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Preface

 

This book, which deals with vibration in continuous media,

originated from the material of lectures given to engineering

students of the National Institute of Applied Sciences in Lyon

and to students preparing for their Master’s degree in

acoustics.

The book is addressed to students of mechanical and

acoustic formations (engineering students or academics),

PhD students and engineers wanting to specialize in the

area of dynamic vibrations and, more specifically, towards

medium and high frequency problems that are of interest in

structural acoustics. Thus, the modal expansion technique

used for solving medium frequency problems and the wave

decomposition approach that provide solutions at high

frequency are presented.

The aim of this work is to facilitate the comprehension of

the physical phenomena and prediction methods; moreover,

it offers a synthesis of the reference results on the

vibrations of beams and plates. We are going to develop

three aspects: the derivation of simplified models like

beams and plates, the description of the phenomena and

the calculation methods for solving vibration problems. An

important aim of the book is to help the reader understand

the limits hidden behind every simplified model. In order to

do that, we propose simple examples comparing different

simplified models of the same physical problem (for

example, in the study of the transverse vibrations of

beams).

The first few chapters are devoted to the general

presentation of continuous media vibration and energy

method for building simplified models. The vibrations of



continuous three-dimensional media are presented in

Chapter 1 and the equations which describe their behavior

are established thanks to the conservation laws which

govern the mechanical media. Chapter 2 presents the

problem in terms of variational formulation. This approach is

fundamental in order to obtain, in a systematic way, the

equations of the simplified models (also called condensed

media), such as beams, plates or shells. These simplified

continuous media are often sufficient models to describe the

vibrational behavior of the objects encountered in practice.

However, their importance is also linked to the richness of

the information which is accessible thanks to the analytical

solutions of the equations which characterize them.

Nevertheless, since these models are obtained through a

priori restriction of possible three-dimensional movements

and stresses, it is necessary to master the underlying

hypothesis well, in order to use them advisedly. The aim of

Chapters 3 and 4 is to provide these hypotheses in the case

of beams and plates. The derivation of equations is done

thanks to the variational formulations based on Reissner

and Hamilton's functionals. The latter is the one which is

traditionally used, but we have largely employed the former,

as the limits of the simplified models obtained in this way

are established more easily. This approach is given

comprehensive coverage in this book, unlike others books

on vibrations, which dedicate very little space to the

establishment of simplified models of elastic solids.

Chapters 5, 6 and 7 deal with the different aspects of the

behavior of beams and plates in free vibrations. The

vibrations modes and the modal decomposition of the

response to initial conditions are described, together with

the wave approach and the definition of image source linked

to the reflections on the limits. We must also insist on the

influence of the “secondary effects”, such as shearing, in

the problems of bending plates. From a general point of



view, the discussion of the phenomena is done on two

levels: that of the mechanic in terms of modes and that of

the acoustician in terms of wave’s propagation. The notions

of phase speed and group velocity will also be exposed.

We will provide the main analytical results of the vibrations

modes of the beams and rectangular or circular plates. For

the rectangular plates, even quite simple boundary

conditions often do not allow analytical calculations. In this

case, we will describe the edge effect method which gives a

good approximation for high order modes.

Chapter 8 is dedicated to the introduction of damping. We

are going to show that the localized source of damping

results in the notion of complex modes and in a difficulty of

resolution which is much greater than the one encountered

in the case of distributed damping, where the traditional

notion of vibrations modes still remains.

The calculation of the forced vibratory response is at the

center of two chapters. We will start by discussing the

modal decomposition of the response (Chapter 9), where we

are going to introduce the classical notions of generalized

mass, stiffness and force. Then we will continue with the

decomposition in forced waves (Chapter 10) which offers an

alternative to the previous method and is very effective for

the resolution of beam problems.

For the modal decomposition, the response calculations

are conducted in the frequency domain and time domain.

The same instances are treated in a manner which aims to

highlight the specificities of these two calculation

techniques. Finally we will study the convergence of modal

series and the way to accelerate it.

