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PREFACE

This book grew out of the lectures I gave at the University of Toronto between 1982
and 1987 and those I have been giving at the Swiss Federal Institute of Technology
Zurich (ETH Zurich) since 1990. The lectures in Toronto were entitled “Energy me-
thods in structural engineering” and “Structural stability”, those in Zurich “Theory of
structures I-III” and “Plate and shell structures”. In addition, the book contains mate-
rial from my lectures on “Applied mechanics” and “Plasticity in reinforced concrete”
(Toronto) as well as “Conceptual design”, “Bridge design”, “Building structures” and
“Structural concrete I-III” (Zurich).

The book is aimed at students and teaching staff as well as practising civil and struc-
tural engineers. Its purpose is to enable readers to model and handle structures sen-
sibly, and to provide support for the planning and checking of structures.

These days, most structural calculations are carried out by computers on the basis of
the finite element method. This book provides only an introduction to that topic. It
concentrates on the fundamentals of the theory of structures, the goal being to convey
appropriate insights into and knowledge about structural behaviour. Framed structures
and plate and shell structures are treated according to elastic theory and plastic theory.
There are many examples and also a number of exercises for the reader to solve in-
dependently. On the whole, the aim is to provide the necessary support so that the
reader, through skilful modelling, can achieve meaningful results just adequate for
the respective engineering issue, using the simplest means possible. In particular,
such an approach will enable the reader to check computer calculations critically
and efficiently – an activity that is always necessary, but unfortunately often neglected.
Moreover, the broader basis of more in-depth knowledge focuses attention on the es-
sentials and creates favourable conditions for the synthesis of the structural, construc-
tional, practical realisation and creative issues so necessary in structural design.

Chapters 3 and 4, which deal with the general principles of structural engineering,
have been heavily influenced by my work as the head of the “Swisscodes” project
of the Swiss Engineers & Architects Association (SIA). The purpose of this project,
carried out between 1998 and 2003, was to revise fully the structures standards of the
SIA, which were subsequently republished as Swiss standards SIA 260 to 267. I am
grateful to the SIA for granting permission to reproduce Fig. 1 and Tab. 1 from
SIA 260 “Basis of structural design” as Fig. 3.1 and Tab. 4.1 in this book. Further,
I would also like to thank the SIA for consenting to the use of the service criteria
agreement and basis of design examples, which formed part of my contribution to
the introduction of SIA 260 in document SIA D 0181, as examples 3.1 and 3.2 here.

In essence, the account of the theory of structures given in this book is based on my
civil engineering studies at ETH Zurich. Hans Ziegler, professor of mechanics, and
Bruno Thürlimann, professor of theory of structures and structural concrete, and
also my dissertation advisor and predecessor, had the greatest influence on me.
Prof. Thürlimann was a staunch advocate of the use of plastic theory in structural
engineering and enjoyed support from Prof. Ziegler for his endeavours in this respect.
I am also grateful to the keen insights provided by Pierre Dubas, professor of theory of
structures and structural steelwork, and Christian Menn, professor of theory of struc-
tures and design, especially with regard to the transfer of theory into practice. Many
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examples and forms of presentation used in this book can be attributed to all four of
these teachers, whom I hold in high esteem, and the Zurich school of theory of structu-
res, which they have shaped to such a great extent.

During my many years as a lecturer in Toronto and Zurich, students gave me many
valuable suggestions for improving my lectures; I am deeply obliged to all of
them. Grateful thanks also go to my current and former assistants at ETH Zurich. Their
great dedication to supervising students and all their other duties connected with
teaching have contributed greatly to the ongoing evolution of the Zurich school of
theory of structures.

Susanna Schenkel, dipl. Ing. ETH, and Matthias Schmidlin, dipl. Arch. ETH/dipl. Ing.
ETH, provided invaluable help during the preparation of the manuscript. Mr. Schmid-
lin produced all the figures and Mrs. Schenkel coordinated the work, maintained con-
tact with the publisher and wrote all the equations and large sections of the text; I am
very grateful to both for their precise and careful work. Furthermore, I would like to
thank Maya Stacey for her typing services. A great vote of thanks also goes to my
personal assistant, Regina Nöthiger, for her help during the preparations for this
book project and for always relieving me from administrative tasks very effectively.
Philip Thrift translated the text from German into English. I should like to thank him
for the care he has taken and also for his helpful suggestions backed up by practical
experience. Finally, I would like to thank the publisher, Ernst & Sohn, for the pleasant
cooperation and the meticulous presentation of this book.

