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1
State of the Art – Nanomechanics
Amrita Saritha, Sant Kumar Malhotra, Sabu Thomas, Kuruvilla Joseph, Koichi Goda,
and Meyyarappallil Sadasivan Sreekala

1.1
Introduction

Nanomechanics, a branch of nanoscience, focuses on the fundamental mechanical
properties of physical systems at the nanometer scale. It has emerged on the
crossroads of classical mechanics, solid-state physics, statistical mechanics, materi-
als science, and quantum chemistry. Moreover, it provides a scientific foundation for
nanotechnology. Often, it is looked upon as a branch of nanotechnology, that is, an
applied area with a focus on the mechanical properties of engineered nanostructures
and nanosystems that include nanoparticles, nanopowders, nanowires, nanorods,
nanoribbons, nanotubes, including carbon nanotubes (CNTs) and boron nitride
nanotubes (BNNTs), nanoshells, nanomembranes, nanocoatings, nanocomposites,
and so on.
Nanotechnology can be broadly defined as “The creation, processing, characteri-

zation, and utilization of materials, devices, and systems with dimensions on the
order of 0.1–100 nm, exhibiting novel and significantly enhanced physical, chemi-
cal, and biological properties, functions, phenomena, and processes due to their
nanoscale size” [1]. Nanobiotechnology, nanosystems, nanoelectronics, and nano-
structured materials, especially nanocomposites, are of current interest in nano-
technology. Polymer nanocomposites have gained attention as a means of
improving polymer properties and extending their utility by using molecular or
nanoscale reinforcements rather than conventional particulate fillers. The transition
frommicroparticles to nanoparticles yields dramatic changes in physical properties.
Recently, the advances in synthesis techniques and the ability to characterize

materials on atomic scale have led to a growing interest in nanosized materials. The
invention of nylon 6/clay nanocomposites by the Toyota Research Group of Japan
heralded a new chapter in the field of polymer composites. Polymer nanocomposites
combine these two concepts, that is, composites and nanosized materials. Polymer
nanocomposites are materials containing inorganic components that have dimen-
sions in nanometers. In this chapter, the discussion is restricted to polymer

Polymer Composites: Volume 2, First Edition. Edited by Sabu Thomas, Kuruvilla Joseph, Sant Kumar Malhotra,
Koichi Goda, and Meyyarappallil Sadasivan Sreekala.
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nanocomposites made by dispersing two-dimensional layered nanoclays as well as
nanoparticles into polymer matrices. In contrast to the traditional fillers, nanofillers
are found to be effective even at as low as 5wt% loading. Nanosized clays have
dramatically higher surface area compared to their macrosized counterparts such as
china clay or talc. This allows them to interact effectively with the polymer matrix
even at lower concentrations. As a result, polymer–nanoclay composites show
significantly higher modulus, thermal stability, and barrier properties without
much increase in the specific gravity and sometimes retaining the optical clarity
to a great extent. As a result, the composites made by mixing layered nanoclays in
polymer matrices are attracting increasing attention commercially. Thus, the under-
standing of the links between the microstructure, the flow properties of the melt,
and the solid-state properties is critical for the successful development of polymer–
nanoclay composite products.
Nevertheless, these promising materials exhibit behavior different from conven-

tional composite materials with microscale structure due to the small size of the
structural unit and high surface area/volume ratio. Nanoscale science and technol-
ogy research is progressing with the use of a combination of atomic scale charac-
terization and detailed modeling [2]. In the early 1990s, Toyota Central Research
Laboratories in Japan reported work on a nylon 6 nanocomposite [3], for which a very
small amount of nanofiller loading resulted in a pronounced improvement in
thermal and mechanical properties. Common particle geometries and their respec-
tive surface area/volume ratios are shown in Figure 1.1. For the fiber and the layered
material, the surface area/volume ratio is dominated, especially for nanomaterials,
by the first term in the equation. The second term (2/l and 4/l) has a very small
influence (and is often omitted) compared to the first term. Therefore, logically, a
change in particle diameter, layer thickness, or fibrous material diameter from
themicrometer to nanometer range will affect the surface area/volume ratio by three
orders ofmagnitude [4]. Typical nanomaterials currently under investigation include