In the case of forced wave decomposition, we will show

how to treat the case of distributed and non-harmonic

excitations, starting from the solution for a localized,

harmonic excitation. This will lead us to the notion of



integral equation and its key idea: using the solution of a

simple case to treat a complicated one.

Chapters 11 and 12 deal with the problem of

approximating the solutions of vibration problems, using the

Rayleigh-Ritz method. This method employs directly the

variational equations of the problems. The classical

approach, based on Hamilton's functional, is used and the

convergence of the solutions studied is illustrated through

some examples. The Rayleigh-Ritz quotient – which stems

directly from this approach – is also introduced.

A second approach is proposed, based on the Reissner’s

functional. This is a method which has not been at the

center of accounts in books on vibrations; however, it

presents certain advantages, which will be discussed in

some examples.



Chapter 1

Vibrations of Continuous Elastic

Solid Media

 

1.1. Objective of the chapter

This work is addressed to students with a certain grasp of

continuous media mechanics, in particular, of the theory of

elasticity. Nevertheless, it seems useful to recall in this

chapter the essential points of these domains and to

emphasize in particular the most interesting aspects in

relation to the discussion that follows.

After a brief description of the movements of the

continuous media, the laws of conservation of mass,

momentum and energy are given in integral and differential

form. We are thus led to the basic relations describing the

movements of continuous media.

The case of small movements of continuous elastic solid

media around a point of static stable equilibrium is then

considered; we will obtain, by linearization, the equations of

vibrations of elastic solids which will be of interest to us in

the continuation of this work.

At the end of the chapter, a brief exposition of the

equations of linear vibrations of viscoelastic solids is

outlined. The equations in the temporal domain are given as

well as those in the frequency domain, which are obtained

by Fourier transformation. We then note a formal analogy of



elastic solids equations with those of the viscoelastic solids,

known as principle of correspondence.

Generally, the presentation of these reminders will be

brief; the reader will find more detailed presentations in the

references provided at the end of the book.

1.2. Equations of motion and

boundary conditions of

continuous media

1.2.1. Description of the movement of

continuous media

To observe the movement of the continuous medium, we

introduce a Galilean reference mark, defined by an origin O

and an orthonormal base . In this reference frame, a

point M, at a fixed moment T, has the co-ordinates (x1 , x2 ,

x3).

The Euler description of movement is carried out on the

basis of the four variables (x1 , x2 , x3 , t); the Euler

unknowns are the three components of the speed  of the

particle which is at the point M at the moment t.

[1.1] 

Derivation with respect to time of quantities expressed

with Euler variables is particular; it must take into account

the variation with time of the co-ordinates xi of the point M.

Figure 1.1. Location of the continuous medium



For example, for each acceleration component γi of the

particle located at the point M, we obtain by using the chain

rule of derivation:

and noting that:

we obtain the expression of the acceleration as the total

derivative of the velocity:

or in index notation:

[1.2] 

In the continuation of this work we shall make constant

use of the index notation, which provides the results in a

compact form. We shall briefly point out the equivalences in

the traditional notation:

– partial derivation is noted by a comma:

– an index repeated in a monomial indicates a summation:



The Lagrangian description is an alternative to the Euler

description of the movement of continuous media. It

consists of introducing Lagrange variables (a1 , a2 , a3 , t),

where (a1 , a2 , a3) are the co-ordinates of the point where

the particle is located at the moment of reference t0. The

Lagrange unknowns are the coordinates xi of the point M

where the particle is located at the moment t:

[1.3] 

Figure 1.2. Initial ai and instantaneous xi co-ordinates

aj being independent of time, the speed or the

acceleration of the particle M with co-ordinates xi is

deduced from it by partial derivation:

[1.4] 

The Lagrangian description is direct: it identifies the

particle; the Euler description is indirect: it uses variables

with instantaneous significance, which eventually proves to

be interesting for the motion study of continuous media; it is

the reason for the frequent use of Euler’s description. The

two descriptions are, of course, equivalent; the



demonstration thereof can be found in the titles on the

mechanics of continuous media provided in the references

section.