Zurich, February 2013 Peter Marti
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1 THE PURPOSE AND SCOPE OF THEORY OF
STRUCTURES

Without doubt, many are convinced that
the calculations should determine the
dimensions unequivocally and conclu-
sively. However, in the light of the
impossibility of taking into account all
secondary circumstances, every calcu-
lation constitutes only a basis for the
design engineer, who thus has to
grapple with those secondary circum-
stances...

A totally simple form of calculation
alone is therefore possible and sufficient.

Robert MAILLART (1938)

11.2 The basis of theory of structures

1.1 General

Theory of structures is a subdiscipline of applied mechanics which is configured to
suit the needs of civil and structural engineers. The purpose of theory of structures
is to present systematically the knowledge about the behaviour of structures at rest,
to expand that knowledge and to prepare it for practical applications. It forms the basis
for the design of every new structure and the examination of every existing one.

The terms and methods used in the theory of structures enable the engineer to adopt a
uniform approach not tied to any particular type of construction (concrete, steel, com-
posite, timber or masonry). With the advent of the computer in the third quarter of the
20th century, this approach gradually became structural mechanics, the discipline to
which theory of structures belongs today.

At the heart of every theory of structures exercise there is a structural model, which is
obtained through isolation and idealisation and takes into account the geometry of the
structure, the properties of the construction materials and the possible actions. Deter-
mining the action effects, i. e. the structure’s responses to the actions, is carried out
with the help of analytical models that link the governing force and deformation vari-
ables via equilibrium and compatibility conditions plus constitutive equations.

1.2 The basis of theory of structures

Structural behaviour is expressed in the form of internal and external force and
deformation variables (loads and stresses plus displacements and strains). Static
relationships (equilibrium conditions and static boundary conditions, see chapter 5)
link the force variables, kinematic relationships (kinematic relationships and boundary
conditions, see chapter 6) link the deformation variables, and constitutive relation-
ships (see chapter 7) link the internal force and deformation variables. The most gen-
eral statements within the scope of theory of structures are obtained when the internal
and external force and deformation variables are rigorously associated in the form of
work-associated variables (see chapter 8) [1].

Statics is based on three fundamental principles of mechanics. According to the prin-
ciple of virtual work, a (statically admissible) force state (equilibrium set of force vari-
ables) fulfilling the static relationships in conjunction with a (kinematically admis-
sible) deformation state (compatibility set of deformation variables) fulfilling the kine-
matic relationships does not perform any work. Added to this are the reaction prin-
ciple (for every force there is a equal and opposite reaction with the same direction of
action) and the free-body principle (every part removed from a system in equilibrium
undergoing compatible deformation is itself in equilibrium and undergoes compatible
deformation).

Looking beyond its link with mechanics, theory of structures has a special significance
for structural engineering (see chapters 3 and 4). It is a tool for assessing the stability,
strength and stiffness of a structure that either exists or is being designed. This appli-
cation of theory of structures manifests itself in specific methods developed for ascer-
taining structural behaviour in general and (numerical) treatment in individual cases.
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1.3 Methods of theory of structures

The principle of virtual work can be expressed as the principle of virtual deformations
or the principle of virtual forces. The systematic application of these two principles
leads to a series of dual kinematic or static methods. On the kinematic side it is im-
portant to mention LAND’s method for determining influence lines (section 12.3), the
displacement method for solving statically indeterminate framed structures (chap-
ter 17 and section 19.3) and the kinematic method of limit analysis (sections 21.3
and 21.7). On the static side we have the work theorem for determining single deform-
ations (section 14.2), the force method for solving statically indeterminate framed
structures (chapter 16 and section 19.2) and the static method of limit analysis (sec-
tions 21.3 and 21.7).

