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Introduction

Benthic foraminifera inhabit all marine environments, living 
either above, at, or below the sediment water interface in water 
depths ranging from the intertidal zone to the deep ocean (Corliss, 
1980; Jorissen, 1999; Pawlowski and Holzmann, 2008). In the deep 
sea, they represent the most important contributors to the meio-
faunal biomass and their distribution is intricately linked to the 
flux of particulate organic matter from the upper ocean to the  
sea floor (Gooday et al., 1992; Altenbach and Struck, 2001;  
Gooday, 2003). Benthic foraminifera comprise the oldest group 
of deep-sea organisms, tracking back to 1150–690 million years 
according to molecular data and possibly 716–635 million years 
according to the fossil record (Culver, 1991; Pawlowski et al., 2003; 
Bosak et al., 2011), although they exhibit relatively slow evolution 
rates in comparison to planktonic foraminifera (Pawlowski et al., 
1997; Kucera and Schönfeld, 2007). Thus, on account of their 
geographic ubiquity, their abundance in Mesozoic and Cenozoic 
deep-sea sediments and in Phanerozoic sediments overall, and 
their utility as indicators of past environmental conditions, 
benthic foraminifera continue to play a pivotal role in paleocea-
nographic and paleoclimatic research.

1.  Test Morphology and Classification

Taxonomy
Benthic foraminifera belong to a large group of marine “amoe-
boid” protists, recently classified as a stand-alone phylum within 
the eukaryote Supergroup Rhizaria in the Protist Kingdom (Adl 
et al., 2005). Foraminifera have granulo-reticular anastomosing 
pseudopodia and a single- or multi-chambered test, although 
naked or soft-shelled forms have been included at the higher 
taxonomic level (Lee, 1990; Pawlowski et al., 2003). These forms 

are traditionally poorly known, but recently have been shown to 
be both taxonomically diverse and abundant in many oceanic 
environments (Gooday et al., 2008). The classical definition of 
foraminifera is based on possession of three main diagnostic 
characters: (1) a test composed of calcite secreted by the cell or 
consisting of mineral grains embedded in the organic test, (2) a 
unique reproductive cycle with alternation of a uninucleate 
haploid generation and a diploid generation that can be multi-
nucleate, and (3) the presence of streaming granulo-reticular 
(granular, branching, network-like) pseudopodia, generally 
called rhizopodia (Lee, 1990; Tendal, 1990; Bowser and Travis, 
2002).

The suprageneric morphological classification of benthic 
foraminifera remains a matter of intense debate. Three main mor-
phological characters are given priority in classification schemes: 
(1) the wall structure of the test (essentially agglutinated, porce-
laneous, or hyaline), (2) the number of chambers (monothalam-
ous versus polythalamous), and (3) the test morphology including 
mode of coiling, chamber arrangement, and apertural system. A 
comprehensive description of morphological features, which are 
used in foraminiferal classification, is provided in Hottinger 
(2006). While most of the recent classification schemes give prior-
ity to the composition and structure of the test wall (Wood, 1949; 
Loeblich and Tappan, 1984, 1987, 1989, 1992; Sen Gupta, 1999), 
alternative classification schemes view the test architecture as an 
equally or higher ranking criterion for the suprageneric classifica-
tion of foraminifera (Mikhalevich, 2004; Tyszka, 2006; Kaminski 
et al., 2011). Molecular-genetic analyses support the notion that 
some species with different wall structures are phylogenetically 
closely related but indicate that monothalamous and polythalam-
ous forms are distinct and may have separated in an early stage 
of the evolution of foraminiferids (Pawlowski et al., 2003).

Atlas of Benthic Foraminifera, First Edition. Ann Holbourn, Andrew S. Henderson, and Norman MacLeod.
© 2013 Natural History Museum. Published 2013 by Blackwell Publishing Ltd.
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deep-water agglutinated foraminifera (Ohga and Kitazato, 1997; 
Hess et al., 2000; Kuhnt et al., 2005).

The feeding strategies of bathyal and abyssal foraminifera 
appear similarly diverse (Lee, 1980; Lipps, 1983; Gooday, 1990, 
1993, 2003), including suspension, detritus feeding (particularly 
on diatoms, Suhr et al., 2003), and bacterial scavenging (Langezaal 
et al., 2005). In organic-rich sediments, detritus feeding takes 
place both at the surface of the sea floor and infaunally within the 
top few decimeters of the sediment, which become increasingly 
depleted in oxygen with depth. In oxygen-poor environments 
foraminifera may live symbiotically with prokaryotes (Buck and 
Bernhard, 2001). However, oxygen is also brought down to levels 
that would otherwise remain anoxic by the burrowing macro-
fauna, locally expanding the depth habitat of infaunal taxa 
(Murray, 1991; Loubere et al., 1995). In oligotrophic areas, where 
the organic export flux is low, surface dwellers consist mainly  
of epifaunal suspension feeders, while infaunal detritivores are 
scarce. Dissolved organic matter may additionally provide an 
important source of food for some species of benthic foraminif-
era (DeLaca et al., 1981; Nomaki et al., 2011), whereas carnivory 
(e.g., Dupuy et al., 2010) and parasitism (e.g., Sigwart, 2009) 
constitute less common modes of feeding (Murray, 1991).

