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Preface

At present there are elaborated eff ective control and numerical methods 
and corresponding soft ware for analysis and simulating diff erent classes 
of ordinary diff erential equations (ODE) and partial diff erential equations 
(PDE). Th e progress in this direction results in wide application of these 
types of equations in practice. Another class of diff erential equations is 
represented by delay diff erential equations (DDE), also called systems with 
delays, time-delay systems, hereditary systems, functional diff erential 
equations. 

Delay diff erential equations are widely used for describing and mathe-
matical modeling of various processes and systems in diff erent applied prob-
lems [3, 5, 1, 27, 32, 33, 34, 40, 50, 62, 63, 183, 91, 107, 108, 111, 127, 183]. 

Delay in dynamical systems can have several causes, for example: tech-
nological lag, signal transmission and information delay, incubational 
period (infection diseases), time of mixing reactants (chemical kinetics), 
time of spreading drugs in a body (pharmaceutical kinetics), latent period 
(population dynamics), etc.

Th ough at present diff erent theoretical aspects of time-delay theory (see, 
for example, [3, 1, 27, 32, 34, 50, 62, 63, 67, 72, 73, 183, 91, 107, 111, 127] 
and references therein) are developed with almost the same completeness 
as the corresponding parts of ODE theory, practical implementation of 
many methods is very diffi  cult because of infi nite dimensional nature of 
systems with delays.

Also it is necessary to note that, unlike ODE, even for linear DDE there 
are no methods of fi nding solutions in explicit forms, and the absence of 
generally available general-purpose soft ware packages for simulating such 
systems cause a big obstacle for analysis and application of time-delay 
systems.

In this book we try to fi ll up this gap.



x Preface

Th e main aim of the book is to present new constructive methods of 
DDE theory and to give readers practical tools for analysis, control design 
and simulating of linear systems with delays1.

Th e main outstanding features of this book are the following:

1. on the basis of i-smooth analysis we give a complete descrip-
tion of the structure and properties of quadratic Lyapunov-
Krasovskii functionals2;

2. we describe a new control design technique for systems with 
delays, based on an explicit form of solutions of linear qua-
dratic control problems;

3. we present new numerical algorithms for simulating DDE.
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1 Th e present volume is devoted to linear time-delay system theory. We plan to prepare a 
special volume devoted to analysis of nonlinear systems with delays.
2 Including properties of positiveness, and constructive presentation of the total derivative 
of functionals with respect to time-delay systems.
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Chapter 1

Linear time-delay
systems

1.1 Introduction

1.1.1 Linear systems with delays

In this book we consider methods of analysis, control and
computer simulation of linear systems with delays

ẋ(t) = A(t) x(t)+Aτ (t) x(t−τ(t))+

0∫
−τ(t)

G(t, s) x(t+s) ds+u ,

(1.1)
where A(t), Aτ (t) are n×n matrices with piece-wise contin-
uous elements, G(t, s) is n×n matrix with piece-wise con-
tinuous elements on R× [−τ, 0], u is a given n–dimensional
vector-function, τ(t) : R → [−τ, 0] is a continuous func-
tion, τ is a positive constant.

Much attention will be paid to the special class of linear
time-invariant systems

ẋ(t) = A x(t)+Aτ x(t− τ)+

0∫
−τ

G(s) x(t+ s) ds+u , (1.2)
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where A, Aτ are n × n constant matrices, G(s) is n × n
matrix with piece-wise continuous elements on [−τ, 0], τ is
a positive constant1.

Usually we will consider u as the vector of control para-
meters. There are two possible variants:

1) u = u(t) is the function of time t;
2) u depend on the current and previous state of the

system, for example,

u = C x(t) +

0∫
−τ

D(s) x(t + s) ds . (1.3)

Consider some models of control systems with delays.

1.1.2 Wind tunnel model

A linearized model of the high-speed closed-air unit wind
tunnel is [134, 135]

ẋ1(t) = −a x1(t) + a k x2(t− τ) ,

ẋ2(t) = x3(t) , (1.4)

ẋ3(t) = −ω2 x2(t)− 2 ξ ω x3(t) + ω2u3(t) ,

with a =
1

1.964
, k = −0.117, ω = 6, ξ = 0.8, τ = 0.33 s.

The state variable x1, x2, x3 represent deviations from
a chosen operating point (equilibrium point) of the follow-
ing quantities: x1 = Mach number, x2 = actuator position
guide vane angle in a driving fan, x3 = actuator rate. The
delay represents the time of the transport between the fan
and the test section.