Assuming linear elastic behaviour and small deformations leads to linear statics, in
which all the force and deformation variables may be superposed. This possibility
of superposition is used extensively in theory of structures, especially in the force
and displacement methods. Introducing unknown force or deformation variables
and superposing their effects on those of external actions results in sets of linear equa-
tions for the unknowns.

However, the superposition law no longer applies in the case of non-linear materials
problems (chapters 20 and 21) and non-linear geometrical problems (chapter 22). In
such instances an (incremental) iterative procedure is generally necessary. Errors
caused by simplifications at the beginning are evaluated step by step and successively
reduced through appropriate corrections.

Analogies can often be used to make complex situations more accessible, or to reduce
them to simpler, known situations. Examples of this are the membrane analogy (sec-
tion 13.4.2) and the sand hill analogy (section 21.4.4) for dealing with elastic or plas-
tic torsion problems, and MOHR’s analogy for determining deformation diagrams
(section 15.3.2). Combined warping and pure torsion problems (section 13.4.4) can
be approached in a similar way to combined shear and bending problems (sec-
tion 18.5.2) or bending problems in beams with tension (section 18.9). Edge disturb-
ance problems in cylindrical shells (sections 18.7.4 and 26.5) can be reduced to the
theory of beams on elastic foundation (section 18.4.4); this theory is also useful for
approximating edge disturbance problems in spherical (section 26.7.3) and other
shells (section 26.7.4). Furthermore, plates (chapter 23) can be idealised as plane
trusses, slabs (chapter 24) as grillages, and folded plates (chapter 25) and shells (chap-
ter 26) as space trusses or spatial frameworks

The development of powerful numerical methods has led to the methods of graphical
statics (section 10.1) gradually losing the importance they had in the past. However,
graphical aids still represent an unbeatable way of illustrating the flow of the forces in
structures, e. g. with thrust lines (section 5.3.2, Figs. 17.19 and 21.7) or truss models
(section 23.4.2). They represent an indispensable foundation for conceptual design
(section 3.2) and the detailing of structural members and their connections.

The development of numerical methods has also brought about a change in the sig-
nificance of experimental statics. From the 1920s through to the 1970s, loading tests
on scale models made from celluloid, acrylic sheet and other materials were central to
understanding the elastic loadbearing behaviour of complex structures. Such tests are
no longer significant today. What continues to be important, however, is scientific test-
ing to verify theoretical models, primarily in conjunction with non-linear phenomena,
new materials or forms of construction and accidental actions. In structural design,
physical models are not only useful for form-finding and detailing, but also very help-
ful when assessing the quality of the structural behaviour of the design. During the
dimensioning, tests are a sensible backup if, for example, there are no appropriate ana-
lytical models available or a large number of identical structural members is required.
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Finally, specific measurements during and after execution enable extremely valuable
comparisons with the predicted behaviour of a structure – a source of experience that is
all too often neglected.

In the numerical methods of theory of structures, it is the finite element method (FEM)
that plays the leading role (section 19.3). These days FEM is the basis of almost all
structural calculations. Users have extremely powerful tools at their disposal in the
shape of appropriate modern computer programs. But to be able to deploy such pro-
grams responsibly, designers should at least understand the basics of the algorithms on
which they are based. First and foremost, however, the engineer ’s knowledge of theory
of structures should enable him or her to check the computer output critically. The
crucial thing here is the ability to be able to approximate complex issues by reducing
them to simple, understandable problems. Adequate training in the classical methods
of theory of structures, which this book aims at, will supply the foundation for that
ability.

1.4 Statics and structural dynamics

When it comes to dynamic problems, the principle of virtual work has to be formulated
taking into account inertial forces (proportional to acceleration): the motion in a sys-
tem is such that at any point in time the internal, external and inertial forces are in
equilibrium. Appropriate additional terms in the equilibrium conditions turn them
into equations of motion, and can be included, for example, within the scope of
the finite element method by way of local and global mass matrices. Instead of a
set of linear equations, this leads to a set of simultaneous ordinary second-order dif-
ferential equations for the (time-dependent) node displacement parameters. Assuming
constant coefficients, the differential equations can be decoupled according to the
method of modal analysis. The associated eigenvalue problem leads to a solution
in the form of superposed natural vibrations.

