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Introduction

What is wave propagation?

 

In a kitchen or in a bathroom, the number of times we turn

a tap every day is countless. So is the number of times we

watch the liquid stream impacting the sink. The circular flow

pattern where the fast and shallow water film diverging from

the impact point changes into a deeper, bubbling flow is too

familiar to deserve attention. Very few people looking at the

circular, bubbling pattern – referred to as a hydraulic jump

by the specialists of hydraulics – are aware that they are

contemplating a shock wave.

Turning off the tap too quickly may result in a thud sound.

This is the audible manifestation of the well-known water

hammer phenomenon, a train of pressure waves

propagating in the metal pipes as fast as hundreds to

thousands of meters per second. The water hammer

phenomenon is known to cause considerable damage to

hydropower duct systems or water supply networks under

the sudden operation of valves, pumps or turbines. The

sound is heard because the vibrations of the duct system

communicate with the ambient atmosphere, and from there

with the operator’s ears.

Everyone has once thrown stones into the water in a pond,

watching the concentric ripples propagate on the surface.

Less visible and much slower than the ripples is the moving

groundwater that displaces a pollutant front in a journey

that may last for years.

As ubiquitous and familiar as wave propagation may be,

the phenomenon is often poorly understood. The reason

why intuition so often fails to grasp the mechanisms of wave

propagation may lie in the commonly shared, instinctive



perception that waves are made of matter. This, however, is

not true. In the example of the hydraulic jump in the sink,

the water molecules move across an immobile wave. In the

example of the ripples propagating at the free surface of a

pond, the waves travel while the water remains immobile.

Waves appear when an object or a system (e.g. the

molecules in a fluid, a rigid metallic structure) reacts to a

perturbation and transmits it to its neighbors. In many

cases, as in the example of the water ripples, the initially

perturbed system returns to its initial equilibrium state,

while the waves keep propagating. In this respect, waves

may be seen as information. The ripples propagating in a

pond are a sign that the water molecules “inform” their

neighbors that the equilibrium state has been disturbed. A

sound is nothing more than information about a

perturbation occurring in the atmosphere.

Numerical techniques for wave propagation simulation

have been the subject of intensive research over the last 50

years. The advent of fast computers has led to the

development of efficient numerical techniques. Engineers

and consultants now use simulation software packages for

wave propagation on a daily basis. Whether it is for the

purpose of acoustics, aerodynamics, flood wave propagation

or contaminant transport studies, computer-based

simulation tools have become indispensable to almost all

domains of engineering. Such tools, however, remain

instruments operated by human beings to execute tedious,

repetitive operations previously carried out by hand. They

cannot, and hopefully never will, replace the expert’s

judgment and experience. Human presence remains

necessary to the sound assessment of the relevance and

accuracy of modeling results. Such an assessment,

however, is possible only provided that the very specific

type of reasoning required for the correct understanding of

wave propagation phenomena has been acquired.



The main purpose of this book is to contribute to a better

understanding of wave propagation phenomena and the

most commonly used numerical techniques for its

simulation. The first three chapters deal with the physics

and mathematics of wave propagation. Chapters 4 and 5

provide an insight into more theoretical notions, used in

specific numerical techniques. Chapters 6 and 7 are devoted

to finite difference and finite volume techniques

respectively. Basic notions of linear algebra and numerical

methods are presented in Appendices A to C. The various

formulae used in the present book are summarized in

Appendix D.

 

What is the intended readership for this book?

 

This book is intended for the students of professional and

research master programs and those engaged in doctoral

studies, the curriculum of which contains hydraulics and/or

fluid mechanics-related subjects. Engineers and developers

in the field of fluid mechanics and hydraulics are also a

potential target group. This book was written with the

following objectives:

1)To introduce the physics of wave propagation, the

governing assumptions and the derivation of the governing

equations (in other words, the modeling process) in various

domains of fluid mechanics. The application fields are as

diverse as contaminant transport, open channel and free

surface hydraulics, or aerodynamics.

2)To explain how the behavior of the physical systems can

be analyzed using very simple mathematical techniques,

thus allowing practical problems to be solved.