3.  Ecology

Microhabitat
The life position and depth distribution of deep-water benthic 
foraminifera at the sediment–water interface has been a major 
field of ecological research since the importance of epifaunal and 
infaunal habitats and species-specific microhabitat preferences 
for isotope and trace element studies and paleoenvironmental 
reconstructions were recognized (Corliss, 1985; Jones and Char-
nock, 1985; Altenbach and Sarnthein, 1989). The initial concept 
related benthic foraminiferal morphology and pore distribution 
on the surface of the test to depth habitat at the sea floor 
(“morphotype”-concept, Corliss and Chen, 1988; Corliss, 1991). 
This was later modified to account for the capability of motile 
benthic deep-water foraminifera to rapidly adapt their micro-
habitat to changes in food availability and oxygenation (Linke and 
Lutze, 1993; Loubere, 1996; Ohga and Kitazato, 1997; Jorissen, 
1999). This dynamic adaptation is also reflected in the so-called 
TROX model (TROX = TRophic OXygen model, Jorissen et al. 
1995, 2007), which explains that the depth of the foraminiferal 
microhabitat is controlled by food availability in oligotrophic 
ecosystems and by oxygen concentration in eutrophic ecosystems. 
In oligotrophic environments, the microhabitat depth is limited 
by the low amount of food available within the sediment, whereas 
in eutrophic systems, the penetration depth of most taxa depends 
on the level of oxygen present in the sediment (Jorissen et al., 
1995).

Biogeography
Deep-water benthic foraminifera are generally cosmopolitan and 
their distribution within ocean basins is primarily controlled by 
environmental parameters such as flux rate of particulate organic 
matter from the upper ocean to the sea floor and carbonate dis-
solution, rather than by physical barriers or the physico-chemical 

Wall structure
Benthic foraminifera (except for soft-bodied allogromids) possess 
three main types of wall structure: hyaline perforate calcitic or 
aragonitic, imperforate porcelaneous, and agglutinated with 
either calcareous or organic cement (Wood, 1949). The different 
wall structures of hyaline and porcelaneous foraminifera arise 
from different biomineralization processes ranging from extracel-
lular crystal nucleation on a preformed organic template (hyaline 
tests) to intracellularly formed crystals released to the cell periph-
ery (high Mg calcite of porcelaneous tests) (Hemleben et al., 1986; 
Debenay et al., 2000; Erez, 2003; de Nooijer et al., 2009). These 
different modes of calcification have major implications for the 
uptake of trace elements and the resulting geochemical signature 
of foraminiferal calcite in relation to ambient seawater. In general, 
hyaline benthic foraminifera have lower Mg/Ca than porcelane-
ous foraminifera, but their Mg/Ca ranges from lower to much 
higher values than in calcite precipitated inorganically from sea-
water (Bentov and Erez, 2006). Controlled calcification within a 
space of biologically regulated ion concentration has the advan-
tage that the concentration of ions in the calcifying solution 
(including pH) is mainly controlled by the organism, although 
the energy cost to concentrate the essential ions is high (Erez, 
2003; Bentov and Erez, 2005; de Nooijer et al., 2009). Ongoing 
research gradually provides new insights into the complex species-
dependent and environment-dependent process of calcification 
and incorporation of various trace elements in living foraminifera 
(e.g., de Nooijer et al., 2007; Dissard et al., 2010; Raitzsch et al., 
2010).

2.  Biology

The living cell consists of two types of cytoplasm: cell-body cyto-
plasm and reticulopodia (or rhizopodia), which constantly 
exchange smaller organelles through cytoplasmic streaming (Lee 
and Anderson, 1991; Bowser and Travis, 2002). The most distinc-
tive character of the living foraminifer is the reticulate network 
of branched pseudopodia or reticulopodia, which extends from a 
single aperture or multiple apertures in the test and plays a key 
role in most life processes, including food acquisition, digestion, 
test construction, signal transmission, locomotion, and anchoring 
to hard substrates (Travis and Bowser, 1991; Bowser and Travis, 
2002; Murray, 2006). The network of pseudopodia constantly 
changes its form, producing dynamically branching and joining 
strands that exhibit bidirectional flow and transport granules 
(commonly mitochondria) both toward and away from the aper-
ture. Detailed biological descriptions of living foraminifera are 
provided by Lee and Anderson (1991), Goldstein and Bernhard 
(1997), Sen Gupta (1999), Lee and Hallock (2000), Cedhagen  
et al. (2002) and Gooday et al. (2008).

There is still only limited understanding about the nutrition, 
lifespan, reproduction cycles, and test biomineralization processes 
of most deep-water benthic foraminifera. The scant information 
that is available points to a huge heterogeneity of life histories, 
growth patterns, and reproduction strategies ranging from extremely 
fast reproduction and short lifespans for opportunist taxa exploit-
ing phytodetritus pulses (Gooday, 1988) to lifespans of several 
years with slow growth and extremely low reproduction rates for 
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with the emergence of several modern lineages including 
buliminids, cassidulinids, and rotalids (Brasier, 1980; 
Tappan and Loeblich, 1988) as well as the appearance of 
most “modern” genera of agglutinated deep-water foraminif-
era (Kuhnt et al., 1996b). Surprisingly, the Cretaceous–
Paleogene boundary event, which had major repercussions 
on the marine plankton, had little evolutionary impact on 
deep-water benthic foraminifera (Culver, 2003; Thomas, 
2007; Alegret et al., 2012).

