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To the memory of
ALFRED L. FOSTER,

who set me to work
representing algebras.





Preface

My involvement in the line of research leading to this book began in 1963
when I was a graduate student working under the direction of Alfred Foster,
and was first learning about representing algebras as subdirect products.
In particular, for a starter I learned that Stone’s representation theorem
was valid not just for Boolean algebras but for any class of algebras satis-
fying the identities of a primal algebra. Foster perceived in these algebras a
Boolean part whose representation theory could be levered into represent-
ing many other kinds of algebras.

The broad motivation was to break up a complicated algebra into sim-
pler pieces; if the pieces could be understood, then hopefully so could the
whole algebra. The obvious decomposition to try first is a direct product.
The advantage of direct products is the simplicity of their construction.
The overwhelming disadvantage is that most algebras are indecomposable
in this sense, and even when decomposable there may be no ultimate re-
finement. Subdirect products overcome both of these liabilities, as first
demonstrated by Garrett Birkhoff.

The main drawback to subdirect products is that, while factors may be
commonplace and well understood, the transfer of an argument from the
components to the whole algebra may fail because one may not know in suf-
ficient detail how the components fit together to form the original algebra.
Thus one grafts topological spaces onto subdirect products to form signifi-
cantly superior sheaves. Elements of the subdirect product become contin-
uous functions, and are easier to recognize. Boolean spaces are often used
since they arise naturally in representing Boolean algebras and have been
the key to many other representation theorems. However, the topological
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VIII Preface

spaces of algebra are intuitively quite different from the more traditional
topological spaces such as manifolds with a local Euclidean topology. They
may be totally disconnected or not even Hausdorff.

The question we address then is, how far can one go in representing
arbitrary algebras by sheaves over general topologies, and in particular
Boolean spaces? The overall structure of a given algebra should come from
a systematic synthesis of the components, that is, the stalks of the sheaf.
Many questions about any algebra in such a class should be answerable
by analyzing locally what is happening in the components, rather than
working globally with formulas over the whole algebra.

My first exposure to sheaves over Boolean spaces was in a seminar run
by Joseph Kist in the spring of 1972, in which he presented the seminal
paper of Stephen Comer. Here I learned of the rich and productive world
of ring spaces as expounded by Richard Pierce in his memoir.

It was in this seminar that I discovered factor elements, which generalize
central idempotents in rings, and how they correspond to factor congru-
ences. Later, factor bands, ideals, and sesquimorphisms were added. The
goal was to extend the classical representation of regular commutative rings
as subdirect products of fields.

Although general tools are developed, applicable to all algebras, the best
efforts come from settling on those that I dub ‘shells’, which assert the
existence of a zero and a one for a multiplicative operation and perhaps
an addition that otherwise need not satisfy any of the usual identities such
as commutativity and associativity. In this context, one can generalize well
beyond ring theory a number of classical results on biregularity, strong
regularity, and lack of nilpotents.

This monograph adapts the intuitive idea of a metric space to universal
algebra, leading to the useful device of a complex. Then a sheaf is con-
structed directly from a complex.

The core of this book does not look at all congruences of an algebra,
but at only some of them comprising a Boolean subsemilattice of congru-
ences, and more typically, at others splitting the algebra into a product of
complementary factors. Thus there are no restrictions on the whole lattice
of congruences, but only on parts of it. This is one of the themes of this
monograph.

Over the course of time, terms and notations tend to grow like Topsy.
In synthesizing disparate fields and even extending them, inconsistencies
across them pose a dilemma for an author. Should he completely stream-
line the terminology, thereby shutting out the casual reader who is merely
browsing but already knows something of the traditional notation? Or,
should he leave every term as it has originally arisen, thereby making it
difficult for the serious reader to correlate similar ideas? I have taken a
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middle course, respecting most terms and notations already in the liter-
ature, but occasionally changing some to better reflect the overall pic-
ture. For example, congruences that permute elsewhere commute here since
other internal factor objects, such as idempotent endomorphisms, always
commute when creating a product. But I left unchanged directly indecom-
posable and subdirectly irreducible, although one ought to have a common
root word for the many kinds of algebraic atoms. The definitions of the
rather general algebras, shells and half-shells, have broadened over time as
weaker and weaker conditions were observed to create sheaves that would
accomplish most of the same ends. Nullity is used for an element annihi-
lating a binary operation as a zero does in ring theory. And unity is the
term used where others might use ‘unit element’ or ‘identity;’ it even means
‘object’ in categories. Likewise, the adjective unital adds a unity to a ring
or shell.

Many exercises and problems have been included. The distinction be-
tween them is as follows. On the one hand, the exercises come from notes I
wrote to myself while trying to understand the relationships between new
concepts. There was no attempt to create other exercises that might fill
out the book; thus the density of exercises varies from section to section.
The reader may enjoy more healthy exercise by filling in wherever a proof
trails off with a phrase such as ‘straightforward to prove’, ‘trivial’, or ‘left
to the reader’. This is especially so in the categorical sections establishing
adjointness and equivalence.

On the other hand, the problems are open questions that I have not
resolved because I did not take the time. Thus, such problems may range
from the trivial to the significant, perhaps to promising research to pursue.
I have not attempted to distinguish these possibilities.

As for prerequisites, a reader should have a nodding acquaintance with
universal algebra, logic, categories, topology, and Boolean algebra. By re-
calling useful facts about these topics, prerequisites have been kept to a
minimum. All concepts beyond these are defined. However, as the goal is
new theorems, and the ideas already in the literature are lightly illustrated
here, the prospective reader will be well motivated if he is familiar with
some of the classical results that are being generalized.

I am thankful to the participants who asked penetrating questions in
algebra seminars at New Mexico State University, Tennessee Technological
University, the University of Tennessee and Vanderbilt University; some of
these led to additional insights and examples. Fruitful conversations with
Joseph Kist have cleared up a number of murky points. Mai Gehrke pointed
out non sequiturs, and shortened several long-winded proofs. Isadore Fleis-
cher corrected several of the early chapters. Paul Cohn offered suggestions
on the history of the subject, and Ross Willard pointed out a significant
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extension of the concept of a shell. Diego Vaggione quickly dispatched sev-
eral of the original open problems. All of these, including three anony-
mous reviewers, deserve warm handshakes for their many comments and
thought-provoking suggestions. As for remaining faux pas that I should
have caught, may the sympathetic reader forgive me for any difficulties
they might cause.