3)To introduce the main families of numerical techniques

used in most simulation software packages. As today’s

practising engineers cannot afford not to master modeling



packages, a basic knowledge of the existing numerical

techniques appears as an indispensable engineering skill.

 

How should this book be read?

 

The chapters are divided into three parts:

– The first part is devoted to the theoretical notions

applied in the remainder of the chapter.

– The second part deals with the application of these

theoretical notions to various equations of hydraulics and

fluid mechanics.

– The third part provides a summary of the key points

developed in the chapter, as well as suggestions of

application exercises.

The main purpose of the application exercises is to test the

reader’s ability to reuse the notions developed in the

chapter and apply them to practical problems. The solution

principle of the exercises may be accessed from the

following URL:

http://vincentguinot.free.fr/waves/exercises.htm.

Try to resist the temptation to read the solution

immediately. Solving the exercise by yourself should be the

primary objective. The solution text is provided only as a

help, in case you cannot find a way to start and for you to

check the validity of your reasoning after completing the

exercise.

http://vincentguinot.free.fr/waves/exercises.htm


Chapter 1

Scalar Hyperbolic

Conservation Laws in One

Dimension of Space

1.1. Definitions

1.1.1. Hyperbolic scalar

conservation laws

A one-dimensional hyperbolic scalar conservation law is a

Partial Differential Equation (PDE) that can be written in the

form

[1.1] 

where t and x are respectively the time- and space-

coordinates, U is the so-called conserved variable, F is the

flux and S is the source term. Equation [1.1] is said to be the

conservation form of the conservation law. The following

definitions are used:

– The flux F is the amount of U that passes at the abscissa

x per unit time due to the fact that U (also called the

transported variable) is being displaced.

– The source term S is the amount of U that appears per

unit time and per unit volume, irrespective of the amount

transported via the flux F. If U represents the concentration

in a given chemical substance, the source term may express

degradation phenomena, or radioactive decay. S is positive



when the conserved variable appears in the domain, and is

negative if U disappears from the domain.

– The conservation law is said to be scalar because it deals

with only one dependent variable. When several equations

in the form [1.1] are satisfied simultaneously, the term

“system of conservation laws” is used. Systems of

conservation laws are dealt with in Chapter 2.

Only hyperbolic conservation laws are dealt with in what

follows. The conservation law is said to be hyperbolic if the

flux F is a function of U (and none of its derivatives) and,

possibly, of x and t. Such a dependence is expressed in the

form

[1.2] 

The function F(U, x, t) is called the “flux function”.

NOTE.– The expression F(U, x, t) in equation [1.2] indicates

that F depends on U at the abscissa x at the time t and does

not depend on such quantities as derivatives of U with

respect to time or space. For instance, the following

expression

[1.3] 

is a permissible expression [1.2] for F, while the following

diffusion flux,

[1.4] 

where D is the diffusion coefficient, does not yield a

hyperbolic conservation law because the flux F is a function

of the first-order derivative of U with respect to space.

In the case of a zero source term, equation [1.1] becomes

[1.5] 

In such a case (see section 1.1.2), U is neither created nor

destroyed over the domain. The total amount of U over the

domain varies only due to the difference between the



incoming and outgoing fluxes at the boundaries of the

domain.

Depending on the expression of the flux function, the

conservation law is said to be convex, concave or non-

convex (Figure 1.1):

– The law is convex when the second-order derivative ∂2F/

∂U 2 of the flux function with respect to U is positive for all U.

– The law is concave when the second-order derivative ∂2F/

∂U 2 of the flux function with respect to U is negative for all

U.

– The law is said to be non-convex when the sign of the

second-order derivative ∂2 F/∂U 2 of the flux function with

respect to U changes with U.

Figure 1.1. Typical examples of flux functions: convex (a),

concave (b), non-convex (c)

1.1.2. Derivation from general

conservation principles

The conservation form [1.1] is derived from a balance over

a control volume of unit section defined between x
0
 and x

0
 +

δx (Figure 1.2). The balance is carried out over the control

volume between two times t
0
 and t

0
 + δt. The variation in

the total amount of U contained in the control volume is

then related to the derivatives ∂U/∂t and ∂F/∂x in the limit of

vanishing δt and δx.