Generally, damping forces must also be taken into account in the equations of motion.
In order that the differential equations remain linear, it is usual to assume that these
forces are proportional to velocity. And so that a modal analysis remains possible with
decoupled natural vibrations, we use a so-called modal damping for simplicity.

Structural dynamics is essentially readily accessible via statics. However, adding the
dimension of time makes a more in-depth examination necessary so that dynamic pro-
cesses become just as familiar as static phenomena. In the end, engineers prepared to
make the effort obtain a broader view of theory of structures.

1.5 Theory of structures and structural engineering

For structural engineering, theory of structures is an ancillary discipline, like mater-
ials science. The knowledge and experience of practising design engineers in this and
other relevant special subjects, e. g. geotechnics and construction technology, must be
adequate for the complexity and significance of the jobs to which they are assigned.
Furthermore, appropriate practical experience with the respective types of construc-
tion is an essential requirement for managing the design and execution of construction
projects.

Theory of structures plays a role in all phases of conventional project development,
from the preliminary design and tender design to the detail design, but in different
ways, to suit the particular phase. Whereas for the conceptual design rough structural
calculations are adequate, the subsequent phases require analyses of structural safety
and serviceability that can be verified by others – and not just for the final condition of
the structure, but especially for critical conditions during construction.

31.5 Theory of structures and structural engineering



Besides new-build projects, the conservation and often the deconstruction of struc-
tures also throw up their share of interesting theory of structures problems. Frequently
such tasks are far more demanding than those of new structures because fewer, if any,
standards are available to help the engineer, and appraising the current condition of a
structure is often difficult and associated with considerable uncertainties. The devel-
opment of appropriate structural and actions models in such cases can be extremely
tricky yet fascinating.

Looking beyond the immediate uses of structural design, there are various applications
that can be handled with the methods of theory of structures, especially in mechanical
engineering, shipbuilding and automotive manufacture, aerospace engineering, too.
We are thus part of the great interdisciplinary field of structural mechanics.
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2 BRIEF HISTORICAL BACKGROUND

Apart from a few minor modifications, this chapter is based on an earlier essay by the
author [19]. Readers who wish to find out more should consult references [10], [16],
[32] and [33].

Until well into the 19th century, the practical experience of architects, builders and
engineers far exceeded their theoretical knowledge. The scientifically founded know-
ledge of structural behaviour that prevails today had its beginnings in antiquity and the
Middle Ages and evolved with the development of mechanics. However, it was not
until the 18th century that the first attempts were made to use the new findings in prac-
tical construction.

We have to thank the Greek mathematician ARCHIMEDES (c. 287 – c. 212 BC) for
the discovery of hydrostatic buoyancy and for formulating the lever principle for un-
equal straight levers subjected to vertical forces. Besides formulating theories for the
functions of the “simple machines” lever, wedge, screw, pulley and wheel and axle,
Archimedes is also credited with inventing technical artefacts such as the screw pump.

Jordanus DE NEMORE (c. 1200) is thought to have written various treatises that draw
on the works of Greek scholars. But he also added new observations on the cranked
lever and the inclined plane.

Leonardo DA VINCI (1452 – 1519) recognised the principle of resolving a force into
two components, and also applied the term “moment” (force q lever arm) to skew
forces. He also investigated the breakage of a rope due to its own weight (specific
strength), the bending of beams and columns and the equilibrium and failure mech-
anisms of arches. His extremely imaginative and diverse, yet unsystematic, insights
went apparently largely unnoticed during his lifetime.

Simon STEVIN’s (1548 – 1620) approach to the concept of moments and the reso-
lution of forces into components cannot be faulted. He worked on many practical ap-
plications and provided very vivid descriptions, e. g. the funicular polygon and the
“wreath of spheres” experiment to prove the law of the inclined plane.

Pierre VARIGNON (1654 – 1722) identified the connection between the force and
funicular polygons and formulated the theorem of the summability of moments.