(2) The most rapid and severe extinction in deep-water benthic 
foraminifera (30%–50% of species) occurred at the end  
of the Paleocene (Thomas and Shackleton, 1996; Thomas, 
1998). Interestingly, this event did not concur with a major 
extinction event in the marine plankton, nor with global 
deep-water anoxia, nor a substantial change in organic 
export flux or carbonate dissolution (Thomas, 2003, 2007). 
However, the extinction appears related to a period of rapid 
deep ocean warming at the Paleocene–Eocene boundary 
affecting all major oceans. This deep ocean warming was 
possibly associated with ocean acidification and increased 
ocean stratification resulting in decreased upwelling and 
open-ocean productivity together with extension of oxygen 
minimum zones (Winguth et al., 2012).

(3) Following the early Eocene recovery, three smaller-scale epi-
sodes of accelerated turnover coincided with intervals of 
pronounced global cooling and cryosphere expansion 
(Thomas et al., 2000; Zachos et al., 2001), which occurred 
across the Eocene–Oligocene boundary, in the middle 
Miocene (Berggren, 1972; van Morkhoven et al., 1986; Berg-
gren and Miller, 1989; Miller et al., 1992; Thomas et al., 
2000; Zachos et al., 2001; Thomas, 2007) and in the middle 
Pleistocene (“Stilostomella extinction”, Weinholz and Lutze, 
1989; Schönfeld, 1996; Hayward, 2001; Hayward et al., 
2010). Many long-lived genera of benthic foraminifera, 
which had decreased in abundance during earlier periods of 
cooling, finally became extinct during episodes of more 
intense global cooling.

5.  Applications

Biostratigraphy
The utility of benthic deep-water foraminifera as biostratigraphic 
index fossils is limited by their slow evolution rates, strong  
environmental dependency, and inconsistent taxonomy (Bol-
tovskoy, 1980; Kucera and Schönfeld, 2007; Hayward et al., 2010). 
However, the availability of more complete DSDP and ODP sedi-
mentary successions containing well-preserved benthic assem-
blages allowed development of bathyal and abyssal benthic 
foraminiferal zonations for the Cenozoic (Berggren and Miller, 
1989) and Cretaceous (Geroch and Nowak, 1984; Moullade, 1984; 
Kuhnt et al., 1992). The latter zonations are mainly applied in 
high latitudes and sub-CCD abyssal environments, where plank-
tonic foraminiferal zonations cannot be used.

Paleobathymetry and sea-level reconstructions
Benthic foraminifera were recognized as paleobathymetric indica-
tors after distribution studies along slope transects off California and 

properties of deep-water masses (Altenbach et al., 1999; Jorissen 
et al., 2007; Pawlowski and Holzmann, 2008; Gooday and Jorissen, 
2012). One reason for the cosmopolitan distribution pattern of 
deep-water foraminifera is their capability for fast dispersal and 
recolonization of new substrates at the sea floor, which is unusual 
for other benthic organisms (Hess and Kuhnt, 1996; Alve, 1999; 
Murray, 2006). This rapid dispersal has been shown to be due to 
the occurrence of propagules (Alve and Goldstein, 2003; Gold-
stein and Alve, 2011). Living deep-sea benthic foraminifera, in 
contrast to shallow-water forms, show high genetic as well as 
morphological similarity over large distances in the world’s 
oceans (e.g., from Arctic to Antarctic, Pawlowski et al., 2007). 
Deep-water benthic foraminiferal populations of the geological 
past were similarly cosmopolitan. Late Cretaceous abyssal agglu-
tinated assemblages living below the calcite compensation depth 
(CCD) were first documented from Deep Sea Drilling Project 
(DSDP) sites in the Indian and West Pacific Oceans (Krashenin-
nikov, 1973, 1974) and later from Ocean Drilling Program (ODP) 
sites in the Central West and East Atlantic Ocean (Moullade et al., 
1988; Kuhnt and Moullade, 1991; Kuhnt et al., 1996a).

Population dynamics
Observational and experimental studies provided evidence for  
a close benthic–pelagic coupling linking deep-sea benthic 
foraminiferal population dynamics and changes in surface ocean 
productivity on various temporal scales (Gooday, 1988, 2002; 
Smart et al., 1994; Heinz et al., 2001). While eutrophic surface 
ocean conditions favor low diversity with blooms of opportunis-
tic species in the deep sea (e.g., Ohga and Kitazato, 1997), oligo-
trophic environments sustain low population density, promoting 
high diversity with complex trophic relationships, morphological 
innovations, and full exploitation of ecological niches (Gooday, 
1999). On longer timescales, changes in surface productivity 
during major climatic and paleoceanographic events influence 
the population structure of deep-sea communities, but probably 
also lead to speciation and long-term evolutionary turnover 
within small and geographically isolated communities (e.g., 
Hallock et al., 1991; Groves and Yue, 2009). It has, for instance, 
been argued that the latitudinal gradient in diversity in deep-sea 
benthic foraminifera is linked to seasonality of productivity at 
high latitudes (e.g., Corliss et al., 2009) and evolved with the 
establishment of continental ice-sheets on the Antarctic continent 
(Thomas and Gooday, 1996).