Albuquerque, New Mexico Arthur Knoebel
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I
Introduction

This chapter has two sections. The first is a history of the ideas and previous
theorems upon which this monograph is based. The second is a survey of
the principal results presented in this book.

1. History

To set the stage, we take a short historical jaunt. This will not be a literal,
detailed history, but a genetic reconstruction of key events that have come
to play a role in this book. There are three areas, as befits its title: sheaves,
algebras, and Boolean algebras. We begin with the last.

The attempt to decompose an involved problem into workable parts is
an old one – it is called the reductionist philosophy. A good starting point
for examining attempts at symbolic decomposition is the work of Gottfried
von Leibniz [Leib66] [Mido65]. While his efforts did not lead directly to
the analysis of algebras, the motivations and flawed solutions shed light on
our work in this book. Leibniz’s dream of a universal calculus of logic for
deriving facts mechanically by combining together basic concepts is, in a
sense, a precursor of Boolean algebra.

This view that algebra could carry the burden of logical manipulation
is already seen in George Peacock’s definition of algebra as “the science
of general reasoning by symbolical language”. [Peac30, p. 1] A part of
this dream was realized independently by Boole [Bool47] and Augustus
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2 I. Introduction

De Morgan [DeMo47] [MacH85, pp. 68–71]. Boole’s book developed an
algebra of logic, which bears his name, although ‘Boolean algebras’ today
are not what he described [Burr00].

We have mentioned Boolean algebras at the outset since they will subse-
quently provide a calculus for decomposing algebras by sheaves. At a higher
and more powerful level of logic, the successful application of the first-order
predicate calculus to mathematics came later; but unfortunately this does
not solve problems in the generality envisioned by Leibniz. Kurt Gödel and
Jacques Herbrand showed how limited automatic problem solving could be
[Mend64].

Having discussed an algebra of logic, we now move on to the discoveries
in linear algebra, such as quaternions, vectors and exterior algebras, which
paved the way to modern algebra. Hermann Grassmann [Gras44], William
Hamilton [Hami44], and later Benjamin Peirce [Peir70], J. Willard Gibbs,
[Gibb81] and Oliver Heaviside [Heav93] invented and studied many dif-
ferent kinds of linear algebras, thereby opening a path to the study of non-
commutative and nonassociative systems. Peirce introduced what is now
called the right Peirce decomposition of a linear algebra: A D iAC.1� i/A,
for an idempotent i , which need not be central. Also important as an-
other example of a noncommutative system is Arthur Cayley’s [Cayl54]
attempted axiomatization of abstract groups, which arose from the study
of the permutation of roots of a polynomial equation.

In another direction, Richard Dedekind [Dede97] first recognized the
notion of a lattice in the context of number theory. Lattice theory is signif-
icant for our history in providing us with laws similar to but not identical
with those of arithmetic, and in generalizing Boolean algebras to nonlogi-
cal examples. The history of algebra in the nineteenth century is rich and
varied; there is much we could mention that would lead into our research,
but, to keep this part of the book short, we refer the interested reader to
the fine histories of Luboš Nový [Nový73] and B. L. van der Waerden
[vdWa85].

11111
The twentieth century saw the flowering of six fields that have influenced

our work and provided examples: rings, lattices, universal algebra, alge-
braic geometry, sheaf theory, and functional analysis. The oldest of these
fields is commutative ring theory.1 We mention two papers as samples of
the influence of David Hilbert and Emmy Noether on the development of
modern algebra with its distinctive perspective and abstract axiomatics.
Hilbert’s work [Hilb96] on invariants cut through the Gordian knot of
case-by-case construction of bases for polynomial invariants by indirect,
qualitative methods – non-constructive, if you like.

1Rings are assumed, in this section, to have a unity, since historically they always had
one; otherwise, throughout the rest of this monograph, they will not, unless designated
‘unital’.
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A most significant event in the history of modern algebra occurred with
the publication of Noether’s [1921] Idealtheorie in Ringbereichen. Noether’s
mathematical philosophy [Noet21] was to replace arguments that manipu-
lated elements by structural proofs using ideals, thereby creating a powerful
theory predicated only on the ascending chain condition on ideals. Here,
for the first time, an ideal in an abstract ring is decomposed as a product
of primary ideals. This notion was systematized by Wolfgang Krull into a
principle: whether a ring R is indecomposable in a certain sense is equiva-
lent to determining whether the intersection of a certain class of ideals in R

is the null ideal [Krull35]. This idea was exploited by Garrett Birkhoff as
the construction of subdirect products in the context of universal algebra
[Birk44].

Another perspective on looking for representations is to specify the kind
of rings we want to draw components from and the candidates in the way of
ideals and congruences that are initially proposed to obtain these building
blocks. A classic example is the class of semisimple rings. The factors must
be quotients by maximal ideals whose intersection is the trivial ideal. But
in general the intersection of all maximal ideals is not the zero ideal –
witness local rings – so the representation is not faithful. Historically, to
overcome this, one appropriately restricts the class of rings, for example, to
those that are Artinian (that is, they satisfy a descending chain condition
on ideals) and contain no nilpotent ideals other than the null ideal. The
Wedderburn-Artin theorem then concludes that such a ring is a direct sum
of a finite number of ideals each of which is isomorphic to the ring of all
linear transformations of a finite-dimensional vector space over a division
ring [Jaco80, vol. 2, p. 203].

In 1929, Krull was one of the first to attain theorems without chain
conditions; these had the advantage of giving representations with an in-
finite number of factors [Krull29]. Gottfried Köthe defines the notion of
a transcendent reducible ring and proves that each transcendent reducible
commutative ring is a direct product of fields [Köthe30, p. 548]. Here, we
see the first theorem in which the quotients have no divisors of zero, which
will be a recurring theme later in this book. John von Neumann defined
regularity of rings and discovered the isomorphism of the lattice of factors
with the lattice of central idempotents [vonN36].

