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PREFACE
THE SMAD FAMILY

PETER TEN DIJKE! AND CARL-HENRIK HELDIN?

! Department of Molecular and Cell Biology, Leiden University Medical Center, Leiden,
The Netherlands
2 Ludwig Institute for Cancer Research, Uppsala University, Sweden

1. INTRODUCTION

About 10 years ago, our understanding of how signals from transforming growth
factor-B (TGF-B) family members and their specific serine/threonine kinase recep-
tors are transduced from the plasma membrane to the nucleus, was a black box.
Yeast two-hybrid screening approaches with the intracellular domain of TGF-3
superfamily receptors as baits, were initiated by several laboratories, but failed to
identify critical intracellular downstream effectors. A breakthrough came through
genetic studies in Drosophila; in screens for dominant enhancers of weak dpp
alleles (dpp is the TGF-3 homolog in Drosophila) Mothers against dpp (Mad) and
Medea were discovered (Raftery et al., 1995; Sekelsky et al., 1995). Homozygous
Mad and Medea mutants are phenotypically similar to dpp mutants. In C. elegans,
daf-4 encodes a serine/threonine kinase receptor and daf-4 mutants are dauer-
constitutive and smaller than wild-type. Screening for mutants with the same small
daf-4 phenotype revealed three genes, sma-2, sma-3 and sma-4 (Savage et al.,
1996). Mad, Medea and Sma proteins were found to be essential components down-
stream of TGF-f receptor signaling pathways in these lower invertebrates (Newfeld
et al., 1996; Wiersdorff et al., 1996) (see Chapters 2 and 3). Shortly thereafter,
homologous Mad and sma-related genes were identified in Xenopus, mouse and
man, and shown to function as principal effectors downstream of serine/threonine
kinase receptors in vertebrates (Eppert et al., 1996; Graff et al., 1996; Hoodless
et al., 1996; Liu et al., 1996; Thompson et al., 1996) (see Chapter 1). The desig-
nation Smad was then suggested for the vertebrate homologues of Sma and Mad
(Derynck et al., 1996).

After the discovery of Smads, several laboratories independently, and at about
the same time, identified additional members of the Smad gene family through their

1
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2 TEN DIJKE AND HELDIN

homology with Sma and Mad genes by PCR cloning and/or mining of expressed
sequence tags (EST) databases. Since then intensive work has been devoted to eluci-
date which Smads are activated by specific type I serine/threonine kinase receptors,
the subcellular localization of Smads before and after ligand stimulation, the role
of Smads as transcriptional factors, modulation of Smad function by interacting
proteins, and the in vivo function and role in disease of Smads. These efforts led
to a remarkably quick progress in our understanding of the mechanism of action of
Smads; their role as principle intracellular downstream effectors for TGF-f8 family
members is now firmly established (Attisano and Wrana, 2002; Derynck and Zhang,
2003; Shi and Massagué, 2003; ten Dijke and Hill, 2004) (see Chapters 2-8). Smad
activation, subcellular distribution and stability have been shown to be intricately
regulated (see Chapters 9-16), and Smads have been found to function as signal
integrators within an extensive intracellular network (see Chapters 14-18).

This volume provides an in-depth review of the rapidly developing field of Smad
research, in which structures are integrated with in vivo functions (see Chapter 11).
Moreover, the impact of functional genomics and systems biology approaches on
Smad signaling (see Chapters 17 and 18), links between alterations in Smad signaling
and disease (see Chapters 19 and 20) and how this knowledge may come to be
applied in the clinic (see Chapters 21 and 22), will be discussed. In this preface,
we will start by reviewing the TGF-3 family and their specific type I and type II
serine/threonine kinase receptors, and will subsequently introduce the Smad family.

