeneration techniques, as in this paper, but rather follows
the original method of proof given in [13] and [15]. The article [2] is part of the
Ph.D. dissertation completed under the direction of the second named author of the
present article.

1.3 The Rankin–Selberg Convolution

For the remainder of this article, we assume p > 0. Let P denote a cusp of X and
EP;s.z/ the associated nonholomorphic Eisenstein series of weight zero. In essence,
the purpose of this article is to evaluate the Rankin–Selberg convolutionwith respect
to (2), by which we mean to multiply both sides of (2) by EP;s.z/ and to integrate
over all z 2 X .
By means of the uniformization theorem, there is a Fuchsian group of the first

kind � 	 PSL2.R/ such thatX is isometric to �nH. Furthermore, we can choose �
so that the point i1 in the boundary of H projects to the cusp P , which we assume
to have width b. Writing z D x C iy, well-known elementary considerations then
show that the expression

Z

X

EP;s.z/	can.z/

D
Z

X

EP;s.z/

��

1C p

2g

�

	shyp.z/C 1

2g

Z 1

0


hypK.t I z/ dt 	hyp.z/
�

is equivalent to

Z 1

yD0

Z b

xD0
ys	can.z/

D
Z 1

yD0

Z b

xD0
ys
��

1C p

2g

�

	shyp.z/C 1

2g

Z 1

0


hypK.t I z/ dt 	hyp.z/
�

: (3)
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The majority of the computations carried out in this article are related to the
evaluation of (3). To be precise, for technical reasons we consider the integrals in
(3) multiplied by the factor 2gb�1��s�.s/�.2s/, where �.s/ is the �-function and
�.s/ is the Riemann �-function.

1.4 The Main Result

Having posed the problem under consideration, we can now state the main result of
this article after establishing some additional notation.
The cusp forms fj , being invariant under the map z 7! z C b, allow a Fourier

expansion of the form

fj .z/ D
1
X

nD1
aj;ne2�inz=b:

Following notations and conventions in [4], we let

eL.s; fj ˝ f j / D G1.s/ � L.s; fj ˝ f j /; (4)

where

G1.s/ D .2�/�2s�1�.s/�.s C 1/�.2s/;

L.s; fj ˝ f j / D
1
X

nD1

jaj;nj2
.n=b/sC1

:

As shown in [4], the Rankin–SelbergL-functioneL.s; fj ˝ f j / is holomorphic for
s 2 C with Re.s/ > 1, admits a meromorphic continuation to all s 2 C, and is
symmetric under s 7! 1 � s.
Let 'j be a nonholomorphic weight zero form which is an eigenfunction of
hyp

with eigenvalue j D sj .1 � sj /, hence sj D 1=2C irj . From [11], we recall the
expansion

'j .z/ D ˛j;0.y/C
X

n¤0
˛j;nWsj .nz=b/;

where

˛j;0.y/ D ˛j;0y1�sj ;

Wsj .w/ D 2
q

cosh.�rj /
p

jIm.w/jKirj .2�jIm.w/j/e2�iRe.w/ .w 2 C/;
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and K�.�/ denotes the classical K-Bessel function. Again, following notations and
conventions in [4], we let

eL.s; 'j ˝ 'j / D Grj .s/ � L.s; 'j ˝ 'j /;

where

Grj .s/ D s.1 � s/��2s�2
� s

2

�

�
� s

2
C irj

�

�
� s

2
� irj

�

�.2s/;

L.s; 'j ˝ 'j / D
X

n¤0

j˛j;nj2
.n=b/s�1

:

As shown in [4], the Rankin–Selberg L-function eL.s; 'j ˝ 'j / is holomorphic for
s 2 C with Re.s/ > 1, admits a meromorphic continuation to all s 2 C, and is
symmetric under s 7! 1 � s. Observe that our completed L-function eL.s; 'j ˝
'j / differs from the L-function defined in [4] because of the appearance of the
multiplicative factor s.1 � s/ in the definition of Grj .s/.
Similarly, one can define completed Rankin–SelbergL-functions associated with

the nonholomorphic Eisenstein series EP;s.z/ for any cusp P onX having a Fourier
expansion of the form

EP;s.z/ D ıP;1ys C �P;1.s/y1�s C
X

n¤0
˛P;s;nWs.nz=b/

with �P;1.s/ denoting the .P;1/-th entry of the scattering matrix.
With all this, the main result of this article is the following theorem. For any

" > 0 and s 2 C with Re.s/ > 1, define the ‚-function

‚".s/ D
X

j >0

cosh.�rj /e�j "