11111
In 1936, Marshall Stone found his far-reaching representation theorem

for Boolean algebras and rings: every such algebra is a subdirect power of
a two-element algebra [Stone36]. Thus, the kernel into which all Boolean
algebras decompose is the two-element Boolean algebra (or ring) of tra-
ditional truth values. Stone’s paper is the spur and inspiration for much
of the work that leads to the work explored in this monograph. Compare
the length of Stone’s original paper to Birkhoff’s much shorter proof of the
same result [Birk44]; this is a considerable distillation to take place within
a decade. In Stone’s paper of the next year, he explored the duality between
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Boolean algebras and Boolean spaces [Stone37]. The power of this theory
to tackle problems about Boolean algebras by going to their correspond-
ing Boolean spaces was subsequently illustrated by Paul Halmos [Halm63,
chap. 28], when he used it to demonstrate William Hanf’s result that Bool-
ean algebras need not have unique roots, in the sense that A2 Š B2 need
not imply A Š B [Hanf57].

Representing Boolean algebras both as rings of sets and topological
spaces stimulated a number of mathematicians. Over a two-year period,
1937–1938, several papers appeared, apparently independently of each
other, giving subdirect representations of special classes of commutative
regular rings in terms of fields, without assuming either the ascending or
descending chain conditions on ideals. The first result of this kind was the
theorem of Neal McCoy and Deane Montgomery, who proved that any p-
ring (commutative, px D 0 and xp D x) is a subdirect product of prime
fields Zp [McCMo37]. A theorem of this type without regard to char-
acteristic is due to McCoy for commutative rings: any commutative, von
Neumann regular ring is a subdirect product of fields [McCoy38]. More
generally, McCoy, using a lemma of [Krull29], showed that any commu-
tative ring without nilpotent elements is a subdirect product of integral
domains. Since each integral domain is embeddable in a field, it follows
that any such ring is a subring of a direct product of fields. Birkhoff sys-
tematized the presentation of such results by proving a lemma suggested
by McCoy: a subdirectly irreducible commutative ring without nilpotents
is a field [Birk44]. Shortly thereafter, Alexandra Forsythe and McCoy ex-
tended this result to the noncommutative case: any regular ring without
nilpotents is a subdirect product of division rings [ForMc46].

Since we will be talking about variants of regular rings shortly, we should
mention the relationship between regularity and nilpotents in the case of
a commutative ring R. On the one hand, it is easy to show that if R is
regular, then it has no nilpotent elements. On the other hand, by the result
of McCoy above, if R has no nilpotent elements, then it is a subring of a
product of fields, which are always regular. Hence, if R has no nilpotent
elements, then R is embeddable in a regular ring, still having no nilpotents.

Richard Arens and Irving Kaplansky give examples showing that, in the
noncommutative case, biregular rings and regular rings are independent no-
tions [AreKa48]. They prove in their theorem 6.2 that, if A is an algebra
over the field GF .p/ in which every element a of A satisfies the equation
ap

n D a for a fixed n, then there is a locally compact, zero-dimensional
space X with a homeomorphism � for which �n D 1, such that A is iso-
morphic to the algebra of all continuous functions f from X to GF .pn/

that vanish outside a compact set and respect � : f .�x/ D Œf .x/�p . The
authors go on to concoct a counterexample built around GF .4/ showing
that the equation, a4 D a, is necessary.
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Reinhold Baer studied the condition that each annihilator is generated by
a projection, which will be significant in some of our applications [Baer52].
Somewhat earlier, the application of topological methods to non-Boolean
rings began with Israel Gel’fand and George Šilov generalizing the Stone
topology of prime ideals in Boolean rings to commutative normed rings
[Gel’Ši41]. Shortly thereafter, Nathan Jacobson generalizes the Stone
topology by adapting it to the set of primitive ideals in an arbitrary ring,
not necessarily with a unity [Jaco45]. It is no longer Hausdorff; but if there
is a unity, it will still be compact.

11111
The writing of a history of representing general algebras is complicated by

the history not being linear. Instead, the history may be thought of as more
like a braided stream with many strands and rivulets, some of them running
in parallel, some bifurcating, and others merging back together. Certainly,
to judge from the references absent in published papers, there must have
been considerable independent effort. How to identify these strands and
how many to pay attention to are matters of opinion. In any case, a strictly
chronological account would be confusing and misleading. So we must often
follow one strand for a while, then back up in time to pursue another. We
now go back to look at the origins of universal algebra.

Alfred North Whitehead, in writing his book on universal algebra, also
had a lofty but less sweeping goal than Leibniz: he wished to create a theory
of algebra capable of unifying and comparing the many linear algebras that
had been proposed in the nineteenth century [Whit98, Fear82].

We follow the current view that the concept of universal algebra as it is
recognized today, despite Whitehead’s treatise by the same name, began
with the two seminal papers of Garrett Birkhoff, who showed that there
were significant theorems simultaneously covering groups, rings, fields and
vector spaces as well as lattices and Boolean algebras. Birkhoff formulated
the concept of a general algebraic system as we know it today [Birk35].
In his next paper on the subject [Birk44], Birkhoff presented the theo-
rem that every algebra is a subdirect product of subdirectly irreducible
algebras. This theorem is fundamental to our purposes and illustrates
how the finitary nature of algebra makes for a good theory with many
applications.

11111
Another stream flowed into universal algebra from logic via Emil Post’s

generalization of classical two-valued logic [Post21]. Post algebras, as de-
fined by Paul Rosenbloom, are to Boolean algebras as n-valued logic is to
two-valued logic [Rosen42]. Following close upon [Birk44], L. I. Wade
established that any Post algebra is a subdirect power of a primal Post
algebra [Wade45], Rosenbloom having proven this first for finite Post
algebras.