2. TGF-f FAMILY MEMBERS AND THEIR SIGNALING
RECEPTORS

2.1 TGF-3 Family Members are Multifunctional Cytokines

TGF-B family members, which include TGF-s, Activins, and bone morphogenetic
proteins (BMPs)/growth and differentiation factors (GDFs), are structurally related
secreted dimeric cytokines (Roberts and Sporn, 1990). They are produced by cells
as larger precursor proteins that are processed within the Golgi apparatus by endo-
proteases of the convertase family (e.g. furin) (Dubois et al., 1995) (Fig. 1A).
Upon cleavage, the amino-terminal remnant, also termed latency-associated peptide
(LAP), remains non-covalently associated to the carboxy-terminal part that contains
the mature protein. LAP prevents binding of mature ligand to the receptor and thus
keeps the ligand inactive (Annes et al., 2004). The mature TGF-$ can be released
from the inactive complexes by several mechanisms, including cleavage of LAP
by proteases, such as plasmin (Lyons et al., 1988), and through action of LAP
binding proteins, such as thrombospondin (Crawford et al., 1998). This mechanism
of latency imposed by LAP has been mainly investigated and demonstrated for
TGF-Bs; whether it also occurs for the many other TGF-3 family members remains
to be investigated.

The TGF-3 family members share most similarity in their mature domains that
have a characteristic cystine knot motif. At least 34 family members have been
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Figure 1. TGF-$ family members: multiple cytokines with pleiotropic functions. (A) Schematic structure
of TGF- family members. The precursor of TGF-f3 family members is composed of a signal peptide,
an amino-terminal propeptide (also termed latency-associated peptide) and a carboxy-terminal mature
ligand. (B) Phylogenetic analysis of the TGF-B family. Reproduced with permission and copyright
© of the Britisch Editorial Soceity of Bone and Joint Surgery (ten Dijke et al., J. Bone Joint Surg
2003, 85-B:34-8) (A color version of this figure is freely accessible via the website of the book:
http://www.springer.com/1-4020-4542-5)

GDF1
GDF3/Vgr

[BMP2 |

Abbreviations: ACT, Activin; BMP, bone morphogenetic protein; GDF, growth and differentiation
factor; INH, inhibin; MIS/AMH, miillerian inhibiting substance/anti-miillerian hormone; OP, osteogenic
protein; TGF-f, transforming growth factor 3

identified in the human genome (Fig. 1B). TGF-B, the founding member of this
family, was discovered in the late 70’s/early 80’s as a factor produced by virus-
transformed cells with the ability to induce the growth of normal rat kidney cells
in soft agar (DeLarco and Todaro, 1976; Roberts et al., 1981). Subsequent studies
demonstrated that TGF- has a potent growth inhibitory activity (Tucker et al.,
1984), and, in fact, is a pleiotropic molecule that regulates cell proliferation, differ-
entiation, apoptosis, migration, adhesion of many different cell types (Moses and
Serra, 1996; Roberts and Sporn, 1990). Activin was originally identified as a factor
that stimulates the secretion of follicle stimulating hormone from the pituitary gland
(Mason et al., 1985), and as a stimulator of erythroid differentiation (Murata et al.,
1988). BMP was first known for its ability to induce cartilage and bone (Wozney
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et al., 1988). Subsequent studies on Activins and BMPs revealed that these, like
TGF-B, also are multifunctional proteins (Massagué, 1990). Certain members of the
TGF-f family, such as miillerian inhibiting substance (MIS)/anti-miillerian hormone
(AMH), nodal, myostatin, and GDF-9, appear to have a restricted expression pattern
and have been implicated in specific biological responses. However, it is likely that
future studies will ascribe additional functions to these factors.

Often TGF- family members act as homodimers, but heterodimers between
different isoforms can also occur. In the case of Activins, four 3 chains (BA through
BE) have been identified, of which B A and BB can form homo- as well as heterodimers.
Moreover, inhibins that antagonize the activity of Activins, are heterodimers of
inhibin a chains and Activin 8 chains (Mathews, 1994). In addition, a BMP2/7
heterodimer has been isolated from bone (Sampath et al., 1990) and shown to be more
potent in bone induction than their respective homodimers (Israel et al., 1996).