Figure 1.2. Definition sketch for the balance over a control

volume



The total amount M(t
0
) of U contained in the control

volume at t = t
0
 is defined as

[1.6] 

At t = t
0
 + δt, the total amount of U contained in the

control volume is

[1.7] 

The variation δS in the amount of U induced by the source

term S over the domain between t
0
 and t

0
 + δt is given by

[1.8] 

The amount δF(x
0
) of U brought by the flux F across the

left-hand side boundary of the control volume between t
0

and t
0
 + δt is given by

[1.9] 

A quantity δF(x
0
 + δx) leaves the domain across the right-

hand side boundary

[1.10] 

Stating the conservation of U over the control volume [x
0
,

x
0
 + δx] between t

0
 and t

0
 + δt, the following equality is

obtained

[1.11] 



Substituting equations [1.6–1.10] into equation [1.11]

leads to

[1.12] 

A first-order Taylor series expansion around (x
0
, t

0
) gives

[1.13] 

where the quantities O(δt2) and O(δx2) are second- or higher-

order polynomials with respect to δt and δx respectively.

These polynomials contain the second- and higherorder

derivatives of U and F with respect to t and x. When δt and

δx tend to zero, the polynomial O(δt2) becomes negligible

compared to the quantity δt ∂U/∂t because δt2 decreases

faster than δt. The polynomial O(δx2) becomes negligible

compared to δx∂F/∂x for the same reason. The relationships

[1.13] thus become

[1.14] 

A similar reasoning leads to the following equivalence

[1.15] 

Substituting equations [1.14] and [1.15] into equation

[1.12] leads to

[1.16] 

Dividing equation [1.16] by δt δx yields the conservation

form [1.1], recalled here



The following comments can be made:

– The PDE [1.1] is a particular case of the more general,

integral equation [1.12]. Equation [1.1] is obtained from

equation [1.12] using the assumption that δt and δ x tend to

zero. Equation [1.12] is the so-called weak form of equation

[1.1] (see Chapter 3 for more details).

– The conservation form [1.1] is based on the implicit

assumption that F is differentiable with respect to x and U is

differentiable with respect to t. Consequently, [1.1] is

meaningful only when U is continuous in space and time. In

contrast, equation [1.12] is meaningful even when U is

discontinuous in space and/or time. This has consequences

on the calculation of discontinuous solutions, as shown in

Chapter 3.

1.1.3. Non-conservation form

Equation [1.1] can be rewritten in the so-called non-

conservation form, which involves only derivatives of U. The

non-conservation form of equation [1.1] is

[1.17] 

where λ is called the wave celerity, or wave propagation

speed, and S′ is a source term that may be identical

(although not necessarily) to the source term S in equation

[1.1]. Equation [1.17] is obtained from equation [1.1] by

rewriting the derivative ∂F/∂x as

[1.18] 

where the term F′ = (∂F/∂x)
U=Const

 contains all the derivatives

of F other than the derivative with respect to U. The

expression of F being known, ∂F/∂U and F′ are easily

determined. Substituting equation [1.18] into equation [1.1]

yields

[1.19] 



i.e.

[1.20] 

Comparing equation [1.20] to equation [1.17] leads to the

following definitions for λ and S′

[1.21] 

As the expressions of F and S are known, λ and S′ can be

calculated at any point in time and space if U is known.

From definition [1.21], in the case where the variations in F

are due to variations in U only, F′ = 0 and S′ is identical to S.

Example: assume that the flux function F is defined as in

equation [1.3], recalled here

where a is a function of x and t. Equation [1.18] thus

becomes

[1.22] 

and λ and F′ are given by

[1.23] 

If a does not depend on x, F′ = 0 because ∂a/∂x = 0.

1.1.4. Characteristic form –

Riemann invariants

Writing a conservation law in non-conservation form leads

to the notions of characteristic form and Riemann invariant.