4.  Evolution

From the Late Mesozoic to Cenozoic, three large-scale steps  
can be recognized in the evolution of deep-water benthic 
foraminifera.

(1) A stepwise middle Cretaceous evolutionary turnover from 
the early Aptian to early Turonian appears related to the 
development of oceanic anoxic events. Increases in organic 
export flux from the upper ocean triggering deep-sea anoxia 
may have enabled allopatric speciation within isolated small 
populations and led to the occupation of vacant niches. The 
middle Cretaceous turnover resulted in a major radiation 
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column. Epibenthic species of the genera Cibicidoides, Nuttalides, 
and Planulina and the infaunal sediment-dwelling genus Uvige-
rina (δ18O only) are most commonly used for stable isotope 
analysis. The δ13C of infaunal benthic foraminifera is mainly 
related to the δ13C of pore water, thus carrying a signal influ-
enced by decomposing organic matter at the ocean floor (Mack-
ensen et al., 1993, 2000; Mackensen and Licari, 2004). On a 
global scale, carbon isotope values of benthic foraminifera may 
indicate changes in the carbon cycle such as release of isotopi-
cally light carbon into the ocean–atmosphere system, as docu-
mented for the Paleocene–Eocene maximum (e.g., Thomas and 
Shackleton, 1996; Zachos et al., 2001). In such instances, benthic 
foraminiferal δ13C can additionally be used as a stratigraphic tool 
for detailed correlation of sedimentary successions (Saltzman 
and Thomas, 2012).

Minor and trace elements
The variable uptake of minor and trace elements in the crystal 
lattice of calcareous foraminiferal tests reflects ambient environ-
mental conditions at the sea-floor depth, either in bottom waters 
or pore waters, where the tests were formed. Thus, analysis of 
various minor and trace elements in foraminiferal tests can 
provide powerful tools to reconstruct past hydrographic and cir-
culation changes.

Analysis of Mg/Ca in benthic foraminiferal calcite tests makes 
it possible in principle to independently reconstruct bottom water 
temperatures and in conjunction with δ18O to separate the tem-
perature and global δ18O seawater (related to ice volume) signals 
in the δ18O measured in tests. Studies have focused on a few taxa 
(Cibicidoides  pachyderma, Planulina  wuellerstorfi, Oridorsalis 
umbonatus, Hoeglundina elegans, and Melonis spp.), which showed 
relatively high temperature sensitivity (Lear et al., 2002, 2010; 
Martin et al., 2002; Rosenthal et al., 2006). However, uncertainty 
concerning the accuracy of calibration equations (Bryan and 
Marchitto, 2008) and the carbonate saturation effects altering the 
Mg/Ca relationship (Erez, 2003; Elderfield et al., 2006; Rosenthal 
et al., 2006; Yu and Elderfield, 2008) suggests that benthic 
foraminiferal paleothermometry especially at depth, where satu-
ration may be of major importance, is not as straightforward as 
originally envisaged.

The distribution of the trace metals cadmium (Cd), barium 
(Ba), and zinc (Zn) follows the cycling of organic matter and 
varies as a function of water depth and deep-water circulation. 
Thus, the elemental ratios of Cd/Ca, Ba/Ca, and Zn/Ca in 
foraminiferal calcite can be used as tracers of water masses and 
circulation change (Boyle, 1988, 1992; Lea and Boyle, 1989, 1990; 
Marchitto et al., 2000). Benthic foraminiferal Cd/Ca varies pro-
portionally to seawater Cd (which parallels the nutrient element 
phosphorus) and has proven useful for reconstructing glacial–
interglacial variability in deep ocean circulation (Boyle and 
Keigwin, 1985; Rickaby et al., 2000; Zahn and Stüber, 2002; Mar-
chitto and Broecker, 2006). Zn/Ca is a sensitive tracer of past 
ocean carbonate chemistry, as the partition coefficient in benthic 
foraminifera closely depends on the carbonate saturation state of 
the deep ocean (Marchitto et al., 2000, 2005). Benthic foraminif-
eral Ba/Ca has also been used to reconstruct glacial–interglacial 
changes in water mass distribution. However, its most promising 
application appears to be in planktonic foraminifera for the 

in the Gulf of Mexico indicated meaningful changes in assem-
blage composition with water depth (Bandy, 1953, 1961; Bandy 
and Arnal, 1957; Pflum and Frerichs, 1976). Van Morkhoven et al. 
(1986) compiled globally applicable charts of paleobathymetric 
distributions for 125 Cenozoic cosmopolitan deep water benthic 
foraminifera, which were subsequently widely used in subsidence 
and sea-level history reconstructions (e.g., Kaiho, 1992; Katz and 
Miller, 1993, 1996). However, modern ecological investigations 
revealed that oxygenation and food availability (which generally 
diminishes with increasing water depth) rather than water depth 
per se were primary controls on benthic foraminiferal distribu-
tion (Jorissen et al., 1995, 2007; Van der Zwaan et al., 1999; 
Murray, 2001). It has also been found that some deep-dwelling 
species are only able to reproduce under high hydraulic pressure 
(Tiedemann et al., 2012).