Figure 1.1 Common particle reinforcements and their respective surface area/volume ratios [4].
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nanoparticles, nanotubes, nanofibers, fullerenes, and nanowires. In general, these
materials are classified by their geometries; broadly, the three classes are particle,
layered, and fibrous materials [4,5]. Carbon black, silica nanoparticles, and poly-
hedral oligomeric silsesquioxanes (POSS) can be classified as nanoparticle reinforc-
ing agents while nanofibers and carbon nanotubes are examples of fibrous materials
[5]. When the filler has a nanometer thickness and a high aspect ratio (30–1000)
plate-like structure, it is classified as a layered nanomaterial (such as an organo-
silicate) [6]. The change of length scales from meters (finished woven composite
parts), micrometers (fiber diameter), and submicrometers (fiber/matrix interphase)
to nanometers (nanotube diameter) presents tremendous opportunities for innova-
tive approaches in the processing, characterization, and analysis/modeling of this
new generation of composite materials. As scientists and engineers seek to make
practical materials and devices from nanostructures, a thorough understanding of
thematerial behavior across length scales from the atomistic tomacroscopic levels is
required. Knowledge of how the nanoscale structure influences the bulk properties
will enable design of the nanostructure to create multifunctional composites.
Wang et al. synthesized poly(styrene–maleic anhydride) (PSMA)/TiO2 nanocom-

posites via the hydrolysis and condensation reactions of multicomponent sol since
the PSMA has functional groups that can anchor TiO2 and prevent it from
aggregating [7]. Polystyrene or polycarbonate rutile nanocomposites have been
synthesized by Nussbaumer et al. [8]. Singh et al. [9] studied the variation in fracture
toughness of polyester resin due to the addition of aluminum particles of 20, 3.5,
and 100 nm diameter. Results indicate an initial enhancement in fracture toughness
followed by decrease at higher particle volume fraction. This phenomenon is
attributed to the agglomeration of nanoparticles at higher particle volume content.
Lopez et al. [10] examined the elastic modulus and strength of vinyl ester composites
after the addition of 1, 2, and 3wt% of alumina particles of 40 nm, 1mm, and 3mm
size. For all particle sizes, the composite modulus increases monotonically with
particle weight fraction. However, the strengths of composites are all below the
strength of neat resin due to nonuniform particle size distribution and particle
aggregation. The mechanical behavior of alumina-reinforced poly(methyl meth-
acrylate) (PMMA) composites was studied by Ash et al. [11].

1.2
Nanoplatelet-Reinforced Composites

In the case of layered silicates, the filler is present in the form of sheets one to a few
nanometer thick and hundreds to thousands nanometer long. In general, the
organically modified silicate nanolayers are referred to as “nanoclays” or “organo-
silicates” [12]. It is important to know that the physical mixture of a polymer and
layered silicate may not form nanocomposites [13]. Pristine-layered silicates usually
contain hydrated Naþ or Kþ ions [13]. To render layered silicates miscible with other
polymer matrices, it is required to convert the normally hydrophilic silicate surface
into an organophilic one, which can be carried out by ion-exchange reactions with
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cationic surfactants [13]. Sodium montmorillonite (Na-MMT, Nax(Al2�xMgx)
(Si4O10)(OH)2�mH2O)-type layered silicate clays are available as micron-sized tac-
toids, which consist of several hundred individual plate-like structures with dimen-
sions of 1mm� 1 mm� 1 nm. These are held together by electrostatic forces (the gap
in between two adjacent particles is 0.3 nm). The MMT particles, which are not
separated, are often referred to as tactoids. The most difficult task is to break down
the tactoids to the scale of individual particles in the dispersion process to form true
nanocomposites, which has been a critical issue in current research [14,15–24].
Natural flake graphite (NFG) is also composed of layered nanosheets [25], where
carbon atoms positioned on the NFG layer are tightened by covalent bonds, while
those positioned in adjacent planes are bound bymuch weaker van derWaals forces.
The weak interplanar forces allow for certain atoms, molecules, and ions to
intercalate into the interplanar spaces of the graphite. The interplanar spacing is
thus increased [25]. As it does not bear any net charge, intercalation of graphite
cannot be carried out by ion-exchange reactions in the galleries like layered silicates
[25]. The original graphite flakes with a thickness of 0.4–60mm may expand up to
2–20 000mm in length [26]. These sheets/layers get separated down to 1 nm
thickness, forming high aspect ratio (200–1500) and high modulus (�1 TPa)
graphite nanosheets. Furthermore, when dispersed in the matrix, the nanosheet
exposes an enormous interface surface area (2630m2/g) and plays a key role in the
improvement of both the physical and mechanical properties of the resultant
nanocomposite [27]. The various preparative techniques for this type of nano-
composites are discussed below.