Such notions are essential to the understanding of

hyperbolic conservation laws. A very convenient way of

determining the behavior of the solutions of hyperbolic

conservation laws consists of identifying invariant quantities



(i.e., quantities that do not change) along certain

trajectories, also called “characteristic curves” (or more

simply “characteristics”).

The solution is calculated by “following” the invariants along

the characteristics, which allows the value of U to be

determined at any point. To do this, non-conservation form

[1.17] is used

The purpose is to derive the expression of the variation δU

in U observed by an observer traveling at a given speed v. A

small time interval δt is considered, over which the traveler

moves by a distance δx = v δt. The variation δU “seen” by

the observer is given by

[1.24] 

Note that from the observer’s point of view, U is a function

of time only, because the observer’s location x(t) is defined

by dx/dt = v. When δt tends towards zero, the ratio δU /δt

tends to the so-called total derivative dU/dt. Therefore,

equation [1.24] becomes

[1.25] 

In the particular case of an observer moving at the celerity

λ, equation [1.25] becomes

[1.26] 

Comparing equations [1.26] and [1.17] leads to

[1.27] 

Equation [1.27] is the so-called characteristic form of

equation [1.1]. The trajectory, the equation of which is dx/dt

= λ, is called a characteristic. λ is called the celerity, or

wave propagation speed.

S′ being a function of U, x and t, its value may be

calculated at any point (x, t) if the value of U is known. The



first-order ODE [1.27] is applicable along the characteristic.

One very important, specific case is where the source term

S′ is zero, equation [1.17] becomes

[1.28] 

and equation [1.27] becomes

[1.29] 

Equation [1.29] can also be written as

[1.30] 

Consequently, quantity U is invariant to an observer

moving at speed λ. U is called a Riemann invariant.

The physical meaning of the celerity, or wave propagation

speed, is the following. The celerity is the speed at which

the variations in U (and not U itself) propagate. A

perturbation appearing in the profile of U at a given time

propagates at speed λ. The celerity can be viewed as the

speed at which “information”, or “signals” created by

variations in U, propagates in space.

1.2. Determination of the

solution

1.2.1. Representation in the

phase space

The phase space is a very useful tool in the determination

of the behavior of the solutions of hyperbolic conservation

laws. The term “phase space” indicates the (x, t) plane

formed by space coordinate x and time coordinate t (Figure

1.3).



Figure 1.3. Representation of characteristic curves in the

phase space

The trajectory dx/dt = λ is represented by a curve in the

phase space. The distance δx covered by the characteristic

over a time interval δt is given by δx = λ δt, therefore the

slope of the line is δt/δx = 1/λ. Note that the sign of λ may

change with time depending on the variations in U and the

expressions of λ and S′. When λ becomes zero the tangent

to the characteristic curve is vertical in the phase space

(Figure 1.4a). In contrast, an extremum with respect to time

is not physically permissible (Figure 1.4b) because

“traveling backwards in time” is not possible.

Figure 1.4. Physically permissible (a) and non-permissible

(b) characteristics

The representation in the phase space may be used to

determine the behavior of the solutions of conservation law

[1.1] using the so-called “characteristics method”. The

following simple case is considered:

– Source term S in equation [1.1] is zero.

– The flux depends only on U, therefore F′ = 0 in equations

[1.18–1.20].



Characteristic form [1.27] then reduces to equation [1.30],

recalled here

F being a function of U only, λis also a function of U only.

Consequently, if U is constant along a characteristic line, λis

also constant and the characteristic is a straight line in the

phase space (Figure 1.5). Assume that the profile U(x, t
0
) is

known for all x at the time t
0
. The purpose is to determine

the profile U(x, t
1
) for all x at the time t

1
 > t

0
. Consider point

A, the abscissa of which is denoted by x
A
, at which the value

of U at (x
A
, t

0
) is denoted by U

A
. Since the celerity λ depends

on U only, the characteristic passing at A is a straight line.