Giovanni POLENI (1683 – 1761) analysed the load transfer of the 42m span of the
dome to St. Peter ’s in Rome by constructing the funicular polygon for the weights
corresponding to the individual segments of the vaulting. He selected the funicular
polygon that passed through the centres of the springing and crown joints and estab-
lished that the inverted funicular polygon must lie within the arch profile. In 1743
POLENI was appointed to investigate the damage to the dome of St. Peter ’s, just
as one year before the three mathematicians Ruggiero Giuseppe BOŠCOVIĆ
(1711 – 1787), Thomas LE SEUR (1703 – 1770) and François JACQUIER
(1711 – 1788) had been commissioned to do. Based on the crack pattern observed,
the three mathematicians analysed an assumed mechanism and hence determined a
deficit in the resistance with respect to the thrust in the arch. They recommended add-
ing further horizontal iron hoops (to resist the tension) around the dome to the three
already in place. Although POLENI did not agree with the cause of the damage

52 Brief historical background
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as described by the mathematicians, he did agree with the proposed strengthening
measures.

GALILEO Galilei (1564 – 1642) founded the discipline of strength of materials
through his studies of the failure of the cantilever beam. Starting with the tensile
test as a “thought experiment” and the associated question of the specific strength,
he analysed the equilibrium of a cantilever beam as a cranked lever with its fulcrum
at the bottom edge of the fixed-end cross-section. Applying similitude theory, he de-
termined the failure load relationships of simple beam structures with different geom-
etries. He realised that no structure can exceed a certain given size (maximum span)
determined by the limits of strength and remarked that hollow cross-sections and
cross-sections that vary over the length of the beam can make better use of the strength
than prismatic, solid cross-sections.

Edmé MARIOTTE (1620 – 1684) and Pieter van MUSSCHENBROEK (1692 –
1761) carried out tensile and bending strength tests on various materials, the latter
also buckling strength tests. Applying similitude theory, it became possible to design
a beam. In the bending failure problem, MARIOTTE, like GALILEO, initially as-
sumed that the cantilever beam rotates about the bottom edge of the fixed-end
cross-section, but presumed a triangular distribution of the tensile force over the depth
of the cross-section. In a further step, he introduced the “axe d’équilibre” (neutral axis)
in the middle of the depth of the cross-section and distinguished between zones in
tension and compression, with triangular distributions of the tensile and compressive
forces above and below this axis. Instead of the theoretically correct reduction factor
of 3 of GALILEO’s strength studies, he mistakenly arrived at a value of 1.5; his tests
resulted in a reduction factor of about 2.

Antoine PARENT (1666 – 1716) recognised that the tensile and compressive forces
due to bending must be equal in magnitude and that there are also shear forces acting
on the cross-section. Based on MARIOTTE’s tests, PARENT positioned the neutral
axis somewhat below the middle, i. e. at 45% of the depth of the cross-section, which
when compared with GALILEO’s work leads to a reduction factor of 2.73 for an equal
tensile strength.

Robert HOOKE (1635 – 1703) undertook experiments with springs and reached the
conclusion that the forces in elastic bodies are proportional to the corresponding dis-
placements. He also recognised that some of the fibres in a beam subjected to bending
are pulled and hence extended and some are compressed and hence shortened. Further,
he recommended giving arches the form of an inverted catenary.

Jacob BERNOULLI (1654 – 1705) investigated the deformation of elastic bars with
the help of the infinitesimal calculus introduced by Isaac NEWTON (1643 – 1727)
and Gottfried Wilhelm LEIBNIZ (1646 – 1716). He assumed that the cross-sections
of the bar remain plane during the deformation and discovered that the change in curv-
ature is proportional to the bending forces. However, as he was not yet aware of the
stress concept, the integration of the internal forces over the cross-section, which is
taken for granted today, is missing from his deductions.

The principle of virtual displacements, already used in a simple form by DE
NEMORE, STEVIN and GALILEO, was stated in general form in 1717 by Johann
BERNOULLI (1667 – 1748).