TGF- family members, and their downstream signaling components, can be
found in species as diverse as nematodes, fruit flies, frogs, fish and mammals (see
Chapters 1-3). Gene targeting approaches of TGF-B family ligands have revealed
their pivotal roles in embryogenesis and in maintaining tissue homeostasis (Chang
et al., 2002). Disruption of TGF-$ signaling has been linked to various devel-
opmental disorders and numerous human diseases, including cancer, fibrosis and
autoimmune diseases (see Chapters 19-22) (Blobe et al., 2000; Siegel and Massagué,
2003) (Fig. 2).

The multifunctional characteristics of TGF-8 family members imply the need for
tight control of their activities. Such control is exerted at different levels. TGF-f3 is
synthesized as an inactive precursor form and is activated in a controlled manner
(see above). In addition, the activity of TGF-B family members is kept in check by

Vascular disorders

Vasculogenesis
and angiogenesis

Immuno-
modulation
Auto-immune
disorders

Growth arrest
apoptosis

Mesenchymal
differentiation

Cartilage, bone,
muscle, fat disorders

Figure 2. TGF-$ family members are multifunctional proteins with crucial roles in embryonic devel-
opment and in maintaining tissue homeostasis. For example, TGF- inhibits proliferation of epithe-
lial, endothelial and immune cells, stimulates mesenchymal cell proliferation and extracellular matrix
production, regulates the migration and differentiation of many different cell types. Deregulation of their
signaling has been implicated in several developmental disorders and in various human diseases including
cancer, fibrosis, connective tissue diseases, auto-immune diseases and vascular diseases (A color version
of this figure is freely accessible via the website of the book: http://www.springer.com/1-4020-4542-5)
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interaction of specific extracellular inhibitors that prevent ligands from binding to
signaling receptors (Balemans and Van Hul, 2002). For example, noggin strongly
interacts with BMPs with affinities that resemble BMP binding to BMP receptors
(Groppe et al., 2002), and follistatin sequesters Activins and prevents them from
binding to Activin receptors (de Winter et al., 1996). Moreover, the TGF-$3 family
members are rapidly cleared through the action of scavenger proteins, such as
a2-macroglobulin (O’Connor-McCourt and Wakefield, 1987), which results in a
short biological half-life of TGF- family members (Wakefield et al., 1990).

2.2 TGF-p Serine/threonine Kinase Receptors

TGF-s transduce their signals across the plasma membrane into the cell by inducing
heteromeric complexes of type I and type II receptors with intrinsic serine/threonine
kinase activity (Attisano and Wrana, 2002; Derynck and Zhang, 2003; Shi and
Massagué, 2003; ten Dijke and Hill, 2004). The receptor types are structurally
similar with short cysteine-rich extracellular domains, single transmembrane span-
ning regions, and intracellular parts with serine/threonine kinase domains (Fig. 3A).
At least two type II receptors and two type I receptors are needed for signaling
(Luo and Lodish, 1996; Weis-Garcia and Massagué, 1996), and probably form a
heterotetrameric receptor complex (Yamashita et al., 1994). Five type II receptors
and seven type I receptors, also termed Activin receptor-like kinases (ALKs), are
present in the human genome (Fig. 3B). The TGF-B type II receptor, MIS type II
receptor and BMP type II receptors only bind TGF-3, MIS/AMH and BMPs/GDFs,
respectively, but Activin type IIA and type IIB receptors bind Activins, nodal as
well as BMPs. Different members of the BMP family thusbind to different type II
receptors. The type II receptor has constitutive kinase activity and upon ligand-
induced heteromeric complex formation, the type II receptor kinase phosphorylates
the type I receptor on particular serine and threonine residues in the juxtamem-
brane region (also termed GS-domain) (Wrana et al., 1994). Thus, type I receptors
act downstream of type II receptors; consistent with this notion, type I receptors
have been shown to determine the specificity of the heteromeric receptor complex
(Cércamo et al., 1995).