1.2.2. Law of conservation

Laws that govern the evolution of continuous media over

time are the laws of conservation: conservation of mass,

conservation of momentum and conservation of energy.

These laws can be expressed in an integral form [1.5] or in a

differential form [1.6] with the boundary condition [1.7].

The general form of the conservation law is provided in

this section; it will be detailed in the next sections with the

conservation of mass, momentum and energy.

Let us consider a part D of the continuous medium whose

movement is being observed. Let us also introduce its

boundary  and nj the direction cosines of the exterior

normal , which is supposed to exist in all the points of  . V

is the volume of the continuous medium and  is the surface

delimiting it. These quantities are defined in Figure 1.3.

Figure 1.3. Continuous medium V with boundary  and part

D with boundary 

The integral form of a conservation equation, in a very

general case, is given by the following equation:



[1.5] 

 indicates the total derivative, i.e. the derivative with

respect to time when the derived quantity is followed in its

movement. Ai and Bi are vector quantities, in the general

case of dimension 3, but may also be scalar values, in the

particular case of dimension 1.

From a physical point of view:

 represents the fluctuation over time of a physical

value, attached to the part D of the continuous medium,

whose movement is being followed.

 represents the action of the exterior surface on D.

 represents the action of the exterior volume on D.

The law of conservation [1.5] thus translates the fact that

the fluctuation over time of a quantity attached to the part

D, followed in its movement, results from the actions of

surface and volume affecting the part D of the considered

continuous medium from the outside.

We may associate a differential form to the integral form

of the conservation equation.

The differential form of the conservation law:

[1.6] 

[1.7] 

Equation [1.6] supposes that Ai, αij, Bi and Ci are

continuously derivable in any point of V. This assumption,

which we adopt, excludes the existence of discontinuity

surfaces in volume V. For a detailed account of discontinuity

surfaces we refer the reader to specialized works on

continuous media mechanics.



The boundary condition [1.7] translates the equality of the

projection of the tensor aij following the external normal to

an external action of surface contact Ci. This action of

contact will generally be a given in a problem; we shall see,

however, that sometimes it will be preferable to modify the

boundary condition, in order to more easily introduce the

action of the exterior upon the continuous medium.

1.2.3. Conservation of mass

This law of conservation postulates that the mass of a part

D of the continuous medium, whose movement is followed,

remains constant over time.

To give the integral form of this conservation law, let us

introduce the density ρ(M, t); under these conditions the law

of conservation of mass is written:

[1.8] 

Equation [1.8] is a particular case of the general form

[1.5]. The associated differential form is deduced from it:

[1.9] 

Equation [1.9] is called continuity relation.

1.2.4. Conservation of momentum

A fundamental law of mechanics is introduced. To apply

this law to every part D of the continuous medium, it is

necessary to define the external efforts applied to D. These

are of two kinds:

– efforts exerted on D by systems external to the

continuous medium, which are remote actions or forces of

volume written fi(M, t);



– efforts exerted on D through surface actions on  ; these

are actions of local contact verifying the two following

conditions:

a) at each point M of the boundary  and at every moment

t, these efforts are represented by a density of force Ti,

b) the vector Ti at the moment t depends only on the point

M and the unitary vector normal to  in M.

Let us state [1.10], where σij is a second-order tensor,

called a stress tensor:

[1.10] 

Note: in [1.10], Ti is the ith component of the resulting

stress for the vector ; σij is the ijth component of the stress

tensor. Somewhat abusing the language, the σij will also be

called stresses.

Let us write the fundamental law of the dynamics applied

to a part D of the continuous medium. Equality of the

dynamic torque and the torque of the external efforts

applied to D led to the two relations [1.11] and [1.12]; O is a

point related to the point of reference, which we take as the

origin without restricting the general case:

[1.11] 

[1.12] 

with (1,k) = {(1,2), (2,3), (3,1)}.