Paleoceanography and paleoclimate research
The reconstruction of past climates and ocean conditions relies 
heavily on geochemical analyses of the carbonate tests produced 
by benthic foraminifera. In particular, stable isotope and trace 
element analyses provide unique information on past variations 
in the carbon cycle, ocean pH, ventilation and circulation, pro-
ductivity, temperature, salinity, ice volume, and seawater chemis-
try. Some challenging issues with the use of deep-sea benthic 
foraminifera in geochemical analysis are their relative scarcity,  
as compared to planktonic foraminifera, and the need to use 
monospecific specimens for analysis in order to avoid “vital 
effects” problems. Some recent studies, however, have perfected 
techniques, which only use very small quantities of calcite, (e.g., 
laser ablation). The development of geochemical proxies has  
progressed enormously in recent decades and an overview of 
potential applications for paleoclimatic and paleoceanographic 
reconstructions through time is presented below. A comprehen-
sive review of traditional and emerging geochemical proxies in 
foraminifera by Katz et al. (2010) provides many details beyond 
the brief overview presented here.

Stable oxygen and carbon isotopes
Benthic foraminiferal δ18O generally reflects a mixed signal, which 
varies as a function of global ice volume, the source of deep-water 
formation, and bottom water temperature (Shackleton and 
Opdyke, 1973). Thus benthic δ18O can be used to reconstruct past 
variations in global ice volume and water mass temperature and 
to identify the source regions of water masses. Benthic foraminif-
eral δ18O has also proven to be a powerful stratigraphic tool, 
allowing the development of high-resolution timescales for the 
Pleistocene and Pliocene (Imbrie et al., 1984; Lisiecki and Raymo, 
2005) and for older intervals of the Cenozoic (Holbourn et al., 
2005, 2007; Pälike et al., 2006) through the correlation of glacial 
cycles to computed changes in the geometry of Earth’s orbit 
(Laskar et al., 2004, 2011).

The δ13C of epibenthic foraminiferal species is primarily a 
function of the dissolved inorganic carbon δ13C in bottom water 
(Duplessy et al., 1984; Curry et al., 1988) and as such co-varies 
with the ventilation and nutrient content of deep-water masses. 
As water masses move away from their source areas, they pro-
gressively become enriched in nutrients and CO2 with low δ13C 
values as a result of organic matter oxidation through the water 
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their relations to ocean chemistry and climate change. A total of 
51 papers on deep-water benthic foraminifera were published in 
ODP volumes between 1988 and 2004 (Table 2). In the later stages 
of ODP and IODP, the papers directly linked to specific drilling legs 
were commonly no longer published in the Scientific Results 
volumes, but in the general literature, thus being more difficult to 
trace.

7.  Approach of this Atlas

A voluminous literature concerns the taxonomy of foraminifera, 
as more than 60,000 species have been described, the majority of 
which are benthic species (Culver, 1993). The standard of pub-
lished illustrations and descriptions of type specimens, which 
form the basis of the taxonomy, varies enormously. This mainly 
reflects the lack of taxonomic standardization and the dispersion 
of descriptions and illustrations in a wide range of publications 
that have strong historical or regional associations. Thus, benthic 
foraminiferal taxonomy remains highly unwieldy, which severely 
compromises the application of benthic foraminifera for pale-
oceanographic and paleoclimatic research. It is especially difficult 
for geochemical paleoceanographers, who cannot consult benthic 
foraminiferal specialists, to exert quality control on specimens 
picked for analysis, as these are subsequently dissolved, prohibit-
ing any further taxonomic check.

We have compiled a database of 300 deepwater benthic 
foraminifera, which comprises sets of fully focused, composite 
images and standardized taxonomic descriptions that consolidate 
previous taxonomic efforts. We illustrate whenever possible type 
specimens, mainly deposited in collections of the Smithsonian 
Institution, The Natural History Museum, London, and the  
Jagiellonian University, Kraków, for which only drawings or black 
and white illustrations were previously available. We additionally 
illustrate well-preserved material, mainly topotypic, from deep-
sea cores, commercial wells, and land sections. For selected 
species, SEM micrographs are given for comparison and docu-
mentation of smaller specimens. The digital imaging techniques 
that we used involve taking a number of images per specimen. 
This image set constitutes a series of ‘slices’ taken sequentially at 
different focal plane depths such that all aspects of the specimens’ 
morphology are captured within an in-focus slice. A composite 
image is then built up by combining the areas in each image slice 
that are in focus. The resulting composite image provides a true-
color image of the specimen viewed with full focus throughout 
the field of view. These images, which are the most realistic view 
of what the micropaleontologist actually ‘sees’ through the micro-
scope tube, are particularly useful for illustrating type specimens 
that were previously poorly illustrated. The technique addition-
ally has the benefit of not altering the original specimens, and 
thus is particularly suitable for type specimens. We used a 
Kontron Electronic ProgRes 3012 camera scanner, attached to a 
Leica Diaplan Microscope or an Allen Compact Video Micro-
scope, or a Zeiss Axiocam camera, attached to a Leica MZ16 
stereoscopic microscope, to produce digital images. A fully in-
focus composite image was generated with the help of an image 
manipulation application (Adobe Photoshop) or with the help of 
automated imaging software (Syncroscopy Automontage). By 

reconstruction of past variations in fluvial inputs to the ocean 
(Weldeab et al., 2007).