The work of Alfred Foster, influenced by that of Wade and McCoy,
was a watershed in the way we view representations of algebras [Fost53].
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Foster realized that a significant property for an algebra to be the kernel
in subdirect representations is primality: all operations on the carrier can
be composed from the fundamental operations. This gave primal algebras
of all finite cardinalities; each was the sole subdirectly irreducible algebra
of the equational class generated by it. Foster identified a Boolean part in
these primal algebras that could be extended into representing the other
algebras of the class. This is achieved by creating Boolean partitions over
a primal algebra and convolving these partitions to define operations.

Primality was seminal and a central strand in the evolution of decom-
position theorems through a sequence of papers of Stone, Foster, and his
students, leading from Boolean algebras through primal algebras to a diver-
sity of generalizations, such as semiprimal and hemiprimal algebras, which
would produce analogous constructions in the varieties generated by them.
The kernels of such representations no longer need to have all operations
derivable from the fundamental operations, but only those preserving some
prescribed structure, such as subalgebras or congruences. (For a history
of these variations, see the surveys of Robert Quackenbush [Quac79] and
Alden Pixley [Pixl96].) The class of algebras being represented need not
look, upon first glance, at all like the traditional classes of rings, groups
or lattices, either in the type of operations or in the identities they satisfy.
Even when the underlying primal algebra only two elements, this kernel
may look superficially very different from the two-element Boolean algebra;
for example, the Sheffer stroke, a functionally complete binary operation,
satisfies many unusual and unexpected identities; hence, so does the equa-
tional class it generates. Foster’s work opened up new vistas, beckoning us
to try to find structural clues independent of the usual operations in which
rings and lattices are defined.

Tah-Kai Hu put Foster’s work into a categorical setting by extending
Stone’s duality between Boolean algebras and Boolean spaces to a natural
equivalence between the category of all algebras satisfying the identities of
a given primal algebra and the dual category of Boolean spaces [Hu69].
Actually, this was done in the more general setting of locally primal algebras,
which is a generalization of primality to infinite algebras. Joachim Lambek
and Basil Rattray gave a categorical proof by means of adjoint functors
[LamRa78].

Another strand in the unfolding of universal algebra also comes from
logic, both in the more general setting of relational structures, as well as
in the desire to represent logics as algebras. New algebraic systems discov-
ered outside universal algebra gave impetus to solving problems within it;
very important among these were the cylindric algebras of Alfred Tarski,
designed to provide an algebraic model of first-order calculus, the next step
after modeling the sentential calculus by Boolean algebra [HenkMT71].
Once a logic is captured algebraically, we want to know how good the match
is. A natural answer to seek is an analog to Stone’s theorem: every algebra
in the class should be a subdirect product of ‘primitive’ algebras defined
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directly from the logic. Examples are the multi-valued algebras invented by
Chen-Chung Chang [Chang58], and the already mentioned Post algebras
studied by Rosenbloom [Rosen42]. Helena Rasiowa’s book describes many
such logics turned into algebra [Rasi74].

11111
A Johnny-come-lately in our history of algebra is the theory of sheaves.

What is missing in the construction of a subdirect product is a criterion
for determining whether an element of the full product belongs to the
subdirect product or not. So we implant topologies into subdirect products,
wherever possible, creating a sheaf space, and incorporate the Boolean part
of an algebra into the topology of the index set, making a base space. Any
element of the subdirect product must be, among other things, a continuous
function from the base space to the sheaf space; this adds a coherence to
subdirect products otherwise lacking.

But the roots of sheaf theory itself are deeper and earlier – they may
be found in the works of Henri Cartan [Cart49], Jean Leray [Leray50],
Jean-Pierre Serre [Serre55], Roger Godement [Gode58], Alexander
Grothendieck and Jean Dieudonné [GroDi60], and Armand Borel
[Borel64]. These pioneers used sheaves in algebraic topology (Poincaré
duality), complex analysis (De Rham’s theorem), algebraic geometry
(Riemann–Roch theorem), and differential equations (distributions). The
history of sheaves is sketched by John Gray [Gray79], Christian Houzel
[Houz98], and Concepción Romo Santos [Romo94].

These early papers and books provided the impetus for other workers to
solve problems in algebra by means of sheaves. For example, John Dauns
and Karl Hofmann [DauHo66], to get around the counterexample of Arens
and Kaplansky [AreKa48] built out of a single finite field, introduced
sheaves and obtained the following theorem. Every biregular ring, not nec-
essarily unital, is isomorphic to the ring of global sections with compact
supports in a sheaf of simple unital rings; the base space is locally com-
pact, totally disconnected, and Hausdorff. Further, if the original ring has
a unity, then the base space is also compact and hence Boolean. Most
importantly, any number of different rings may appear as stalks in the same
sheaf.

The memoir of Richard Pierce has many worthwhile results [Pier67]. In
particular, his theorem 6.6 gives a categorical equivalence between the cat-
egories of rings (the homomorphisms must preserve central idempotents)
and their reduced sheaves. Pierce also gives in his lemma 4.2 a sufficient
condition for a sheaf to be reduced: when the stalks are directly indecom-
posable; if the rings are commutative this condition is also necessary.

Joseph Kist proves for a commutative ring R that, if the space X of min-
imal prime ideals is compact and R has no nilpotents, then R is isomorphic
to a subring of the ring � (A) of all global sections of a sheaf A over X in
which the stalks are integral domains [Kist69]. Further, when R is a Baer
ring, then this isomorphism is onto � (A). Carl Ledbetter, by considerably
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different methods, shows that this last result is still true even when R is
noncommutative [Ledb77]. Hofmann surveys much that is known about
sheaves of rings [Hofm72]. To generalize such results beyond rings, new
techniques are needed, which are discussed next.

11111
Comer realized that the construction of the Pierce sheaf for rings could

be extended to a rather broad class of algebras [Comer71]. These are al-
gebras whose factor congruences form a Boolean algebra. Besides rings,
there are lattices, semilattices, and the shells of this book. This came out
of Comer’s investigation into the question of the decidability of the the-
ory of cylindric algebras [Comer72]. Stanley Burris and Ralph McKenzie
make some unique comments on this portion of our history [BurMc81,
pp. 15–20, 67–70].