Relations [1.11] and [1.12] express the conservation of

momentum. Their expressions can also be given in vectorial

notation:

The associated partial derivative equation [1.11] is:



[1.13] 

By using the continuity equation [1.9] in [1.13] and after

appropriate grouping, we obtain:

[1.14] 

The first member of [1.14] represents ργi where γi is the

acceleration of the particle located at the point M, which we

calculated in [1.2]. Equation [1.14] thus appears as a

generalization of the point mechanics. It bears the name of

the equation of motion.

Let us now exploit the law of conservation [1.12], by

writing the associated partial derivative equation:

[1.15] 

with (1,k) = {(1,2), (2,3), (3,1)}.

Let us take the example of the couple (1,k) = (1,2) and

develop the derivations. After rearranging the terms we

obtain:

Taking into account the relation [1.13] the first member is

nil; it is thus noted that:

Proceeding in an identical manner for couples (2,3) and

(3,1), we obtain the general relation of reciprocity of

stresses:

[1.16] 

The conservation of momentum involves the symmetry of

the stress tensor.

1.2.5. Conservation of energy



At every moment the total derivative of the energy E (D)

of a part D of the continuous medium is the sum of the

power of the external efforts exerted on D and the rate of

heat received by D.

Energy E (D) is the sum of kinetic and potential energy,

i.e.:

[1.17] 

with e as the specific potential energy.

The integral form of the law of conservation of energy is

given by [1.18], where qj is the heat flow vector. The minus

sign is related to taking into account the external normal,

thus qjnj represents the heat flow emitted by the continuous

medium.

[1.18] 

The differential form of the law of conservation of energy

results from [1.18]; we obtain all the calculations done:

[1.19] 

It follows from transforming [1.19] using relations [1.9]

and [1.14]:

[1.20] 

This partial derivative equation has a simple physical

interpretation, since the total derivative of specific potential

energy appears in the term between the brackets (on the

left-hand side of the equation). Thus the variation of specific

potential energy results from the power of interior efforts

(σij Ui,j) and from a contribution of heat (–qj,j).

1.2.6. Boundary conditions



The boundary conditions represent the natural

prolongation of the conservation equations, over the surface

 of the continuous medium. They are obtained through the

relation [1.7] given in the general case of a conservation

law, which will have to be further specified by the

conservation of mass, momentum and energy.

Let us note first of all that the conservation of mass [1.8]

does not involve a boundary condition because the term αij

does not appear in [1.8].

Equation [1.11] of the conservation of momentum involves

the boundary condition:

[1.21] 

Fi represent the components of the external surface forces

applied to the continuous medium.

Equation [1.12] of the conservation of momentum involves

the boundary condition:

[1.22] 

with (1,k) = {(1,2), (2,3), (3,1)}.

The second member represents the moment of external

surface forces applied to V. The verification of the boundary

condition [1.21] involves the verification of [1.22] which,

therefore, does not bring any additional information.

The conservation of energy involves the boundary

condition:

[1.23] 

Π is the amount of heat introduced into the continuous

medium, by action of contact at its boundary surface. FiUi is

the power introduced by the surface forces applied to  .

By using the relation [1.21] in [1.23], we obtain:

[1.24] 

The formulation of a problem of continuous media

mechanics is summarized to finding the density ρ(M, t),

speed Ui(M, t) , stress σij(M, t) and the specific energy



density e(M, t), knowing the forces exiting the volume fi(M,

t) and the surface Fi(M, t) as well as the quantity of heat

input Π (M, t). All these quantities are related by the 4

partial derivative equations [1.9], [1.14], [1.16], [1.20] to be

verified in the volume V and the two boundary conditions

[1.21], [1.24] to be verified over the surface .

1.3. Study of the vibrations:

small movements around a

position of static, stable

equilibrium

1.3.1. Linearization around a

configuration of reference

Linearized equations that we are going to establish only

reflect a physical reality if the continuous medium keeps the

positions close to those, which it occupies in the

configuration of reference, during its movement. We choose

a Lagrange position of reference, and the displacement of

the particle M is expressed by the formula:

[1.25] 

xi is the ith co-ordinate of particle M whose movement is

being followed (Euler’s variable). ai is the ith co-ordinate of

particle M in the configuration of reference (Lagrange’s

variable). Wi(aj, t) is the ith co-ordinate of the displacement

of point M around its position in the situation of reference.