Following a proposal by Daniel BERNOULLI (1700 – 1782), Leonhard EULER
(1707 – 1783) showed that Jacob BERNOULLI’s differential equation of the elastic
curve corresponds to a variational problem. According to this, the integral of the
squares of the curvatures over the length of the bar is a minimum; for homogeneous
prismatic bars, this integral is proportional to the elastically stored deformation work.
EULER’s detailed treatises on elastic curves led to the solution of the eigenvalue prob-
lems of buckling and laterally vibrating bars. Apart from the concept of hydrostatic
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stress, we also have EULER to thank for the free-body principle at the root of all mech-
anics. This principle states that every free body separated with an imaginary cut from a
body in equilibrium is itself in equilibrium; internal forces are thus externalised and
can therefore be dealt with. Starting by considering the individual mass elements of a
body, EULER formulated NEWTON’s law of motion in the form of the theorem of
linear momentum, and also postulated the theorem of angular momentum. Therefore,
equilibrium conditions for forces and moments became special cases of the equations
of motion.

The designation “engineer” had already been used in isolated cases in the Middle Ages
to describe the builders of military apparatus and fortifications. The direct predeces-
sors of civil engineers as we know them today were French engineering officers who
were called upon to carry out civil as well as military tasks. At the suggestion of the
most outstanding of these engineering officers, Sébastien le Prêtre de VAUBAN
(1633 – 1707), the “Corps des ingénieurs du génie militaire” was set up in 1675.
The “Corps des ingénieurs des ponts et chaussées” followed around 1720.

The French engineering officers received scientific, primarily mathematical, training
at state schools. The “Ecole des ponts et chaussées” in Paris, founded in 1747 by
Daniel Charles TRUDAINE (1703 – 1769) and reorganised in 1760 by Jean
Rodolphe PERRONET (1708 – 1794), was at that time unique in Europe. The “Ecole
polytechnique”, which opened in Paris in 1794, was followed by the polytechnic
schools of Prague (1806), Vienna (1815), Karlsruhe (1825) and other cities.

PERRONET was primarily active as a builder of stone bridges. He reduced the widths
of the piers in order to improve the flow cross-section, employed very shallow three-
centred arches and introduced various other new ideas into the design and construction
of such bridges.

Charles Augustin de COULOMB (1736 – 1806) was another French engineering of-
ficer. He set down his practical experience in the building of fortifications in the “Essai
sur une application des règles de maximis et minimis à quelques problèmes de statique
relatifs à l ’architecture”, which was published in 1776. Based on the tensile tests of
samples of stone, he determined the resistance to cleavage fracture per unit area, a
property that he termed “cohesion”. Although shearing-off tests gave a somewhat
larger resistance, COULOMB ignored this difference and, considering possible failure
planes in masonry piers, introduced a friction resistance proportional to the normal
compression on the failure plane. By varying the inclination of the failure plane,
he discovered the smallest possible and hence critical ratio between compressive
strength and cohesion. He proceeded in a similar way when investigating active
and passive earth pressure problems and when determining the upper and lower limits
for arch thrust. COULOMB also concluded the strength problem of the beam in bend-
ing. Using the example of the cantilever beam, he distinguished between internal
forces normal to and parallel with the cross-section and formulated the equilibrium
conditions for the free body separated by the cross-section being studied. In doing
so, he assumed a generally non-linear distribution of the internal forces over the depth
of the beam. For the special case of the rectangular cross-section with linear force dis-
tribution, as with GALILEO’s strength studies, he obtained the right result with a re-
duction factor of 3.

Claude Louis Marie Henri NAVIER (1785 – 1836) was appointed professor at the
“Ecole des ponts et chaussées” in 1819 and the “Ecole polytechnique” in 1831. It
is him we have to thank for today’s form of the differential equation for the beam
in bending, with the modulus of elasticity of the construction material and the princi-
pal moment of inertia of the cross-section. His published lecture notes bring together
the scattered knowledge of his predecessors in a form suitable for practical building
applications. He solved numerous problems of static indeterminacy, investigated the
buckling of elastic bars subjected to eccentric loads and also became involved with
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suspension bridges and many other issues. As a design engineer, NAVIER also had to
cope with setbacks: his Pont des Invalides in Paris, spanning 160 m across the Seine,
was abandoned shortly before completion (1826) because of various difficulties en-
countered during construction.