Brian Davey pushed the work of Comer further by realizing that all we
need in order to obtain a sheaf over a Boolean space is a Boolean sublattice
of congruences [Davey73]. In this very general set-up, there is the Gel’fand
morphism, named for his work [Gel’f41], that takes the original algebra
to the algebra of all global sections of the sheaf; it is injective, but not
necessarily surjective. Davey notes further, however, that if we start with
a Boolean sublattice of factor congruences, then the Gel’fand morphism is
indeed surjective. Since most of the remaining contributors to the unfolding
of sheaves in general algebra in the 1970s will be discussed more fully in
later chapters, we only list them here: Klaus Keimel [Keim70], Maddana
Swamy [Swam74], Albrecht Wolf [Wolf74], William Cornish [Corn77],
and Peter Krauss and David Clark [KraCl79]. For a survey see [Keim74].

Another area with many examples of interest is this problem: for which
equational classes can one express each algebra as a Boolean product of
a finite number of finite algebras, depending only on the original class?
Unfortunately, as shown by the work of Burris and McKenzie, this tradi-
tional situation in both classical and universal algebra – a Hausdorff sheaf
over a Boolean space with a finite number of finite stalks – is limited by
the generators having to be simple Abelian or quasiprimal [BurMc81].

Sheaves have proved their worth in model theory by establishing theo-
rems in decidability, elementary equivalence and embedding, preservation
and transfer properties, and model completeness. See Sect. XII.3 for defi-
nitions of these concepts and for some sample theorems.

11111
Categories are another general concept useful to us; they help to system-

atize equivalences among diverse classes of mathematical objects. Samuel
Eilenberg and Saunders MacLane [EilMa45] formally presented this con-
cept, although many examples were already known informally before then.
What will be historically significant for us are three such categorical equiv-
alences: Stone’s duality between Boolean algebras and what are now called
Boolean spaces [Stone37], Pierce’s equivalence of the category of rings
with conformal homomorphisms and the category of their sheaves [Pier67],
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and Hu’s equivalence of primal varieties, mentioned earlier [Hu69]. See
[MacL65] for early developments and applications of this rapidly growing
subject.

11111
Modern analysis, and indirectly general topology, has been a source of

inspiration for the ideas in this monograph. Early on we have John von
Neumann’s paper on rings of operators [vonN36]. A later influence on
our efforts came from functional analysis, where Melvin Henrikson and
Meyer Jerison [HenrJe65] and Kist [Kist69] systematically exploited the
spectrum of minimal prime ideals. Kist had moved from functional analysis
to commutative ring theory.

It is easy to appreciate the significance of functional analysis for the type
of theorems we are heading toward. The ring C .X/ of all continuous func-
tions from a topological space X to the real numbers R has the appearance
of a sheaf space X �R, with the obvious projection �WX �R! X , where
X � R is given the product topology. Thus, it is already decomposed into
a subdirect product whose stalks R have no divisors of zero. But its simi-
larity to a sheaf is only that, for the technical condition that � be a local
homeomorphism fails; related to this failure is the fact that each stalk R is
not discrete. (Sometimes we speak of X � R as being merely a ‘bundle’.)
Thus, we might seek a different factoring of C .X/. Marshall Stone has some
intriguing comments in [Stone70, p. 240] about how this interest in C .X/

shifted to concerns with representing algebras by sets of functions subject
to certain constraints. See also the selection of essays [Aull85], edited by
Charles Aull, for some current views on C .X/ as an algebraic object. Hof-
mann has additional comments in [Hofm72, pp. 295–296] on the influence
of functional analysis on the evolution of sheaf theory towards ring theory.

As a beginning to the book, this tour through the evolution of ideas
leading to sheaves is over. Now we are ready to delve into what this book
covers – both known theorems and new ones.

2. Survey of Results

With the historical background of Sect. 1 in mind, we now briefly describe
the principal results of this monograph, chapter by chapter, omitting minor
caveats. The flow of this book as a whole is first to develop tools for con-
structing sheaves that are helpful in understanding the structure of general
algebras, specializing as needed, with applications in the middle chapters,
and finally to close with a backward glance at how some of the earlier
theorems might be extended.

Chapter II lays out the traditional background needed from general al-
gebra. In Sect. 1, there is one novelty: ‘sesquimorphisms’ as a substitute
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for congruences. The three isomorphism theorems are presented both con-
ventionally and in terms of sesquimorphisms.

Section 2 introduces direct and categorical products, and then studies the
five kinds of factor objects that may identify products internally: bands,
congruences, sesquimorphisms, ideals, and elements; the last four coming
in complementary pairs (Theorems II.2.5, II.2.12, II.2.19).

Chapter III outlines the concepts and theorems needed from several dis-
ciplines: equational logic, categories, topology, and Boolean algebras, in-
cluding Stone’s representation of these, the grandfather of many of the
theorems in this book and an essential tool for proving them.

11111
Chapter IV sets the stage for the book proper by introducing the notion

of a complex and showing that it always gives a sheaf of algebras. Crucial
to decomposing an algebra as a subdirect product of quotient algebras is a
measure of how close or far apart the elements of the algebra are. Complexes
originated in the theory of rings and modules, and they are the algebraic
analog of metric spaces. A metric now becomes a binary operation from the
carrier of an algebra, not necessarily going to the real numbers, but taking
as values open sets in some topological space. This binary operation satisfies
axioms similar to both those for a metric space and those for a congruence
preserving the operations of an algebra. Complexes are an intermediate
step on the way to sheaves.

Sheaf constructions next illustrate how a well-developed topological tool
can shed light on a principally algebraic device. Out of each complex, one
constructs a sheaf whose algebra of all global sections contains a subalgebra
isomorphic to the original (Theorem IV.2.1); arguments common to this
construction can now be made once and for all in the context of complexes.
Sheaves have proven their value in many situations, and here they will
also do so.