In most cells, ALK4 and ALKS are type I receptors for Activin and TGF-f3,
respectively. Recently, GDF9 and myostatin have been shown to bind to ALKS in
cooperation with BMP type II receptor and Activin type II receptor, respectively
(Mazerbourg et al., 2004; Rebbapragada et al., 2003). ALK4 and ALK7 are nodal
type I receptors. BMPs (and possibly also MIS/AMH) generally signal via ALK2,
ALK3 and ALK6 (Miyazono et al., 2005), but surprisingly, BMP3 has been shown
to signal via Activin type II and ALK4 receptors (Daluiski et al., 2001). Thus,
homodimeric and heterodimeric forms of individual BMPs are capable of recruiting
different type I and type II receptors in the signaling receptor complex; moreover,
individual receptors can bind several different ligands. Furthermore, ALKI, in
addition to ALKS, is a signaling type I receptor for TGF-$3 in endothelial cells and
neurons (Goumans et al., 2002; Konig et al., 2005). Interestingly, TGF-3 signaling
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Figure 3. TGF-B family type I and type II receptors. (A) Schematic representations of human TGF-
type I and type II serine/threonine kinase receptors. TBR-I and TBR-II are single transmembrane proteins
with short cysteine-rich extracellular domains and intracellular serine/threonine kinase domains with
two short kinase inserts. The carboxy-tail of TBR-II is longer than that of TBR-I, and TBR-I contains a
domain rich in glycine and serine amino acid residues (termed GS domain) in which particular serine
and threonine residues are phosphorylated by TBR II kinase. The L45 loop in TRR I is an exposed
nine-amino acid residue region within the kinase domain that is an important determinant for R-Smad
interaction. Modified with permission from Figure 1A from Cardiovascular Research, 65(3):599-608,
Lebrin, et al. © 2005 European Society to Cardiology. (B) Phylogenetic analysis of human type I and
type II receptors of two distinct subfamilies. Five type II receptors and seven type I receptors (also
termed ALKSs) have been identified in humans (A color version of this figure is freely accessible via the
website of the book: http://www.springer.com/1-4020-4542-5)

Abbreviations: ActR, Activin receptor; ALK, Activin receptor-like kinase; MIS/AMH, MIS/AMH
receptor; BMPR, BMP receptor; TRR, TGF-f receptor

via ALK1 was shown to be dependent on the kinase activity of ALKS, thereby
providing a lateral mode of signaling (Goumans et al., 2003). Whether similar
lateral signaling occur for other ALKs or other ligands, needs to be investigated.
The availability of more and more ligands as recombinant proteins, will allow a
detailed determination of their preferences for type I and type II receptor partners.

3. THE SMAD FAMILY OF SIGNAL TRANSDUCERS
3.1 Nomenclature and Structure of Smads

The Smad family can be divided into three distinct subfamilies: receptor-regulated
(R)-Smads, common partner (Co)-Smads and inhibitory (I)-Smads. Activated type I
receptor kinases transiently interact with and phosphorylate particular R-Smads at
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their extreme C-terminal serine residues (see Chapter 12) (Fig. 4A). Whereas Smad2
and Smad3 act downstream of ALK4, ALKS5 and ALK7, Smad1, Smad5 and Smad8
are phosphorylated by ALK1, ALK2, ALK3 and ALK6 (Fig. 4C). The L45 loop
in the type I receptor kinase domain determines the specificity of Smad isoform
activation (see Chapter 11). Phosphorylated Smads form heteromeric complexes
with Co-Smads that are shared components in signal transduction by TGF-3 family
members. Whereas one Co-Smad, i.e. Smad4, has been identified in mammals, two
C-Smads, i.e. Smad4a and Smad4p (also termed Smad10), have been identified in
Xenopus. Smad complexes accumulate in the nucleus (see Chapter 10), where they
can bind to DNA directly or indirectly through other DNA binding proteins (see
Chapter 15), and thus control the expression of target genes in a cell type-specific
manner through interaction with co-activators and co-repressors (see Chapter 14).
R-Smads and Co-Smads have two highly similar regions at their amino terminal
and carboxy terminal regions, termed Mad homology 1 (MH1) domain and MH2
domain, respectively (Fig. 4B). The two MH domains are separated by a less
conserved linker region of variable length that is rich in proline residues. The
MHI1 domain of R-Smads, except Smad2, can bind through a protruding 11-residue
B-hairpin directly to specific DNA sequences (Fig. 4B). The MH1 regions in R- and
Co-Smads contain a nuclear localization signal-like (NLS-like) sequence (Fig. 4B),
which in Smad3 and Smad4 has been shown to interact with importin  and «,
respectively. Mutation of these NLS sequences prevent Smad nuclear accumulation