Augustin Louis CAUCHY (1789 – 1857) abandoned the notion that the stress vector
must be orthogonal to the surface of the section, which applies in hydrostatics, and
established the concept of the stress tensor. He also introduced the strain tensor
and recognised that the linear elastic theory of homogeneous isotropic materials re-
quires two material constants. Important contributions to the ongoing expansion of
elastic theory were supplied by Siméon Denis POISSON (1781 – 1840), Gabriel
LAMÉ (1795 – 1870), Benoı̂t Pierre Emile CLAPEYRON (1799 – 1864), Adhémar
Jean Claude Barré de SAINT-VENANT (1797 – 1886) and others.

Karl CULMANN (1821 – 1881), a professor at Zurich Polytechnic, which had opened
in 1855, established graphical statics, i. e. the geometric/graphic treatment of theory
of structures problems which is especially suitable for trusses. The rigorous applica-
tion of force and funicular polygons enabled him to reduce beam statics to cable statics
and obtain a universally applicable method of integration by adding the closing line to
the funicular polygon. Antonio Luigi Gaudenzio Giuseppe CREMONA (1830 –
1903), Maurice LÉVY (1838 – 1910) and Karl Wilhelm RITTER (1847 – 1906)
were firm advocates of the use of graphical statics.

Emil WINKLER (1835 – 1888) made important contributions to the elastic theory
foundations of theory of structures. He introduced the axial and shear stiffnesses of
elastic bars, investigated thermal deformations, analysed the arch fixed on both sides,
studied beams on elastic foundation and worked on how “stress curves” indicate the
effects of travelling loads, for which Johann Jacob WEYRAUCH (1845 – 1917)
coined the term influence line.

Otto Christian MOHR (1835 – 1918) discovered the analogy between line loads and
bending moments on the one hand and curvatures and deflections of beams on the
other, thus paving the way for the graphical determination of deflection curves. He
introduced his circle diagrams for presenting general stress and strain conditions
and proposed a universal failure hypothesis based on COULOMB’s approach. His
studies of the secondary stresses in trusses, which are due to the fact that the connec-
tions between the members are actually rigid and not hinged as assumed in theory,
gave him the idea of considering joint and bar rotations as unknowns. It was not until
the first decades of the 20th century that this idea was exploited, in the form of the
slope-deflection method for dealing with statically indeterminate systems.

James Clerk MAXWELL (1831 – 1879) regarded elastic trusses as machines working
without energy losses and discovered that the displacement caused by a first unit force
at the position and in the direction of a second unit force is equal to the displacement
caused by the second unit force at the position and in the direction of the first unit
force. This reciprocal theorem is a special case of the interaction relationship for linear
elastic systems named after Enrico BETTI (1823 – 1892). According to this relation-
ship, a first force system does the same work on the displacements of a second force
system as the second system does on the displacements of the first. It is Carlo Alberto
CASTIGLIANO (1847 – 1884) we have to thank for the theorem that the force vari-
ables in an elastic system are equal to the derivatives of the deformation work with
respect to the corresponding deformation variables. Mathias KOENEN (1849 –
1924) transferred the work theorem for the displacement calculation, introduced by
MOHR for trusses, to beams in bending. Friedrich ENGESSER (1848 – 1931) high-
lighted the difference between deformation work and complementary work and thus
paved the way for the treatment of non-linear elastic systems in the theory of struc-
tures.
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Heinrich Franz Bernhard M�LLER-BRESLAU (1851 – 1925) placed the concept of
work at the focus of the formulation of structural analysis theories and developed the
force method for dealing with statically indeterminate systems. Robert LAND
(1857 – 1899) created a method for determining influence lines based on a unit
displacement imposed on the structural system at the position and in the direction
of the relevant force variable. The development of the deformation method by Asger
Skovgaard OSTENFELD (1866 – 1931) concluded the theory of elastic framed struc-
tures with small deformations.

The further evolution of the theory of structures in the 20th century primarily con-
cerned plate and shell structures, stability theory, plastic theory and the development
of computer-aided methods for analysing structures by means of discretised structural
models.