We also look at systems of congruences from which one obtains a subdi-
rect product. This is proven equivalent to the notion of a complex whenever
the underlying topology is T0 and the equalizers of global sections form a
subbasis (Theorem IV.2.5).

Another concept is the ‘Hausdorff sheaf’, where the sheaf space is T2.
A sheaf being Hausdorff is equivalent to equalizers being clopen and the
base space being Hausdorff (Proposition IV.2.9). When the base space
is also a Boolean space, we have the well-studied notion of a ‘Boolean
product’.

The constructions of this chapter are set into an adjoint situation between
the categories Complex and Sheaf for a given algebraic type (Theorems
IV.3.15 and IV.3.18). The functors and natural transformations entering
into this adjoint situation will be successively specialized in subsequent
chapters.

11111
Another way to capture the separation of two elements of an algebra is

through a congruence by which they are not related. The typical situation
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introduced in Chap. V, which will occur repeatedly throughout this mono-
graph, is where a subset of congruences separating all elements is singled
out for special attention. We want to pick a set of congruences that is ap-
propriate to the algebra at hand and to the aspects of it we wish to study.
It is noteworthy that usable sets of congruences need not be sublattices of
the lattice of all congruences. Such sets need only be closed to intersection
and a complementation respecting the partial ordering of inclusion on con-
gruences. This fragment, to be called a ‘Boolean subsemilattice’, will be
a complemented distributive lattice, in which the join operation may be
greater than that in the complete lattice of all congruences.

To set things up for later ideas covered in the book, we prove Theorem
V.2.1, which states that any Boolean subsemilattice of an algebra deter-
mines a complex over a Boolean space, which in turn determines a sheaf
of algebras over the same space. The original algebra will be a subalge-
bra of the algebra of all global sections of a sheaf of quotient algebras. In
general, the larger the subsemilattice, the more numerous are the stalks
of the sheaf; and the larger the congruences themselves, the smaller the
quotients. But the quotients do not come directly from the congruences
of the Boolean subsemilattice. Instead, the essential construction behind
this theorem is to look at the Boolean space of prime ideals in this se-
lected Boolean algebra of congruences. Each prime ideal has a supremum
that is again a congruence in the given algebra, although not usually in
the Boolean subsemilattice. These suprema are the points of the Boolean
space over which floats the sheaf space of stalks, which are the quotient
algebras by the suprema. The continuous cuts through the sheaf space are
the global sections. The mapping of elements of the original algebra into
them is called the Gel’fand morphism.

But the converse is also true: we prove in Theorem V.2.9 that every
representation of an algebra by a sheaf of algebras over a Boolean space
must arise by the previous construction from some Boolean subsemilattice
of congruences. As one is free to choose the Boolean subsemilattice, so one
is also free to choose the nature of the quotient algebras, and thus to tailor
the extent of their indecomposability. For example, discovering the right
congruences will factor out divisors of zero in shells.

The patchwork, partition, and interpolation properties associated with
sheaves over Boolean spaces make the global sections of such sheaves espe-
cially malleable. Even easier to work with are the more specialized Boolean
products, which have been used to good advantage in universal algebra,
and which are briefly looked at for the sake of comparison. Also included in
Sect. V.3 are Boolean powers, Boolean extensions, and Hausdorff sheaves.

Introduced at the end of Chap. V is the category BooleBraceRed of
reduced Boolean braces – they consist of an algebra and a selected Bool-
ean subsemilattice of congruences. This category forms an adjunction with
the category CompBooleRed of reduced complexes over Boolean spaces
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(Theorem V.4.14). In turn, this last category is a full subcategory of the cat-
egory of all complexes over arbitrary topological spaces, and thus, this ad-
junction, when composed with the adjunction of the last chapter, forms an
adjunction of BooleBraceRed with the category SheafBooleRed of
reduced sheaves over Boolean spaces, which is a full subcategory of Sheaf
(Theorem V.4.17). Reduction limits the number of trivial stalks in a sheaf
and its related structures.

11111
As the set of all congruences of an algebra is a lattice, it is natural to

consider sublattices. Of special interest in Chap. VI are those congruences �
having a complementary partner � 0 in the sense of forming a factorization:
A Š .A=�/ � .A=� 0/. Davey [Davey73] considered a Boolean sublattice
of commuting (= permuting) factor congruences – this sublattice together
with its algebra we call a ‘factorial brace’. As Boolean lattices are equiv-
alent to Boolean algebras, one has a Boolean subsemilattice, the previous
situation. Thus, one obtains a sheaf over a Boolean space. But now we have
an isomorphism: Theorem VI.1.8 states that the algebra of global sections
of this sheaf is isomorphic to the original algebra, that is, the Gel’fand
morphism is also surjective, not just injective, as in Chap. V.

This set-up is important enough to warrant a section devoted to char-
acterizing Boolean algebras of factor congruences alternatively by factor
bands and sesquimorphisms.

Comer postulated in his paper [Comer71] that all the factor congruences
form a distributive sublattice, that is, a Boolean sublattice of the lattice of
all congruences, which is described as the algebra having ‘Boolean factor
congruences’ (BFC). For many algebras occurring in practice, such a con-
dition is easy to check. Section 3 characterizes their sheaves in Theorem
VI.3.15 as those that are ‘reduced’ and ‘factor-transparent’. This is called
the ‘canonical’ sheaf representation of an algebra with BFC. Historically
these results of Comer came before those of Chaps. IV and V, but it is now
easier to present them as a special case of those earlier chapters. But not
all algebras have BFC. Theorems VI.3.2 and VI.3.9 give many conditions
equivalent to an algebra having Boolean factor congruences.