2j
eL.s; 'j ˝ 'j /

C 1

8�

X

P cusp

Z 1

�1
cosh.�r/e�.r2C1=4/"

r2 C 1=4
eL.s;EP;1=2Cir ˝ EP;1=2Cir/ dr

and the universal function

F".s/ D �.s/bs�1

2�2

Z 1

0

r sinh.�r/e�.r2C1=4/"

r2 C 1=4 Gr.s/ dr:
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Then the L-function relation involving Rankin–Selberg L-functions of cusp forms
and Maass forms

lim
"!0

�

‚".s/ � F".s/
	

D
g
X

jD1
eL.s; fj ˝ f j / � 4��.s/bs�1G1.s/� ��s

2s

s C 1�.s/�.2s/�1;1
�

s C 1
2

�

(5)

holds true. By taking " > 0 in (5), one has an error term which is o.1/ as "
approaches zero. This error term is explicit and given in terms of integrals involving
the hyperbolic heat kernel.
A natural question to ask is to what extent the relation of L-functions (5) implies

relations between the Fourier coefficients of the holomorphic weight two forms
and the Fourier coefficients of the Maass forms under consideration. In general,
extracting such information from a limiting relationship such as (5) could be very
difficult. However, as stated, our analysis yields an explicit expression for the error
term by rewriting (5) for a fixed " > 0, which allows for additional considerations.
The problem of using (5) to study possible relations among the Fourier coefficients
is currently under investigation.

1.5 General Comments

If X is the Riemann surface associated with a congruence subgroup, then the
series �1;1.s/ can be expressed in terms of Dirichlet L-functions associated with
even characters with conductors dividing the level (see [8] or [10]). With these
computations, one can rewrite (5) further so that one obtains an expression involving
Rankin–Selberg L-functions associated with cusp forms of weight two, Maass
forms, nonholomorphic Eisenstein series, and classical zeta functions. However,
the relation stated in (5) holds for any finite volume hyperbolic Riemann surface
without elliptic fixed points. In order to eliminate the restriction that X has no
elliptic fixed points, one needs to revisit the proof of (2), and possibly (1), in order
to allow for elliptic fixed points. As stated above, this project currently is under
investigation in [2]; however, we choose to focus in this paper on deriving (5) with
the simplifying assumption that X has no elliptic fixed points in order to draw
attention to the presence of an L-function relation coming from the basic identity
(2). We will leave for future work the generalization of (2) to arbitrary finite volume
hyperbolic Riemann surfaces, which may have elliptic fixed points, and derive the
relation analogous to (5).
From Riemannian geometry, theta functions naturally appear as the trace of a

heat kernel, and the small time expansion of the heat kernel has a first-order term
which is somewhat universal and a second-order term which involves integrals of
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a curvature of the Riemannian metric. In this regard, (5) suggests that the sum of
Rankin–SelbergL-functions

g
X

jD1
eL.s; fj ˝ f j /

represents some type of curvature integral relative to the theta function ‚".s/.
Further investigation of this heuristic observation is warranted.

1.6 Outline of the Paper

In Sect. 2, we recall necessary background material and establish additional nota-
tion. In Sect. 3, we prove (2) and further develop the identity (2) using the spectral
expansion of the heat kernel K.t I z;w/. In Sect. 4, we evaluate the integrals in
(3) using the revised analytic expressions of (2), and in Sect. 5, we gather the
computations from Sect. 4 and prove (5).

2 Notations and Preliminaries

2.1 Hyperbolic and Canonical Metrics

Let � be a Fuchsian subgroup of the first kind of PSL2.R/ acting by fractional linear
transformations on the upper half-plane H D fz 2 C j z D x C iy; y > 0g. We let
X be the quotient space �nH and denote by g the genus of X . We assume that �
has no elliptic elements and that X has p � 1 cusps. We identify X locally with its
universal coverH.
In the sequel 	 denotes a (smooth) metric on X , i.e., 	 is a positive .1; 1/-form

on X . In particular, we let 	 D 	hyp denote the hyperbolic metric on X , which is
compatible with the complex structure of X , and has constant negative curvature
equal to �1. Locally, we have

	hyp.z/ D i

2
� dz ^ dz

y2
:

We write volhyp.X/ for the hyperbolic volume of X ; recall that volhyp.X/ is given
by 2�.2g � 2C p/. The scaled hyperbolic metric 	 D 	shyp is simply the rescaled
hyperbolic metric 	hyp=volhyp.X/, which measures the volume of X to be one.
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Let Sk.�/ denote the C-vector space of cusp forms of weight k with respect to
� equipped with the Petersson inner product

hf; gi D i

2

Z

X

f .z/ g.z/ yk
dz ^ dz

y2

�

f; g 2 Sk.�/
	

:

By choosing an orthonormal basis ff1; :::; fgg of S2.�/with respect to the Petersson
inner product, the canonical metric 	 D 	can of X is given by

	can.z/ D 1

g
� i
2

g
X

jD1
jfj .z/j2 dz ^ dz:

We denote the hyperbolic Laplacian on X by 
hyp; locally, we have


hyp D �y2
�

@2

@x2
C @2

@y2

�

: (6)