Its (constant) celerity is λ
A
 = ∂F/∂U (U

A
). At the time t

1
, the

characteristic has moved to point A′, the abscissa x
A′
 of

which is given by

[1.31] 

Figure 1.5. Representation of the characteristics in the

phase space (bottom) and behavior of the physical profile

(top) in the specific case F′ = S = 0

From the property of invariance of U along the

characteristic, U remains unchanged between A and A′



[1.32] 

Extending the reasoning above to any value of x, the

following relationship is obtained

[1.33] 

where Δt represents the quantity ( t
1
 − t

0
) and λis estimated

at (x, t).

Figure 1.5 shows how the characteristics method can be

used to determine the evolution of a given profile [ABC]. The

figure is drawn assuming that λis an increasing function of

U. Therefore, point B moves faster than points A and C

because U
B
 is larger than U

A
 and U

C
. Consequently, region

[AB] tends to spread in time, while region [BC] becomes

narrower. After a certain amount of time point B catches up

point C and the solution becomes discontinuous at point B′

= C′. The derivatives ∂U/∂t and ∂U/∂x are no longer defined

and a specific treatment must be applied to determine the

solution at later times. Such a treatment is detailed in

Chapter 3.

In general, S and F′ are non-zero. Thus, relationship [1.33]

cannot be used because

– U is not invariant along a characteristic line;

– the characteristics are therefore curved lines, the slope

of which depends on the local value of x and U.

Therefore, no simple relationship can be derived between

the initial profile at t = t
0
 and the final profile at t = t

1
. In

most cases, the solution must be calculated approximately

using numerical methods. Such methods are dealt with in

Chapters 6 and 7.

1.2.2. Initial conditions,

boundary conditions

In practical applications, the solution of equation [1.1] is

sought over a domain of finite length. A key issue is the



amount of information needed for the calculation of U at

point M(x, t) in the domain. This question is best answered

using the phase space (Figure 1.6). The solution domain is

assumed to extend from x = 0 to x = L.

Figure 1.6. Initial and boundary conditions in the phase

space

For the sake of clarity, the celerity λ is assumed to be

positive over the entire domain (the case where the sign of

the celerity changes is examined at the end of the section).

Two possibilities arise:

– If point M is located on the right-hand side of the

characteristic that passes at point B (x = 0, t = 0), there

exists a point C on the line (t = 0) such that the

characteristic passing at C passes at M. Point C is called the

foot of the characteristic at t = 0. If the value of U is known

at point C, U can be calculated along the characteristic line

by solving characteristic form [1.27] using any analytical or

numerical method. Therefore, the value of U can be

calculated at any point M located on the right-hand side of

the characteristic that passes at B (0, 0), provided that U(x,

0) is known for all x between 0 and L. The function that

describes profile U(x, 0) is called the initial condition. It is

expressed as follows

[1.34] 

– If point M is located on the left-hand side of the

characteristic passing at B, the value of U at M cannot be

calculated from the initial condition and the knowledge of

the value of U at all A points along the line (x = 0) is



necessary. The function that describes the profile U(0, t) is

called a boundary condition. In the case of a positive λ, the

characteristics enter the domain on the left-hand side and

the left boundary condition must be used. This is expressed

as follows

[1.35] 

Note that a boundary condition can be prescribed only if

the characteristics enter the domain. In the situation

illustrated by Figure 1.6, prescribing a boundary condition at

the point C′ would be meaningless because the value of U at

C′ is entirely determined by the initial condition at C via the

characteristic form [1.27] and cannot be prescribed

independently of it. Depending on the variations of λ with U,

x and t, the number of boundary conditions needed to

determine U uniquely over the domain [0, L] may be 0, 1 or

2 (see Figure 1.7).

In configuration (a), the characteristics leave the domain

at both boundaries (x = 0) and (x = L). The value of U at

both boundaries is determined entirely by the initial

condition U(x, 0). In configuration (b), the left-hand

boundary condition is needed because the characteristics

enter the domain at x = 0 and the value of U at this location

cannot be determined from the values inside the domain. In

contrast, the knowledge of U at the right-hand boundary is

not required because U is determined uniquely from the

value of U inside the domain. In configuration (c), the

characteristics enter the domain at both x = 0 and x = L.

Consequently, two boundary conditions are needed, one at

each end of the domain, because U(0, t) and U(L, t) cannot

be determined from inside the domain and must therefore

be specified independently in the form of boundary

conditions.