As was done in the previous two chapters, the final section of this chapter
recasts its achievements in categorical terms. If a Boolean brace is taken
into Sheaf and then back again to the algebra of global sections, then the
new Boolean brace has additional properties. The new Boolean subsemi-
lattice now has a distributive sublattice of commuting factor congruences,
creating a factorial brace as examined in the previous paragraph. All re-
duced factorial braces constitute the category FactorBraceRed, which is
isomorphic to a full subcategory of BooleBraceRed. Most importantly,
FactorBraceRed is categorically equivalent to SheafBooleRed, by
Theorem VI.4.2; thus we extend Stone’s representation theorem for Bool-
ean algebras.
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Additionally, if the set of all factor congruences is a Boolean sublattice
of Con A, then these algebras constitute the category AlgBFC of alge-
bras with Boolean factor congruences. By Theorem VI.4.5 it is isomorphic
to the category of reduced and factor-transparent sheaves over Boolean
spaces. Table VI.1 lists the many categories of structures and sheaves that
occur in this book and the various adjunctions and equivalences that exist
among them. Figure 1 summarizes in a Venn diagram the various levels of
generality considered so far, as well as the shells to be discussed next.

Rings Bounded
lattices

Shells

Algebras with BFC

Algebras with a
Boolean subsemilattice

Complexes

Figure 1. Kinds of algebras with a ready-made sheaf structure

11111
In the heart of this monograph, Chap. VII introduces the notion of a

‘unital shell’, which is an algebra hAIC;�; 0; 1 : : : ; !; : : :i with two binary
operations C and �, two constants 0 and 1, and other arbitrary operations
! as desired, in which no identities need hold other than what is expected
of what we call a nullity and unity:

(2.1) 0C a D a D aC 0; 0 � a D 0; 1 � a D a:
The remaining operations !, if any, need not have any relationship to
the first four. Clearly, a nullity is needed in order to talk about divisors
of zero, which will appear in the Chap. VIII. Although addition is not
always needed, a unity for multiplication appears to be needed to obtain
our results on factor objects.

Examples abound: rings and linear algebras with a unity, Boolean alge-
bras with operators, as well as bounded lattices and trellises, perhaps also
with operators. The sparse identities of (2.1) provide all we need to mimic
the factorization of rings by central idempotents. This definition is that of
‘unital shell’ in a strict sense; but we will also use ‘shell’ in a loose sense to
refer to various weakenings of this definition. By omitting C, we prune it
to ‘unital half-shell’. Examples are bounded semilattices, and more gener-
ally, monoids with a nullity. Much of the theory still holds for even weaker
shells, and this will now be explained in detail.
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We start off this chapter with sesqui-elements and sesquishells, tempo-
rary concepts leading us to prove BFC in Theorem VII.1.10 with the weakest
hypothesis possible in the context of shells, with the sheaf being reduced
and factor-transparent. The slightly stronger unital half-shells also have
BFC, and are studied in Sect. 2. Theorems tie factor elements to sesqui-
elements. Within a unital half-shell, the set of its factor elements is now a
Boolean algebra, anti-isomorphic to the Boolean algebra of factor congru-
ences (Theorem VII.2.15).

Products were captured internally in Sect. II.2 by factor congruences,
bands, and sesquimorphisms. In unital shells, we add to this list comple-
mentary pairs of factor ideals and complementary pairs of factor elements.
In Sect. 3, the concept of unital shell is sufficiently stronger to support
a characterization of factor elements solely in terms of factor identities,
as given in Theorem VII.3.4. Better still, Theorems VII.3.7 and VII.3.14
characterize the inner direct product of ideals independently of the other
factor objects, the latter theorem becoming the traditional definition of
inner product in unital rings.

In Sect. 4, we explore the one-to-one correspondences between the five
kinds of factor objects in two-sided unitary shells. (A unitary shell is ‘two-
sided’ if, in addition to (2.1), the equations, a � 0 D 0 and a � 1 D a,
also hold.) Each factor ideal is the 0-coset of a factor congruence, and
the congruence is uniquely determined by its 0-coset. Each factor ideal
is generated by a factor element, which serves as a relative unity, and
conversely, each factor element generates a factor ideal. In a unital shell,
the set of all factor ideals forms a Boolean algebra, and thus, so do the factor
elements, and these Boolean algebras are isomorphic or anti-isomorphic to
the Boolean algebras of the previously defined factor objects. Formulas are
developed for these correspondences and the Boolean operations.

But not all algebras with Boolean factor congruences have factor ele-
ments. ‘Separator algebras’, generalizing shells, are introduced as a device
for proving that any algebra A with BFC is embeddable in a ring or lattice,
whose new factor elements capture the factorizations of A where there were
none before (Theorem VII.5.5).

The category UnitShell of unital shells of a given type is a full
subcategory of AlgBFC of the same type. Theorem VII.6.4 and its corol-
lary establish that this new category is isomorphic to the category of re-
duced and factor-transparent sheaves of unital shells over Boolean spaces.
The morphisms of UnitShell are characterized as those homomorphisms,
called ‘conformal’, that take factor elements into factor elements. Similar
and equivalent categories also exist for the more general unital half-shells
and their sheaves.

11111
One of the high points of this monograph is the generalization to uni-

tal shells of Kist’s theorem [Kist69] on the decomposition of commutative
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Baer unital rings into a sheaf of integral domains over a Boolean space,
which in turn is a generalization of the classical result that every von Neu-
mann regular, commutative, unital ring is a subdirect product of fields.
This application in Chap. VIII illustrates the power of sheaves over spaces
constructed out of factor elements, and for which the previous chapters
have prepared the reader. Here, the adjective ‘Baer’ originally defined for
rings, becomes ‘Baer-Stone’ to include ‘Stone’ lattices: the annihilator of
any element a is generated by a single factor element e, that is, the anni-
hilator is a principal ideal:

a? D fb 2 R j ab D 0g D Œe�:
Theorem VIII.1.13 then states that every two-sided unital half-shell that
is Baer-Stone has a canonical sheaf representation where the stalks are
integral, that is, they have no divisors of zero. Here we apply the crucial
fact that an ideal is integral2 if it is associated with a congruence that is
the supremum of a prime ideal of factor congruences.

The categorical interpretation of Chap. VII can be further specialized to
this result: the category of Baer-Stone two-sided unital shells with confor-
mal homomorphisms is categorically equivalent to the category of sheaves
of integral shells (‘integral’ means no divisors of zero). This theorem can
also be phrased outside of the language of sheaves. Each Baer-Stone shell
is isomorphic to a subdirect product of integral shells.