The discrete spectrum of 
hyp is given by the increasing sequence of eigenvalues

0 D 0 < 1 � 2 � : : :

2.2 Modular Forms, Maass Forms, and Eisenstein Series

Throughout we assume, as before, that the cusp width of the cusp i1 equals b.
In Sect. 1.4, we established the notation for holomorphic cusp forms of weight two
and Maass forms with respect to � , as well as the corresponding Rankin–Selberg
L-functions, so we do not repeat the discussion here.
The eigenfunctions for the continuous spectrum of 
hyp are provided by the

Eisenstein series EP;s0 (associated with each cusp P of X ) with eigenvalue  D
s0.1 � s0/, hence s0 D 1=2C ir (r 2 R). They have Fourier expansions of the form

EP;s0.z/ D ˛P;s0 ;0.y/C
X

n¤0
˛P;s0 ;nWs0.nz=b/;

where

˛P;s0 ;0.y/ D ıP;1ys0 C �P;1.s0/y1�s0 ;
Ws0.w/ D 2

p

cosh.�r/
p

jIm.w/jKir.2�jIm.w/j/e2�iRe.w/ .w 2 C/I

here ıP;1 is the Kronecker delta and �P;1.s0/ is the .P;1/-th entry of the
scattering matrix (see [11]). For example, the function �1;1.s0/ is given by a
Dirichlet series of the form
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�1;1.s0/ D
p
�
�.s0 � 1=2/
�.s0/

1
X

nD1

an

	2s
0

n

; (7)

where the quantities an and 	n are explicitly given in [11], p. 60.
For s 2 C, Re.s/ > 1, we define the completed Rankin–Selberg L-function

attached to EP;s0 by

eL.s;EP;s0 ˝EP;s0 / D Gr.s/ � L.s;EP;s0 ˝ EP;s0/; (8)

where

Gr.s/ D s.1 � s/��2s�2
� s

2

�

�
� s

2
C ir

�

�
� s

2
� ir

�

�.2s/;

L.s; EP;s0 ˝ EP;s0 / D
X

n¤0

j˛P;s0 ;nj2
.n=b/s�1

:

2.3 Hyperbolic Heat Kernel and Variants

The hyperbolic heat kernel KH.t I z;w/ (t 2 R>0; z;w 2 H) on H is given by the
formula

KH.t I z;w/ D KH.t I �/ D
p
2e�t=4

.4�t/3=2

Z 1

�

re�r2=.4t/
p

cosh.r/� cosh.�/ dr;

where � D dhyp.z;w/ denotes the hyperbolic distance from z to w. The hyperbolic
heat kernel K.t I z;w/ (t 2 R>0; z;w 2 X ) on X is obtained by averaging over the
elements of � , namely

K.t I z;w/ D
X

�2�
KH

�

t I z; �.w/	:

The heat kernel on X satisfies the equations

�

@

@t
C
hyp;z

�

K.t I z;w/ D 0 .w 2 X/;

lim
t!0

Z

X

K.t I z;w/ f .w/ 	hyp.w/ D f .z/ .z 2 X/

for all C1-functions f on X . As a shorthand, we write K.t I z/ D K.t I z; z/.
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With the notations from Sect. 2.2, we introduce the modified heat kernel function

Kcusp.t I z/ D K.t I z/ �
X

0�j <1=4
j˛j;0j2y2�2sj e�j t

� 1

4�

X

P cusp

Z 1

�1
jıP;1y1=2Cir C �P;1.s/y1=2�irj2e�.r2C1=4/tdr: (9)

Denoting by �1 the stabilizer of the cusp 1, we can define the following partial
heat kernel functions

K0.t I z/ D
X

�2�n�1
KH

�

t I z; �.z/	; (10)

K1.t I z/ D
X

�2�1
KH

�

t I z; �.z/	 (11)

giving rise to the decomposition

K.t I z/ D K0.t I z/CK1.t I z/:

3 The Fundamental Identity

In this section, we derive the identity (2) by studying the relation (1) for a
degenerating family of compact hyperbolic Riemann surfaces. The corresponding
statement is proven in Lemma 3.1. In the remainder of the section, we manipulate
the terms in (2) assuming p > 0 in order to obtain an equivalent formulation of the
relation which then will be suited for our computations in the subsequent sections.
Specifically, we first express the heat kernel on the underlying Riemann surface in
terms of its spectral expansion, which involves Maass forms and nonholomorphic
Eisenstein series, and we remove the terms associated with the constant terms in
the Fourier expansions of the Maass forms and the nonholomorphic Eisenstein
series (see Proposition 3.3). We then express the heat kernel as a periodization
over the uniformizing group and remove the contribution from the parabolic
subgroup associated with a single cusp (see Lemma 3.8 as well as the preliminary
computations and remarks). The main result of this section is Theorem 3.9.

Lemma 3.1. With the above notations, we have

	can.z/ D
�

1C p

2g

�

	shyp.z/C 1

2g

Z 1

0


hypK.t I z/ dt 	hyp.z/: (12)