We suppose that this displacement as well as its derivatives

are small:



[1.26] 

We will examine the consequences of the assumption

[1.26]:

a) Let us at first consider a regular function f(xi, t), and let

us express its value in the vicinity of the position of

reference. The components xi of the position of the point M

are close to the co-ordinates ai, of the same point M that

had occupied it in the position of reference; consequently, a

first approximation of the value of the function may be

obtained by considering the first terms of its development in

a Taylor series in the vicinity of ai:

that is, taking into account the decomposition of movement

[1.25]:

[1.27] 

Taking into account the regularity of f(xi , t) , the partial

derivative  is bounded. From [1.26] and [1.27] we

deduce that in the first approximation:

[1.28] 

b) Let us now take the derivative ; by using the chain

derivation formula it follows:

Introducing the form [1.25] of the movement xi, we shall

obtain:



The second term of the right-hand side member being

infinitely small, it can be deduced that in the first

approximation:

[1.29] 

c) Let us calculate the total derivative of a regular function

G (xi , t) :

that is, taking into account the decomposition of movement

[1.25]:

The function G (xi , t) being regular,  is bounded, the

second term of the second member is infinitely small; we

thus have at first approximation:

i.e. also taking into account [1.28]:

To sum up, for small movements:

[1.30] 

The distinction between the Euler and Lagrangian

descriptions is no longer necessary: on the one hand the

initial and current co-ordinates ai and xi can be assimilated

and the particulate derivative can be replaced by the partial

derivative with respect to time. This is true for regular

functions, i.e. not for discontinuity surfaces.

Let us examine the effects of [1.28], [1.29] and [1.30] on

the equations describing the behavior of the continuous

medium.

The equation of conservation of mass [1.9] becomes:



that is:

[1.31] 

During small movements, the density of the continuous

medium does not vary over time. This property is valid only

at first approximation; at a higher degree of accuracy, there

is an additional small term, which fluctuates with time. In

linear acoustics, this small disturbance must be preserved in

calculations as it intervenes in the ideal gas law of the

acoustic medium. In the case of elastic solids considered

here, the constant term is sufficient to describe the

conservation of mass.

Equations [1.14] and [1.16], translating the conservation

of momentum, become:

[1.32] 

[1.33] 

Equation [1.20], characterizing the conservation of energy,

becomes:

[1.34] 

Boundary conditions:

[1.35] 

[1.36] 

Equations [1.31] to [1.36] constitute the linearized model

of general equations within the framework of small

movements, around a configuration of reference, defined by

the relations [1.25] and [1.26].



All quantities appearing in the linearized equations [1.31]

to [1.36] are variables of the pair (ai, t); thus, for the study

of small movements, the equations and the boundary

conditions are inscribed directly on the configuration of

reference.

In the continuation of the course, we will often consider

the case of adiabatic movements. This assumption involves

qi(ai , t) = 0 ; there follows a modification of the equation of

energy [1.34] and boundary condition [1.36] which become:

[1.37] 

[1.38] 

The boundary condition [1.38] translates the impossibility

for the adiabatic medium to exchange heat.

The equation of energy [1.37] shows that the variation of

specific potential energy is due only to the power of interior

efforts.

We have used the index notation in [1.37], and from now

we will make constant use of it.

1.3.2. Elastic solid continuous media

The unknowns of a problem of vibration of an elastic solid

are: Wi , σij and e. The calculation reveals 10 independent

quantities (taking into account the symmetry of the stress

tensor). However, the equations of continuity, movement

and energy provide only 5 relations at each point. Thus,

information is missing to determine the solution of the

problem; that is the stress-strain relation of the continuous

medium.

The stress-strain relation is characteristic of material; it

connects the stress tensor to that of the strain of the

continuous medium. In the case of small movements,

considered here, the behavior of the continuous medium is