Figure 1.7. Number of boundary conditions needed

depending on the variations of the wave celerity: none (a)

one (b) two (c)



1.3. A linear law: the

advection equation

1.3.1. Physical context –

conservation form

The linear advection equation is the simplest possible

hyperbolic conservation law. It is found in many domains of

fluid mechanics because it expresses a widespread

phenomenon, the transport of a given quantity in a moving

fluid. The transported variable may be the temperature of

the fluid, the concentration in a given chemical, etc. The

expression “advection” is often understood as the advection

of a passive scalar, i.e., a quantity that does not influence

the behavior of the flow by which it is transported. In a

number of cases however, the transported quantity

influences the velocity field, a phenomenon known as

coupling. This is the case of the inviscid Burgers equation

dealt with in section 1.4.

In the present section, a passive scalar is considered. The

example of a chemical substance dissolved in water with a

concentration variable in space and time is used. The water

is assumed to flow in a channel, the transverse dimensions

of which are assumed to be negligible compared to the

longitudinal dimension. The channel may be an open

channel (a river, a canal) or a closed channel (a conduit)

with a cross-sectional area variable in space and time. The

assumption of negligible transverse dimensions for the



channel allows the assumption of a one-dimensional,

longitudinal flow and transport process to be used. The

channel is represented as a one-dimensional object. The

space coordinate is the curvilinear abscissa (Figure 1.8).

Figure 1.8. One-dimensional representation of a channel,

the transverse dimension of which can be considered

negligible: reality (a) and model (b)

The governing PDE for the one-dimensional transport of a

dissolved substance is derived by carrying out a balance as

in section 1.1.2. The total quantity M (t) of substance (the

“mass” as introduced in section 1.1.2) over a basic slice of

channel of length δx (Figure 1.9) is given by

[1.36] 

where C is the concentration of the dissolved substance and

δV is the volume of the basic channel slice, given by

[1.37] 

where A is the cross-sectional area of the channel (Figure

1.9).

Figure 1.9. Perspective view of a basic channel section

Amount δF(x
0
) of dissolved chemical that passes at x

0

during a basic time interval δt is given by



[1.38] 

where u is the flow velocity. Using the same reasoning as in

equations [1.11–1.16] with a zero source term, the PDE that

describes the conservation of mass (also called the

continuity equation) is obtained

[1.39] 

Equation [1.39] can be written in the form [1.1] by

defining the conserved variable U, flux F and source term S

as

[1.40] 

where Q = Au is the so-called liquid discharge.

1.3.2. Characteristic form

Several approaches may be used to rewrite equation

[1.39] in characteristic form. A first approach consists of

defining the conserved quantity as AC and rewriting

equations [1.39–1.40] as

[1.41] 

noting that ∂/∂x(uU) = u ∂U/∂x+U ∂u/∂x, equation [1.41]

becomes

[1.42] 

As shown in section 1.1.4 (see equations [1.24–1.27]),

equation [1.42] is equivalent to

[1.43] 

Equation [1.43] is of limited interest because U does not

appear as an invariant quantity along a characteristic line.

In a second approach, equation [1.39] is rewritten with

respect to the concentration C by developing the derivatives



[1.44] 

equation [1.44] is rewritten as

[1.45] 

Noting that the continuity equation for the flow can be

written as

[1.46] 

substituting equation [1.46] into equation [1.45] yields the

following equation

[1.47] 

Dividing by A and noting that Q/A = u leads to

[1.48] 

From the developments carried out in section 1.1.4 (see

equations [1.24–1.27]), equation [1.48] is known to be

equivalent to the following characteristic form

[1.49] 

Equation [1.49] is equivalent to

[1.50] 

Equation [1.50] is an interesting alternative to equation

[1.43] because it allows a Riemann invariant to be derived.

The Riemann invariant is the concentration of the dissolved

substance. Note that the conserved quantity (the mass AC

per unit length of channel) is not identical to the invariant

quantity (the concentration).

1.3.3. Example: movement of a

contaminant in a river