1.3
Exfoliation–Adsorption

This technique is based on a solvent system in which the polymer or prepolymer is
soluble and the silicate layers are swellable. The layered silicates, owing to the weak
forces that stack the layers together, can be easily dispersed in an adequate solvent
such as water, acetone, chloroform, or toluene. When the polymer and the layered
silicate are mixed, the polymer chains intercalate and displace the solvent within
the interlayer of the silicate. The solvent is evaporated and the intercalated
structure remains. For the overall process, in which polymer is exchanged with
the previously intercalated solvent in the gallery, a negative variation in Gibbs
free energy is required. The driving force for polymer intercalation into layered
silicate from solution is the entropy gained by desorption of solvent molecules,
which compensates for the decreased entropy of the intercalated chains. This
method is good for the intercalation of polymers with little or no polarity into
layered structures and facilitates production of thin films with polymer-oriented clay
intercalated layers. The major disadvantage of this technique is the nonavailability
of compatible polymer–clay systems. Moreover, this method involves the copious
use of organic solvents, which is environmentally unfriendly and economically
prohibitive. Biomedical poly(urethane–urea) (PUU)/MMT (MMT modified with
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dimethyl ditallow ammonium cation) nanocomposites were prepared by adding
OMLS (organically modified layered silicate) suspended in toluene dropwise to the
solution of PUU in N,N-dimethylacetamide (DMAC). The mixture was then stirred
overnight at room temperature, the solution was degassed, and the films were cast
on round glass Petri dishes. The films were air dried for 24 h, and subsequently
dried under vacuum at 50 �C for 24 h.Wide-angle X-ray diffraction (WAXD) analysis
indicated the formation of intercalated nanocomposites [28]. The effects of heat and
pressure on microstructures of isobutylene–isoprene rubber/clay nanocomposites
prepared by solution intercalation (S-IIRCNs) were investigated [29]. A comparison
of the WAXD patterns of untreated S-IIRCN and nanocomposites prepared by melt
intercalation (M-IIRCN) reveals that the basal spacing of the intercalated structures
in untreated M-IIRCN (i.e., 5.87 nm) is much larger than that in S-IIRCN (i.e.,
3.50 nm), which is likely a result of the different methods of preparation. Tolle and
Anderson [30] investigated the sensitivity of exfoliation for processing. They found
that both lower temperatures for isothermal curing and higher heating rates for
nonisothermal curing cause an inhibition of exfoliated morphology. There are
several reports regarding the preparation of nanocomposites using the solvents
[31–36]. Kornmann et al. [37] investigated the effect of three different curing agents
upon the organoclay exfoliation in the diglycidyl ether of bisphenol A (DGEBA)-
based system. In their work, exfoliation of organoclay occurred in cycloaliphatic
diamine-cured DGEBA nanocomposites only at higher temperatures. Messermith
and Giannelis [38] prepared exfoliated layered silicate epoxy nanocomposites from
DGEBA and a nadic methyl anhydride curing agent and found that the dynamic
storagemodulus improved. The Toyota Research Group has been the first to use this
method to produce polyimide (PI) nanocomposites [39,40]. Du et al. [41] prepared
expandable polyaniline/graphite nanocomposites by chemical and physical treat-
ments, especially by microwave irradiation. Instead of the usual HNO3–H2SO4