The biregular rings of Arens and Kaplansky [AreKa48], and Dauns and
Hofmann [DauHo66] present another situation that can be generalized;
this was extended to near-rings by [Szeto77]. But we extend it further
to unital half-shells; they are called biregular if every principal ideal is
generated by a factor element. Theorem VIII.2.3 then reads essentially as
it does for the classical case: a biregular unital half-shell is isomorphic to
the half-shell coming from a reduced and factor-transparent sheaf over a
Boolean space with simple stalks (providing certain technical conditions
hold).

11111
The sheaf representations of the last two chapters were all surjective, that

is, each continuous section represents some element in the original algebra.
Chapter IX relaxes this; an algebra now may be represented merely as some
subalgebra of the algebra of all global sections of some sheaf. This means
that the hypotheses of the last chapter, such as being Baer-Stone, may also
be relaxed.

2This means that if a product of two elements is in the ideal, then one of the factors
must be in there also. In commutative rings, this is synonymous with being a prime
ideal.
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In the first section of Chap. IX, to achieve any results on integrality, one
must first study shells without an addition, a unity, or additional opera-
tions; I dub these new algebras ‘strict half-shells’. Also, one must expect
the multiplication to satisfy certain nilpotent conditionals, too involved to
state here. We then prove in Theorem IX.1.3 that any such half-shell is
isomorphic to a half-shell of some of the global sections of a sheaf over a
Boolean space of half-shells without divisors of zero.

In the second section, consequences of this theorem are explored. We
abstract its conclusion by calling a half-shell semi-integral if it is a subdirect
product of half-shells without divisors of zero, and give several equivalent
formulations of semi-integrality, for example, Theorem IX.2.3.

In the third section, it is further assumed that the strict half-shell has
a unity and consequently every factor ideal is principal, which leads to an
especially transparent form for the factor elements when the half-shell is
semi-integral. Then this section returns to shells where analogous results
hold. But now it is necessary to make some additional assumptions: C sat-
isfies the loop laws; C is distributive over �; and � satisfies the nilpotence
conditions mentioned above. Theorem IX.3.8 tells us that such a strict shell
is isomorphic to a subshell of the Baer-Stone shell coming from a sheaf over
an extremally disconnected base space whose stalks are integral. In some
detail, we trace the relationship of this result to some older theorems in
ring theory.

11111
Chapter X starts off with a new proof of the classical result that any alge-

bra in the variety generated by a primal algebra is isomorphic to the algebra
of all global sections of a sheaf over a Boolean space all of whose stalks are
the primal algebra. Recall that a primal algebra is a finite nontrivial alge-
bra whose operations lead by composition to all finitary functions on the
carrier. It is natural to seek other algebras close to primality whose gener-
ated varieties will have nice sheaf representations. The preprimal algebras
do not disappoint us.

An algebra is preprimal if it is one step away from being primal, that
is, if any one function not composed from its operations is added to them,
then the new algebra is primal. The preprimal algebras fall naturally into
seven classes, identified by relations that all their operations preserve. Most
of the varieties generated by them have BFC (see Table X.1). For three of
the classes we find the stalks in the sheaves of their algebras: those coming
from a preprimal preserving certain permutations (Theorem X.2.1); those
preserving certain Abelian groups (Theorem X.3.2); and those preserving
a proper subalgebra (Theorem X.4.1).

11111
In Chap. XI, we attempt to get away from the language of shells and

half-shells, and return to arbitrary algebras, in so far as possible; there are
two independent sections.
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The first section iterates our sheaf construction for a shell until all quo-
tients have become directly indecomposable. In a commutative unital ring,
the stalks are always directly indecomposable. As surprising as it may seem,
when noncommutative, the stalks need not be directly indecomposable.
Walter Burgess and William Stephenson [BurgSt78] took this opportu-
nity for unital rings to iterate the construction of Pierce sheaves on the
stalks themselves until it could be pushed no further. This forces the ulti-
mate ‘factors’ to be directly indecomposable; but we may no longer have a
sheaf, only a subdirect product. Theorem XI.1.2 adapts this iterative con-
struction to general algebras in varieties with Boolean factor congruences.

The second section looks at the lattice of congruences as a shell and con-
siders how its decomposition might lead to a decomposition of the algebra
itself. The crucial observation upon which Theorem XI.2.3 is based is that
the factor elements of the congruence lattice form a Boolean lattice; hence,
we can obtain its associated Boolean space. This, in turn, induces a sheaf,
and so the Gel’fand morphism maps elements of the given algebra to some
of the global sections.

11111
As this book was being written, it became clear that there were many

related topics to be pursued, and many tempting trails on which to venture.
The techniques introduced in this monograph might well be extended in
any number of directions. In order to draw this book to a close, rather than
try to develop these ideas in detail, Chap. XII outlines additional applica-
tions, without proofs; these point to five regions ripe for research, beyond
what is already known. The first application wants to extend the sheaf rep-
resentations in classical ring and lattice theory to shells and beyond. The
second considers algebras derived from logic. The third is about model
theory: preservation of properties, decidability, and model completeness.
The fourth weakens the metrics of complexes and the topology of Bool-
ean spaces. The fifth ranges over the diverse sheaves that may exist for a
particular algebra.

11111
This introductory chapter delineates the scope of this book. It could

be summarized by saying that there are two approaches to decomposing
algebras by sheaves: (1) take one large algebra at a time and decompose it
into smaller pieces with a sheaf; and (2) take one small algebra, or a finite
collection of finite algebras, and decompose all the algebras in the variety
generated by them. This book concentrates mostly on (1) and only on (2)
in Chap. X about preprimals.

Outlined below is what might have been covered but was not, and a few
topics that are introduced but not pursued at length since there are already
excellent monographs covering these.

Relational structures are not included; most of our examples are algebras,
or they can be made into them, such as lattice-ordered groups. Other struc-
tures omitted are several-sorted algebras, which have more than one carrier,