A B
Smadl

MHI domain Linker MH2 domain
NLS B-hairpin SSXS

R-Smad | [ ||

NLS B-hairpin NES

Co-Smad I [ |

Smad6 PY

I-Smad T

Smad7

Figure 4. The Smad family. Phylogenetic analysis of human Smads and schematic representations of
human Smad structures. The Smad family can be divided into three distinct subfamilies: Receptor-regulated
(R)-Smads (i.e. Smadl, Smad2, Smad3, Smad5 and Smad8), Common-partner (Co)-Smad (i.e. Smad4) and
Inhibitory (I)-Smads (i.e. Smad6 and Smad7). Conserved Mad Homology (MH) 1 and MH2 domains are indi-
cated. The B hairpin and the PPxY motif (PY) that mediates binding to DNA and Smad ubiquitin regulatory
ligases (Smurfs), respectively, are indicated. Nuclear localization signal (NLS) and nuclear export signal
(NES) important for nuclear-cytoplasmic translocations are also shown. The serines in the C-terminal SXS
motif of R-Smads can be phosphorylated by type I receptor kinases (A color version of this figure is freely
accessible via the website of the book: http://www.springer.com/1-4020-4542-5)
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in response to TGF-3. Smad4 contains a nuclear export signal (NES) in the linker
region (Fig. 4B), which interacts with the nuclear exporter CRM1. Formation of
homomeric and heteromeric complexes among R- and Co-Smads are mediated via
their MH2 domains (see Chapter 11). The MH2 domains of R- and Co-Smads can
also recruit transcriptional co-activators and co-repressors (see Chapter 14).

[-Smads have a conserved MH2 domain, but their amino-terminal regions show
only weak similarity to the MH1 domains of R- and Co-Smads (see Chapter 19)
(Fig. 4B). I-Smads interact via a PY-motif with WW-domain containing HECT-
domain ubiquitin ligases (Smurfs) (Fig. 4B). Upon recruitment of an I-Smad-Smurf
complex to the activated receptor, Smurf induces receptor degradation via proteo-
somal and lysosomal pathways (Kavsak et al., 2000). Additional mechanisms by
which I-Smads antagonize signaling have been described and are discussed in
Chapter 19.