route, they prepared the nanocomposites through the H2O2–H2SO4 route to avoid
the evolution of poisonous NOx. Shioyama [42] reported improved exfoliation at
weight fractions of graphite below 1 wt% through polymerization with vaporized
monomers such as styrene and isoprene. Fukushima and Drazal [43] used O2

plasma-treated graphite nanoplatelets in an acrylamide/benzene solution. Improved
mechanical and electrical properties were achieved using this technique. In the case
of graphite, the term “complete exfoliation” has no exact meaning. It does not mean
a single layer sheet as in the case of polymer–clay nanocomposites; it may mean a
separated graphite flake that is completely delaminated layer by layer.

1.4
In Situ Intercalative Polymerization Method

In this method, the layered silicate is swollen within the liquid monomer or a
monomer solution, so the formation cannot occur between the intercalated sheets.
Polymerization can be initiated by heat or radiation, by the diffusion of a suitable
initiator, or by an organic initiator or catalyst fixed through cation exchange inside
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the interlayer before the swelling step. Yao et al. [44] reported the preparation of a
novel kind of PU/MMT nanocomposite using a mixture of modified 4,40-diphenyl-
methane diisocyanate (MMDI), modified polyether polyol (MPP), and Na-MMT. In a
typical synthetic route, a known amount of Na-MMTwas first mixed with 100ml of
MPP and then stirred at 50 �C for 72 h. Then, the mixture of MPP and Na-MMTwas
blended with a known amount of MMDI and stirred for 30 s at 20 �C, and finally
cured at 78 �C for 168 h. Wang and Pinnavaia [45] reported the preparation of
polyurethane–MMT nanocomposites using this technique. It can be seen that the
extent of gallery expansion is mainly determined by the chain length of the gallery
onium ions and is independent of the functionality or molecular weight of the
polyols and the charge density of the clay. These nanocomposites exhibit an
improvement in elasticity, as well as in modulus. In another study, Pinnavaia
and Lan [46] reported the preparation of nanocomposites with a rubber/epoxymatrix
obtained from DGEBA derivatives cured with a diamine so as to reach subambient
glass transition temperatures. It has been shown that depending on the alkyl chain
length of modified MMT, an intercalated and partially exfoliated or a totally
exfoliated nanocomposite can be obtained.

1.5
Melt Intercalation

Recently, the melt intercalation technique has become the standard for the prepa-
ration of polymer nanocomposites. During polymer intercalation from solution, a
relatively large number of solvent molecules have to be desorbed from the host to
accommodate the incoming polymer chains. The desorbed solvent molecules gain
one translational degree of freedom, and the resulting entropic gain compensates
for the decrease in conformational entropy of the confined polymer chains. There
are many advantages to direct melt intercalation over solution intercalation. Direct
melt intercalation is highly specific for the polymer, leading to new hybrids that were
previously inaccessible. In addition, the absence of solvent makes the process
economically favorable method for industries from a waste perspective. On the
other hand, during this process only a slow penetration (transport) of polymer takes
place within the confined gallery. Polyamide 66/SEBS-g-MA alloys and their nano-
composites were prepared by melt compounding using a twin-screw extruder.
Morphological investigations with different methods show pseudo-one-phase-
type morphology for these prepared alloys at all percentages of rubber. Impact
and tensile test results showed that rubber-toughened samples exhibit significantly
more impact strength and elongation at break compared to virgin polyamide.
Samples with 20% of rubber show impact strength about 15 times and elongation
at yield several times more than those of virgin polyamide. So, these rubber-
modified polyamides can be considered as supertoughened rubber. A general
type organoclay at 4 and 8% has been used with rubber-toughened samples to
tolerate their modulus and tensile strength. Obtained results show that nanoclay
could significantly increase modulus and tensile strength of rubber-modified
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polyamide 66 without considerable effects on impact strength. WAXD and scanning
electron microscopy (SEM) results show that the polyamide 66 nanocomposites are
better exfoliated in the presence of SEBS-g-MA. The reduced modulus and strength
of alloys with functional rubber addition were counteracted by incorporation of
organoclay without significant negative effects on the impact strength. Comparison
of mechanical properties of these rubber-toughened polyamides with virgin poly-
amides shows an increase of about 1200 and 240% for impact strength and
elongation at break, respectively, which is a very interesting result and shows
excellent toughening of polyamide 66 with SEBS-g-MA rubber [47].