Boron isotope (δ11B) and B/Ca
The use of boron isotopes in benthic foraminiferal tests to recon-
struct bottom water pH is still in an early stage, as initial meas-
urements of large numbers of mixed benthic species produced 
unrealistic and highly scattered data. However, recent attempts to 
measure δ11B in the epibenthic species Planulina  wuellerstorfi, 
which has a high boron concentration, appeared more promising 
(Yu and Elderfield, 2007; Hönisch et al., 2008). Recent measure-
ments of δ11B in individual Cibicidoides species to reconstruct 
past changes in the ocean carbonate system were also encour-
aging (Rae et al., 2011). Analysis of B/Ca in calcitic benthic 
foraminiferal tests has been used as an alternative approach to 
reconstruct paleo-pH (Yu and Elderfield, 2007). Initial studies 
indicated that the uptake of boron in benthic foraminifera in the 
deep ocean was closely related to carbonate saturation in the deep 
ocean (Yu et al., 2007; Foster, 2008; Brown et al., 2011). However, 
some recent results indicated considerable scatter in the B/Ca  
of at least some co-occurring morphotype species, suggesting 
potential complications arising with the application of this proxy 
(Rae et al., 2011).

6.  Impact of Deep Sea Drilling

During the first phase of ocean drilling, 72 papers on deep-water 
benthic foraminifera were published in the Initial Reports of the 
Deep Sea Drilling Project between 1969 and 1987 (Table 1). A 
large proportion of these papers were dedicated to Jurassic and 
Cretaceous records, since deep-sea drilling provided the first 
opportunity to study “deep-time” deep-water assemblages in a 
much better preserved state than in most land outcrops. Entirely 
new assemblages of Late Jurassic to Cretaceous abyssal aggluti-
nated foraminifera from sub-CCD environments were described 
in particular, shedding new light on the ecology and evolution 
of this hitherto poorly known group (Krasheninnikov, 1973, 
1974). Cenozoic calcareous deep-sea species were previously 
known from some land sections (e.g., Velasco Formation, Mexico; 
Oceanic Formation, Barbados (van Morkhoven et al., 1986),  
but the realization that many species are cosmopolitan and have 
long stratigraphic ranges came with the analysis of samples 
recovered by the DSDP. Benthic assemblages also were com-
monly much better preserved in the deep-sea material than in 
land outcrops.

The expanded and more complete sedimentary successions 
obtained during the follow-on phases of ocean drilling with the 
ODP and Integrated Ocean Drilling Program (IODP) offered,  
in particular, the opportunity to develop high-resolution, astro-
nomically calibrated time series over extended intervals of the 
Cenozoic. These continuous records provided fresh insights into 
the evolution of deep-water benthic foraminifera, as speciation 
and extinction events could be more precisely constrained and 
correlated across different oceans. Furthermore, these records 
allowed development and testing of new hypotheses concerning 
global radiation and mass extinction events in the deep sea and 
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Table 1
Monographic studies of deep-water benthic foraminifera published in the Initial Reports of the Deep Sea Drilling Project. 
Time slices are coded as: ju = Late Jurassic, ku = early Cretaceous, ko = late Cretaceous, pal = Paleogene, neo = Neogene, 
quart = Quarternary. Access to listed publications is available through the Integrated Ocean Drilling Program website 
(http://www.iodp.org).