3.2 Activation and Regulation of Smad Function

The recruitment of Smads to activated TGF-f receptor complexes is carefully
controlled. Several proteins with scaffolding, anchoring and/or chaperone activity
have been identified. Smad anchor for receptor activation (SARA) is localized
in early endosomes and, by interacting with non-activated Smads and receptor
complexes, presents Smad2 or 3 for the type I receptor and promotes their phos-
phorylation and activation (see Chapter 9). In their non-activated state, the MH1
and MH2 domains interact and inhibit each others functions, i.e. the MH1 domain
represses MH2-domain-mediated recruitment of transcriptional co-activators and the
MH2 domain inhibits MH1-domain-mediated DNA binding. Upon C-terminal phos-
phorylation, R-Smads form homo- and hetero-oligomeric complexes of different
stoichiometry with each other and with Smad4. Upon Smad complex formation,
nuclear import sequences may become exposed and nuclear export sequences
shielded, thereby inducing the nuclear accumulation of these complexes (see
Chapter 10) (Fig. 5). The affinity of R- and Co-Smads for binding to DNA is
relatively low and Smads therefore require other DNA sequence-specific binding
factors to bind efficiently to promoters of target genes. Some of these Smad-
interacting transcription factors are expressed in a cell-type specific manner and
their activation state is subject to specific stimuli, thereby providing integration
with other signaling pathways (see Chapter 14-18). In addition, signal integration
is achieved through various post-translation modifications of Smads (in addition to
the C-terminal phosphorylation by the activated type I receptor), including phos-
phorylation, poly- and mono-ubiquitination, sumoylation and acetylation. These
modifications were found to change interaction of Smads with partner proteins or
DNA, stability and/or subcellular localization (see Chapter 12 and 13). The trans-
activation or repression properties of Smads are mediated through interaction with
co-activators and co-repressors that recruit, or contain intrinsic, histone acetyltrans-
ferase (HAT) or histone deacetylase (HDAC) activities, respectively, and thereby
regulate chromosome condensation and accessibility of Smads with the basal tran-
scription machinery (see Chapter 14).
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Figure 5. The canonical TGF-B/Smad signaling pathway. TGF-f binds to and stabilizes heteromeric
complexes of type I and type II serine/threonine kinase receptors. The type II receptor is endowed
with constitutively active kinase activity and phosphorylates the type I receptor on specific serine and
threonine residues in the juxtamembrane region (also termed GS domain). Upon this activation, the type I
receptor propagates the signal inside the cell through phosphorylation of R-Smads at two C-terminal
serine residues found in an SXS motif. R-Smads can be recruited to the activated type I receptor
through auxiliary proteins, such as Smad anchor for receptor activation (SARA). Activated R-Smads
form heteromeric complexes with Smad4 that in combination with transcription factors can bind to
promoters of target genes. These complexes regulate, together with co-activators and co-repressors,
specific transcriptional responses (A color version of this figure is freely accessible via the website of
the book: http://www.springer.com/1-4020-4542-5)

33 The Future of Smad Research

The field of Smad research has diversified enormously as is exemplified by the
many aspects of Smad research covered in this book. The multifunctional character
of TGF-$ family members is reflected in the many positive and negative modes of
regulation of Smads. The investigation of cross-talk with other signaling pathways
will be a recurring theme in future studies. While the TGF-3/Smad pathway has
been implicated in many responses, an important issue that largely remains to be
explored is the requirement of particular Smad isoforms in these responses, e.g.
whether responses require specific R-Smads and/or Smad4. In addition, the recent
results which have demonstrated transcription-independent functions of Smads, such
as recruitment, sequestration and enzyme activation, need to be further investigated
(ten Dijke and Hill, 2004).
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Studies in genetically accessible model organisms, such as C. elegans, Drosophila
and the vertebrate Zebrafish, will continue to be important in elucidating the
mechanisms that underlie TGF-3/Smad signaling. The combination of these efforts
with unbiased large scale genetic, biochemical and/or proteomic interaction screens
(Vidal, 2005), functional genomic approaches using siRNAs (Paddison et al., 2004)
or morpholino’s (Ekker, 2000), and transcriptional profiling using micro arrays
(Ideker, 2004) (see Chapters 2, 3, 17 and 18), will be particularly powerful. It will
also be important to validate the patho-physiological significance of the identified
biochemical and genetic interactions between TGF-3 signaling components using
transgenic mouse models.

An important challenge for the future will be to translate our current knowledge
into clinical applications. Specific TGF-B receptor kinase inhibitors have recently
been generated, and shown to block ligand-induced Smad-dependent responses (see
Chapters 21 and 22). However, like TGF-3, Smads are multifunctional proteins; they
have been implicated in the anti-proliferative response of TGF-B (see Chapter 4),
but also in TGF-B-induced invasion and metastasis of tumor cells (see Chapter 7
and 20) and in TGF-B-induced extracellular matrix formation leading to fibrosis
(see Chapter 22). Further dissection of Smad-driven responses, and identification
of specificity determinants for these various responses, may allow for specific
intervention of diseases with perturbed TGF-3/Smad signaling.
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MOLECULAR EVOLUTION OF SMAD PROTEINS
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Abstract:

Keywords:

To date, Smad family members have been found only in eumetazoan animals. To under-
stand the evolutionary relationship between family members we conducted a phylogenetic
analysis. To simplify the analysis but retain its explanatory power, we focused on Smad
proteins from organisms in three distinct phyla: human, fly, and nematode. Overall, we
found that human and fly proteins always cluster together in four subfamilies while three
subfamilies contain only nematode proteins. Sequence alignments of distinct regions of
were also analyzed. Data from the alignments confirmed that the MH1 (DNA-binding)
and MH2 (protein-protein interaction) domains are highly conserved family-wide. The
linker region between these domains is also highly conserved but only within subfamilies.
Conservation in the C-terminal receptor phosphorylation region provides new insight into
a unique subfamily containing three interacting nematode proteins that signal for DAF-7.
From a larger perspective, our analysis strongly supports the traditional view that flies
are more closely related to humans than to nematodes

multigene family; SMAD proteins; phylogeny; amino acid alignments; evolutionary
conservation; developmental-evolution; signal transduction

1. INTRODUCTION

The evolutionary relationships between members of a multigene family are
ascertained through a phylogenetic analysis involving three steps. First, one must
calculate the amount of amino acid similarity between each family member by
aligning the protein sequences (Thompson et al., 1997). Second, one applies an
amino acid similarity matrix and the extent of similarity between each protein and
all of the others are prioritized with the most similar proteins clustered together.
These clusters are depicted as the familiar phylogenetic tree (Kumar et al., 2001).
Third, the relationships between pairs of proteins are tested for robustness using
statistical methods such as bootstrap analysis (Felsenstein, 1985).
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Here we describe a new phylogenetic analysis of the Smad protein family.
In order to simplify the analysis but retain its explanatory power, we focus on
Smad sequences from organisms in three distinct phyla: human (deuterostome), fly
(protostome) and nematode (pseudocoelomate; see Raff 1996, for example, for a
taxonomic description of these phyla). We include other species as necessary to
add confidence to individual results. Our studies of the MH1 and MH2 domains
support the long-standing view that they are highly conserved. Our analysis of the
linker region between the MH1 and MH2 domains, previously dismissed as a highly
divergent and potentially non-functional part of the protein, reveals surprising levels
of sequence conservation within Smad subfamilies. This suggests the hypothesis
that distinct functions associated with each subfamily involve linker sequences. An
analysis of the receptor phosphorylation domain provides new insights into a unique
subfamily containing only nematode proteins that signal for the TGF-B/Activin
subfamily member DAF-7.

Recently it has become possible to test phylogenetically derived hypotheses
using an approach known as functional genomics. In this technique, interspecies
experiments are conducted that evaluate the ability of a family member from one
species to mimic the activity of another family member either by rescuing mutant
phenotypes (e.g. Padgett et al., 1993) or in parallel over-expression experiments
(e.g. Marquez et al., 2001). We have conducted a number of such tests and review
those results here.

2. SMAD FAMILY MEMBERS

To date, Smad family members have been found only in animals. Within the animal
kingdom they have been identified in eumetazoans (multicellular organisms with
many types of cells) but not yet in metazoans such as sponges (multicellular organ-
isms with very few cell types). However, several transmembrane receptors with
similarity to both type I and type II TGF-{ receptors have been identified in a fresh-
water sponge (Suga et al., 1999). A phylogenetic analysis showed that the sponge
receptors are very similar to the unusual C. elegans receptors DAF-1 and SMA-6
that also fall between receptor types (Herpin et al., 2004). The similarity between
sponge and nematode receptors suggests that Smad-like proteins will eventually
be found in sponges. Thus, ancestral TGF-f3 family members and their signaling
pathways predate the metazoan/eumetazoan divergence roughly 1.5 billion years
ago (Hedges and Kumar, 2003).

The simplest eumetazoans with definitive Smad family members are cnidarians
(animals with two germ layers — diploblasts). A sequence similar to Smad1/Mad in
the BMP signaling subfamily has been identified in coral (Samuel et al., 2001) and
in hydra. The simplest eumetazoan with Smad proteins similar to both Smad1/Mad
and Smad?2/3 is the blood fluke Schistosoma mansoni — an acoelomate with three
germ layers but no digestive cavity (Beall et al., 2000). From this it is reasonable
to conclude that BMP signaling Smads, and by extension their cognate ligands and