1.6
Nanofiber-Reinforced Composites

Vapor-grown carbon nanofibers (CNFs) have been used to reinforce a variety of
polymers, including polypropylene (PP), polycarbonate, nylon, poly(ether sulfone),
poly(ethylene terephthalate), poly(phenylene sulfide), acrylonitrile–butadiene–
styrene (ABS), and epoxy. Carbon nanofibers are known to have wide-ranging mor-
phologies, including structures with a disordered bamboo-like structure [48]. Finegan
et al. [49,50] have investigated the processing and properties of carbon nanofiber/PP
nanocomposites. In their work, they used a variety of as-grown nanofibers. Carbon
nanofibers that were produced with longer gas-phase feedstock residence times were
less graphitic but adhered better to the PPmatrix, with composites showing improved
tensile strength and Young’smodulus. Oxidation of the carbon nanofiber was found to
increase adhesion to the matrix and increase composite tensile strength, but extended
oxidation deteriorated the properties of the fibers and their composites. In their
investigation on the nanofiber composite damping properties, Finegan et al. [50]
concluded that the trend of stiffness variation with fiber volume content is opposite
to the trend of loss factor and damping in the composite is matrix dominated. Ma et al.
[51] have spun polymer fibers with carbon nanofibers as reinforcement.

1.7
Characterization of Polymer Nanocomposites

Characterization tools are crucial to comprehend the basic physical and chemical
properties of polymer nanocomposites. The commonly used powerful techniques
are WAXD, small-angle X-ray scattering (SAXS), SEM, and transmission electron
microscopy (TEM). The SEM provides images of surface features associated with a
sample. However, there are two other techniques, scanning probe microscopy
(SPM) and scanning tunneling microscopy (STM), that are indispensable in
nanotube research. The SPM uses the interaction between a sharp tip and a surface
to obtain an image. In STM, a sharp conducting tip is held sufficiently close to a
surface (typically about 0.5 nm) such that electrons can “tunnel” across the gap. This
method provides surface structural and electronic information at atomic level. The
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invention of the STM inspired the development of other “scanning probe” micro-
scopes, such as the atomic force microscope (AFM).
Due to its simplicity and availability, WAXD is most commonly used to probe the

nanocomposite structure [52–58] and occasionally to study the kinetics of the
polymer melt intercalation [59]. By monitoring the position, shape, and intensity
of the basal reflections from the distributed silicate layers, the nanocomposite
structure (intercalated or exfoliated) may be identified. For example, in an exfoliated
nanocomposite, the extensive layer separation associated with the delamination of
the original silicate layers in the polymer matrix results in the eventual disappear-
ance of any coherent X-ray diffraction from the distributed silicate layers. On the
other hand, for intercalated nanocomposites, the finite layer expansion associated
with the polymer intercalation results in the appearance of a new basal reflection
corresponding to the larger gallery height. Although WAXD offers a convenient
method to determine the interlayer spacing of the silicate layers in the original
layered silicates and in the intercalated nanocomposites (within 1–4nm), little can be
said about the spatial distribution of the silicate layers or any structural nonhomo-
geneities in nanocomposites. On the other hand, TEM allows a qualitative under-
standing of the internal structure, spatial distribution of the various phases, and views
of the defect structure through direct visualization. However, special care must be
exercised to guarantee a representative cross section of the sample. However, TEM is
time intensive and gives only qualitative information on the sample as a whole, while
low-angle peaks in WAXD allow quantification of changes in layer spacing.