The system can be written in matrix form

ẋ(t) = A0x(t) + Aτx(t− τ) + B u(t) , (1.5)
1I.e. in this case τ(t) ≡ τ .



Linear Time-delay Systems 3

where

A0 =

⎡
⎢⎣
−a 0 0

0 0 1

0 −ω2 −2 ξ ω

⎤
⎥⎦ ,

Aτ =

⎡
⎢⎣

0 a k 0

0 0 0

0 0 0

⎤
⎥⎦ ,

B =

⎡
⎢⎣

0

0

ω2

⎤
⎥⎦ .

1.1.3 Combustion stability in liquid propellant
rocket motors

A linearized version of the feed system and combustion
chamber equations, assuming nonsteady flow, is given by2

φ̇(t) = (γ − 1) φ(t)− γ φ(t− δ) + μ(t− δ)

μ̇1(t) =
1

ξJ

[
−ψ(t) +

p0 − p1

2Δp

]

μ̇(t) =
1

(1− ξ)J
[−μ(t) + ψ(t)− P φ(t)]

ψ̇(t) =
1

E
[μ1(t)− μ(t)] . (1.6)

Here
φ(t) = fractional variation of pressure in the combustion
chamber,
t is the unit of time normalized with gas residence time,
θg, in steady operation,
τ̃ = value of time lag in steady operation,
p̃ = pressure in combustion chamber in steady operation,

2The example is adapted from [36, 58].
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τpγ = const for some number γ,

δ =
τ̃

θg
,

μ(t) = fractional variation of injection and burning rate,
ψ(t) = relative variation of p1,

p1 = instantaneous pressure at that place in the feeding
line where the capacitance representing the elasticity
is located,

ξ = fractional length for the constant pressure supply,
J = inertial parameter of the line,
P = pressure drop parameter,
μ1(t) = fractional variation of instantaneous mass flow up-
stream of the capacitance,
Δp = injector pressure drop in steady operation,
p0 = regulated gas pressure for constant pressure supply,
E = elasticity parameter of the line.

For our purpose we have taken

u =
p0 − p1

2Δp

to be a control variable and guided by [36] have adopted
the following representative numerical values:
γ = 0.8, ξ = 0.5, δ = 1, J = 2, P = 1, E = 1.

This gives, for x(t) = (φ(t), μ1(t), μ(t), ψ(t))′,

ẋ(t) = A0x(t) + Aτx(t− 1) + Bu(t) , (1.7)

where

A0 =

⎡
⎢⎢⎢⎢⎣

0.2 0 0 0

0 0 0 −1

−1 0 −1 1

0 1 −1 0

⎤
⎥⎥⎥⎥⎦ ,
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Aτ =

⎡
⎢⎢⎢⎢⎣
−0.8 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎥⎦ .

The system (1.7) has two roots with positive real part:
λ1,2 = 0.11255± 1.52015 i.

1.2 Conditional representation of differ-
ential equations

1.2.1 Conditional representation of ODE and
PDE

Let us remember that for ODE

ẋ(t) = g(t, x(t)) , (1.8)

the conditional representation is

ẋ = g(t, x) , (1.9)

i.e. the argument t is not pointed out in state variable x(t).
The conditional representation of the partial differential

equation
∂y(t, x)

∂t
= a

∂2y(t, x)

∂x2
,

is
∂y

∂t
= a

∂2y

∂x2
, (1.10)

i.e. the arguments t and x are not pointed out in the func-
tion y(t, x).
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Thus in order to obtain the conditional representation
of an ODE it is necessary to make in this equation the
following substitutions{

x(t) to replace by x,
x′(t) to replace by x′. (1.11)

Example 1.1. The linear control ODE

x′(t) = a(t)x(t) + u(t) ,

can be written in the conditional form as

x′ = a(t)x + u(t) ,

note, we omit variable t only in the state variable x(t) but
not in the coefficients a(t) and u(t). One can omit t also
in the control variable u(t), in this case the conditional
representation will be

x′ = a(t)x + u .

�

Remark 1.1 It is necessary to emphasize, conditional
representation is very useful for describing local properties
of differential equations, for application of geometrical lan-
guage and methods. �

1.2.2 Conditional representation of DDE

Let us introduce the conditional representation of systems
with delays (1.1). First of all it necessary to note, differ-
ential equations with time lags differ from ODE by pres-
ence (involving) point x(t − τ) and/or segment x(t + s),
−τ ≤ s < 0, which characterize previous history (pre-
history) of the solution x(t).

The conditional representation of time-delay systems
(1.1) can be introduced in the following way. In H an