Author Year Leg Chapter Age

Luterbacher 1972 11 dsdp11_18 ju–ku

Berggren 1972 12 dsdp12_14 pal–neo

Douglas 1973 17 dsdp17_21 ko–neo

Krasheninnikov 1973 20 dsdp20_11 ku–ko

Maync 1973 13 dsdp13pt2_41_1 ku

Bartenstein 1974 27 dsdp27_35 ju–ku

Krasheninnikov 1974 27 dsdp27_32 ko

Kuznetsova 1974 27 dsdp27_34 ju–ku

Scheibnerova 1974 27 dsdp27_36 ku

Vincent et al. 1974 24 dsdp24_21 pal

Luterbacher 1975 32 dsdp32_25 ku

Webb 1975 29 dsdp29_22 pal

McNulty 1976 33 dsdp33_08 ku–ko

Resig 1976 34 dsdp34_63 pal–neo

Rögl 1976 35 dsdp35_33 ko–neo

Boersma 1977 39 dsdp39_29 pal–neo

Sliter 1977 36 dsdp36_10 ku–ko

Sliter 1977 39 dsdp39_30 ku–ko

Beckmann 1978 40 dsdp40_18 ko

Cameron 1978 40 dsdp40_20 neo

Gradstein 1978 44 dsdp44_32 ku

Krasheninnikov & Pflaumann 1978 41 dsdp41_10 ku–ko

Kuznetsova & Seibold 1978 41 dsdp41_08 ju–ku

Lutze 1978 41 dsdp41_13 neo

Proto Decima & Bolli 1978 40 dsdp40_19 pal

Scheibnerova 1978 40 dsdp40_17 ku

Wright 1978 41 dsdp41pt1_31 neo

Bock 1979 48 dsdp48_14 ku

Butt 1979 47 dsdp47pt1_04 ku

Dupeuple 1979 48 dsdp48_18 ku–ko

Lutze 1979 47 dsdp47pt1_11 quart

Murray 1979 48 dsdp48_16 pal–neo

Schnitker 1979 48 dsdp48_15 pal–neo

Sigal 1979 47 dsdp27pt2_05 ku–ko

Butt 1980 55 dsdp55_08 pal–neo

Keller 1980 56 dsdp56_57p2_24 pal–neo

Sliter 1980 50 dsdp50_09 ju–ko

Thompson 1980 56 dsdp56_57pt2_22 pal–neo

Matoba & Yamaguchi 1982 64 dsdp64pt2_45 neo–quart

Basov & Krasheninnikov 1983 71 dsdp71pt2_28 ku–quart

Blanc-Vernet 1983 76 dsdp76_18 neo–quart

Dailey 1983 72 dsdp72_34 ku–pal

Gradstein 1983 76 dsdp76_20 ju

http://www.iodp.org
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Table 1 
(Continued)

Author Year Leg Chapter Age

Tjalsma 1983 72 dsdp72_33 pal–neo

Boersma 1984 75 dsdp75_13 neo

Clark & Wright 1984 73 dsdp73_13 pal

Hemleben & Tröster 1984 78 dsdp78a_26 ko

McNulty 1984 75 dsdp75_10 ku–ko

Murray 1984 81 dsdp81_09 pal–neo

Riegraf et al. 1984 79 dsdp79_26 ju

Schnitker 1984 81 dsdp81_17 neo

Boersma 1985 82 dsdp82_37 pal

Caralp 1985 80 dsdp80pt2_26 quart

McDougalll 1985 84 dsdp84_09 neo–quart

Magniez & Sigal 1985 80 dsdp80pt1_18 ku

Miller et al. 1985 80 dsdp80pt1_13 pal

Poag & Low 1985 80 dsdp80pt1_12 neo

Thomas 1985 85 dsdp85_17 pal–quart

Boersma 1986 90 dsdp90pt2_20 pal–neo

Kurihara & Kennett 1986 90 dsdp90pt2_21 neo

Lagoe 1986 87 dsdp87_10 neo–quart

Leckie & Webb 1986 90 dsdp90pt2_24 pal–neo

Schröder 1986 96 dsdp96_33 quart

Sliter 1986 89 dsdp89_09 ku–ko

Blanc-Vernet & Moullade 1987 93 dsdp93_06 neo–quart

Hart 1987 95 dsdp95_05 ko

Hulsbos 1987 93 dsdp93_10 pal

Katz & Miller 1987 95 dsdp95_08 pal

Miller & Katz 1987 95 dsdp95_07 ku–ko

Saint-Marc 1987 93 dsdp93_11 pal

Scott 1987 95 dsdp95_09 quart

Thomas 1987 94 dsdp94pt2_33 pal–quart

applying further standard digital processing techniques (e.g., 
sharpening, color and level balance, brightness/contrast, and the 
addition of a uniform background color), the final image was 
completed.

Our selection of deep-water benthic foraminifera focused on 
calcareous groups that are of stratigraphic or paleoecological sig-
nificance for IODP studies and/or are increasingly being used  
for geochemical analyses. Many of these groups have a particu-
larly confused taxonomic history, including the genera Bolivina, 
Bulimina, Cibicidoides, Globobulimina, Planulina, Stilostomella, 
and Uvigerina. We have additionally targeted agglutinated taxa to 
highlight morphologic features such as wall texture, grain and 
cement composition, test color and opacity, chamber arrange-
ment, shape of sutures, and inner structure including early 

ontogenic stages, as these represent important taxonomic criteria 
that are not detectable in SEM illustrations. We present systematic 
data (descriptions, synonymies, biogeographic, paleoecologic, 
and stratigraphic ranges) that were assembled from primary 
research, from the literature and from consultation with special-
ists. The generic taxonomic classification follows Loeblich and 
Tappan (1987) with a few exceptions, which mainly reflect taxo-
nomic updates published subsequently. We used the revised 
timescale of Gradstein et al. (2004) and biostratigraphic zonations 
therein. Our hope is that these new illustrations and revised 
descriptions of selected deep-water benthic foraminifera will con-
tribute to the clarification of their taxonomy and will support 
efforts to develop reliable proxies for paleontological and geo-
chemical research.
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Table 2
Monographic studies of deep-water benthic foraminifera published in the Scientific Results of the Ocean Drilling Program. 
Time slices are coded as: ju = Late Jurassic, ku = early Cretaceous, ko = late Cretaceous, pal = Paleogene, neo = Neogene, 
quart = Quarternary. Access to listed publications is available through the Integrated Ocean Drilling Program website 
(http://www.iodp.org).