1.8
Recent Advances in Polymer Nanocomposites

The effects of the coating amount of surfactant and the particle concentration on the
impact strength of PP/CaCO3 nanocomposites were investigated [60]. The morpho-
logical features and the free volume properties of an acrylic resin/laponite nano-
composite are investigated using X-ray diffraction and positron annihilation lifetime
spectroscopy [61]. Structure and rheological properties of hybrids with polymer
matrix and layered silicates as filler were studied. The peculiarity of this study is that
the matrix depending on temperature can form different phase states including
liquid crystalline (LC). So, a possibility of coexistence and superposition of different
ordered structures can be realized at different temperatures. Three different fillers
were used, natural Na-MMT and organoclays obtained by treating MMT with
surfactants varying in polarity of their molecules. Depending on the type of clay,
materials with different morphologies can be obtained. X-ray data showed that
polyethylene glycol (PEG) intercalates all types of clay used whereas penetration of
hydroxypropyl cellulose (HPC) macromolecules into clay galleries during mixing
does not occur. Clay modified with more polar surfactants should be treated as the
most convenient material to be intercalated by PEG [62]. With the incorporation of
less than 9 wt% nanoclay, the dynamic storage modulus above the glass transition
region of such a blend increases from 2 to 54MPa. This tremendous reinforcing as
well as the compatibilization effect of the nanoclay was understood by
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thermodynamically driven preferential framework-like accumulation of exfoliated
nanoclay platelets in the phase border of CR and EPDM, as observed, that is, from
TEM [63]. A modified method for interconnecting multiwalled carbon nanotubes
(MWCNTs) was put forward. Interconnected MWCNTs were obtained by reaction of
acyl chloride and amino groups. SEM shows that heterojunctions of MWCNTs with
different morphologies were formed. Then specimens of pristine MWCNTs,
chemically functionalized MWCNTs, and interconnected MWCNT-reinforced
epoxy resin composites were fabricated by cast molding. Tensile properties and
fracture surfaces of the specimens were investigated [64]. A model to simulate the
conductivity of carbon nanotube/polymer nanocomposites is presented. The pro-
posed model is based on hopping between the fillers. A parameter related to the
influence of the matrix in the overall composite conductivity is defined. It is
demonstrated that increasing the aspect ratio of the fillers will increase the
conductivity. Finally, it is demonstrated that the alignment of the filler rods parallel
to the Measurement direction results in higher conductivity values, in agreement
with results from recent experimental work done by Silva and coworkers. [65].
Polybutadiene (PB)/allylisobutyl polyhedral oligomeric silsesquioxane (A-POSS)
nanocomposites have been prepared by using A-POSS and butadiene (Bd) as
comonomers, n-BuLi as initiator, cyclohexane as solvent, and ethyl tetrahydrofur-
furyl ether as structure modifier through the anionic polymerization technique. The
reaction conditions, the type and content of the modifier and POSS, and so on
affecting the copolymerization process and the microstructure of the nanocompo-
sites were also investigated. The results showed that POSS incorporation obviously
decreased the rate of polymerization and the molecular weight of the copolymers
and increased polydispersity index of the copolymers. The reaction conditions (the
reaction time and reaction temperature) had little effect on copolymerization [66].

1.9
Future Outlook

Biodegradable polymer-based nanocomposites have a great deal of future promise
for potential applications as high-performance biodegradable materials. Scientists
must continue to investigate strategies to optimize the fabrication of nanotube-
enabled materials to achieve both improved mechanical and transport properties.
The nanoscale of the reinforcement also presents additional challenges in mechan-
ics research since we now must account for interactions at the atomic scale.
Ultimately, a basic understanding of the structure–property relations will enable
the nanoscale design of multifunctional materials for engineering applications
ranging from structural and functional materials to biomaterials and beyond.
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