92 Brief historical background





3 DESIGN OF STRUCTURES

3.1 General

Fig. 3.1 [31] summarises the relationships between various design elements. The ter-
minology in the figure is defined in appendix A1 (together with further specialist
terminology that, generally, is highlighted in italics the first time it is used or explained
in the text).

Fig. 3.1 applies to all construction works or their structures erected in the natural and
built environments, i. e. all the structural members and all the subsoils that are neces-
sary for their equilibrium and for retaining their form. The figure refers to the total life
cycle of the construction works, which extends from design to execution, use and con-
servation right up to deconstruction. Construction works documents corresponding to
the individual phases are listed in a separate column.

Fig. 3.1 and the associated terminology assist in understanding the subject and enable
a uniform, systematic approach to theory and practice for all design, site management
and construction work specialists engaged in the areas of structures and geotechnics.
The figure is not a flow diagram, nor does it refer directly to the conventional course of
a project from preliminary design to tender design and detail design. Rather, it gives
an order to the steps in the process and the relationships between various design elem-
ents, and can be used to understand the connections between and the categorisation of
the specialist terminology used.

The design of a structure encompasses the conceptual design, the structural analysis
and the dimensioning. The conceptual design is all the activities and developments,
and the outcomes thereof, that lead from the service criteria to the structural concept.
The structural analysis uses structural models to determine action effects, i. e. the
responses of the structure to potential actions as a result of execution and use as
well as environmental influences. Dimensioning establishes the sizes, construction
materials and detailing of the structure; the basis for this are structural and construc-
tion technology considerations plus numerical verifications.

The quality of a structure primarily depends on its conceptual design, its detailing and
its execution. The importance of structural analyses and numerical verifications is
often overrated; they are merely tools for guaranteeing an appropriate reliability,
i. e. the behaviour of a structure with respect to structural safety and serviceability
within specified limits.

Key aspects of conceptual design and the associated construction works documents
(service criteria agreement and basis of design) are described below. Structural ana-
lysis and dimensioning are covered in chapter 4.

3.2 Conceptual design

The aim of the draft design is to develop a suitable structural concept, which specifies
the structural system, the most important dimensions, construction material properties
and construction details plus the intended method of construction. It is developed as
part of the integrative planning of the construction works in consultation with all the
specialists involved. The structural concept is based on the overall planning, the
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II FUNDAMENTALS

Environment

Construction works / Structure

Design

Conceptual
design

Service criteria

Requirements Integration and composition
Economy

Robustness
Reliability
Durability

ServiceabilityStructural safety

Draft design Design boundary conditions

Design alternativesHazard scenarios Service situations

Structural concept

Structural analysis

Actions

mechanical
other physical
chemical
biological

Structural model 

Construction material and subsoil properties

Analytical model 

Geometric variables

Dimensioning

Hazard scenarios relevant to dimensioning Service situations relevant to dimensioning

Design situations
transient

Limit states

fatigue resistance
ultimate resistance
overall stability

Structural safety

appearance
comfort
functionality

Serviceability

Load cases
Verification of structural safety Verification of serviceability

Detailing

Execution Preparation for construction
Construction work

Construction inspections
Acceptance

Method of constructionProtection and welfare measures

Commissioning
Design working life
Decommissioning

Use

Conservation

control measurements
inspections
observation

Monitoring

Urgent safety measures

Examination

recommendation for
condition assessment
condition survey

Deconstruction

Supplementary
safety measures

Planning of remedial measures Modification

Maintenance

Repair

Action effects

stresses,
stress resultants,
reactions
deformations,
displacements
action effects
specific to type
of construction

Construction works documents:

Service criteria agreement

Basis of design

Structural calculations

cost estimate,

Technical report

Tender documents
Execution documents
Construction inspection plan

Record of construction

Service instructions
Operation instructions

Monitoring plan
Maintenance plan

Reports, drawings,

Report on remedial measures

minutes of meetings

Reports, general arrangement
and detailed drawings, 
lists of materials,

minutes of meetings

persistent
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remedial measures

Fig. 3.1 Relationships between various design elements