Author Year Leg Chapter Age

Moullade et al. 1988 103 sr103_21 ko

Osterman & Qvale 1989 104 sr104_37 pal–neo

Cotalongo et al. 1990 107 sr107_30 neo–quart

Hasegawa et al. 1990 107 sr107_29 neo–quart

Sprovieri & Hasegawa 1990 107 sr107_28 neo–quart

Weinholz & Lutze 1990 108 sr108_07 quart

Clark 1990 110 sr110_10 neo–quart

Resig 1990 112 sr112_16 neo–quart

Thomas 1990 113 sr113_35 ko–neo

Boersma 1990 115 sr115_20 pal–neo

Iaccarino & Proto Decima 1990 116 sr116_18 neo

Scott & Leger 1990 116 sr116_16 neo–quart

Hermelin 1991 117 sr117_03 quart

Schröder–Adams 1991 119 sr119_31 pal–quart

Nomura 1991 121 sr121_01 ko–pal

Nomura 1991 121 sr121_02 pal–quart

Kaminski & Huang 1991 124 sr124_12 pal

Mackensen & Berggren 1992 120 sr120_34 pal

Mackensen 1992 120 sr120_36 neo

Quilty 1992 120 sr120_23 ko

Jones & Wonders 1992 122 sr122_33 ku

Zaninetti et al. 1992 122 sr122_24 trias

Haig 1992 123 sr123_14 ku

Kaminski et al. 1992 123 sr123_13 jur–ku

Milner 1992 125 sr125_04 pal

Kaiho & Nishimura 1992 126 sr126_20 quart

Kaiho 1992 126 sr126_19 pal–quart

Brunner 1992 127 sr127–128_12 neo–quart

Kato 1992 127 sr127–128_22 neo–quart

Nomura 1992 127 sr127–128_29 neo

Wightman & Kuhnt 1992 129 sr129_13 ko

Katz & Miller 1993 133 sr133_06 neo

Akimoto 1994 134 sr134_12 pal–neo

Schönfeld & Spiegler 1995 141 sr141_15 neo–quart

Dowsett & Ishman 1995 145 sr145_08 neo

Zellers 1995 146 sr146pt1_05 neo–quart

Collins et al. 1996 149 sr149_07 ju

Collins et al. 1996 149 sr149_09 neo–quart

Kuhnt & Collins 1996 149 sr149_08 ko–pal

Katz & Miller 1996 150 sr150_05 pal–neo

Osterman & Spiegler 1996 151 sr151_09 pal–neo

Osterman 1996 151 sr151_10 neo–quart

Bignot 1998 159 sr159_33 pal

Kuhnt et al. 1998 159 sr159_31 ko–pal

Holbourn & Kuhnt 1998 159 sr159_30 ko

http://www.iodp.org
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Table 2 
(Continued)

Author Year Leg Chapter Age

Holbourn & Moullade 1998 159 sr159_28 ku

Kaminski & Austin 1999 162 sr162_11 pal

Eidvin & Nagy 1999 162 sr162_01 neo

Katz 2000 166 sr166_12 neo

Quilty 2002 183 sr183_03 ko

Nomura & Takata 2004 199 sr199_223 pal

Berggren, W.A. and Miller, K.G., 1989, Cenozoic bathyal and abyssal 
benthic foraminiferal zonations. Micropaleontology, vol. 35,  
pp. 308–320.

Boltovskoy, E., 1980, On the benthonic bathyal-zone foraminifera as 
stratigraphic guide fossils. Journal of Foraminiferal Research, vol. 
10, pp. 163–172.

Bosak, T., Lahr, D.J.G., Pruss, S.B., MacDonald, F.A., Gooday, A.J., 
Dalton, L., and Matys, E.D., 2011, Possible early foraminiferans  
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Bowser, S.S. and Travis, J.L., 2002, Reticulopodia: structural and 
behavioral basis for the suprageneric placement of granuloreticu-
losan protists. Journal of Foraminiferal Research, vol. 32, pp. 440– 
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Boyle E.A., 1992, Cadmium and δ13C paleochemical ocean distribu-
tions during the stage 2 glacial maximum. Annual Review of Earth 
and Planetary Sciences, vol. 20, pp. 245–287.

Boyle E.A. and Keigwin L.D., 1985, Comparison of Atlantic and 
Pacific paleochemical records for the last 215,000 years: changes in 
deep ocean circulation and chemical inventories. Earth and Plan-
etary Science Letters, vol. 76, pp. 135–150.

Brasier, M.D., 1980, Microfossils. London: George Allen & Unwin, 193 
pp.

Brown, R.E., Anderson, L.D., Thomas, E., and Zachos, J.C., 2011, A 
core-top calibration of B/Ca in the benthic foraminifera Nuttal-
lides umbonifera and Oridorsalis umbonatus: reconstructing 
bottom water carbonate saturation. Earth and Planetary Science 
Letters, vol. 310, pp. 360–368.
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Academic Publishers, pp. 507–517.

Cedhagen, T., Goldstein, S.T., and Gooday, A.J., 2002, Biology and 
diversity of allogromiid foraminifera. Journal of Foraminiferal 
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Abyssamina poagi
Schnitker and Tjalsma, 1980
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3.  Abyssamina poagi. North Biscay, North Atlantic; DSDP Leg 48, Hole 400A, Core 47, Section 7, 75–79 cm. Umbilical view, NHMUK PM DI 
0003, scale bar = 56 µm.

2.  Abyssamina poagi. North Biscay, North Atlantic; DSDP Leg 48, Hole 400A, Core 47, Section 7, 75–79 cm. Apertural view, NHMUK PM DI 
0002, scale bar = 48 µm.

1.  Abyssamina poagi. North Biscay, North Atlantic; DSDP Leg 48, Hole 400A, Core 47, Section 7, 75–79 cm. Spiral view, NHMUK PM DI 0001, 
scale bar = 45 µm.


