

CLIFTON A. ERICSON II

HAZARD ANALYSIS TECHNIQUES FOR SYSTEM SAFETY

SECOND EDITION

WILEY

*Hazard Analysis
Techniques for
System Safety*

Hazard Analysis Techniques for System Safety

Second Edition

Clifton A. Ericson, II

Fredericksburg, Virginia

WILEY

Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <http://www.wiley.com/go/permission>.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Ericson, Clifton A., II.

Hazard analysis techniques for system safety / Clifton A. Ericson, II. –
Second edition.

pages cm

Includes index.

ISBN 978-1-118-94038-9 (hardback)

1. Industrial safety–Data processing. 2. System safety. I. Title.
T55.E72 2015
363.11–dc23

2015016350

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

PREFACE	xxi
ACKNOWLEDGMENTS	xxiii
1. System Safety and Hazard Analysis	1
1.1 Introduction / 1	
1.2 The Need for Hazard Analysis / 2	
1.3 System Safety Background / 3	
1.4 System Safety Overview / 4	
1.5 System Safety Process / 6	
1.6 System Safety Standards / 7	
1.7 System Safety Principles / 7	
1.8 Key Terms / 8	
1.9 Summary / 9	
2. Systems	10
2.1 System Concept / 10	
2.2 System Attributes / 12	
2.3 System Types / 13	
2.4 System Life Cycle / 13	
2.5 System Development / 15	
2.6 System Development Process / 16	
2.7 System Hierarchy / 16	
2.8 System Views / 18	

2.9	System Development Artifacts / 19	
2.10	Systems Complexity and Safety / 20	
2.11	System Requirements / 21	
2.12	System Laws / 26	
2.13	Summary / 26	
3.	Hazards, Mishap, and Risk	28
3.1	Introduction / 28	
3.2	Hazard, Mishap, and Risk Definitions / 29	
3.3	Accident (Mishap) Theory / 30	
3.4	The Hazard–Mishap Relationship / 31	
3.5	Hazard Risk / 33	
3.6	The Components of a Hazard / 33	
3.7	Hazard Triangle / 35	
3.8	Hazard Actuation / 35	
3.9	Hazard Causal Factors / 37	
3.10	Hazard–Mishap Probability Example / 39	
3.11	Recognizing Hazards / 40	
3.12	Hazard Description / 43	
3.13	Hazard Theory Summary / 43	
4.	Hazard Analysis Features	45
4.1	Introduction / 45	
4.2	Types Versus Technique / 46	
4.3	Description of Hazard Analysis Types / 48	
4.3.1	Conceptual Design Hazard Analysis Type / 48	
4.3.2	Preliminary Design Hazard Analysis Type / 49	
4.3.3	Detailed Design Hazard Analysis Type / 51	
4.3.4	System Design Hazard Analysis Type / 52	
4.3.5	Operations Design Hazard Analysis Type / 53	
4.3.6	Human Health Design Hazard Analysis Type (HD-HAT) / 54	
4.3.7	Requirements Design Hazard Analysis Type (RD-HAT) / 55	
4.4	The Timing of Hazard Analysis Types / 57	
4.5	The Interrelationship of Hazard Analysis Types / 57	
4.6	Hazard Analysis Techniques / 59	
4.7	Hazard Analysis Technique Attributes / 59	
4.8	Primary and Secondary Techniques / 59	
4.9	Inductive and Deductive Techniques / 63	
4.10	Qualitative and Quantitative Techniques / 65	
4.11	Summary / 67	

5. Hazard Recognition and Management	69
5.1 Introduction / 69	
5.2 Hazard Analysis Tasks / 69	
5.2.1 Plan the Hazard Analysis / 70	
5.2.2 Understand the System Design / 71	
5.2.3 Acquire Hazard Analysis Tools / 71	
5.2.4 Identify Hazards / 72	
5.2.5 Validate Hazards / 72	
5.2.6 Assess Risk / 72	
5.2.7 Mitigate Risk / 72	
5.2.8 Verify Mitigation / 73	
5.2.9 Accept Risk / 73	
5.2.10 Track Hazards / 73	
5.3 Hazard Recognition / 74	
5.3.1 Hazard Recognition Introduction / 74	
5.3.2 Hazard Recognition: System Perspectives / 74	
5.3.3 Hazard Recognition: Failure Perspectives / 75	
5.3.4 Key Hazard Recognition Factors / 76	
5.3.5 Hazard Recognition Basics / 79	
5.3.6 Hazard Recognition Sources / 79	
5.4 Describing the Identified Hazard / 79	
5.5 Hazard Types by General Circumstances / 81	
5.6 Hazard Types by Analysis Category / 82	
5.7 Modelling Hazard Space / 83	
5.7.1 System Mishap Model / 84	
5.7.2 System Mishap Model Examples / 87	
5.8 Summary / 92	
6. Functional Hazard Analysis	93
6.1 FHA Introduction / 93	
6.2 FHA Background / 93	
6.3 FHA History / 94	
6.4 FHA Theory / 94	
6.5 FHA Methodology / 95	
6.6 FHA Worksheets / 96	
6.7 FHA Example 1: Aircraft Flight Functions / 99	
6.8 FHA Example 2: Aircraft Landing Gear Software / 99	
6.9 FHA Example 3: Ace Missile System / 102	
6.10 FHA Advantages and Disadvantages / 105	
6.11 Common FHA Mistakes to Avoid / 105	
6.12 FHA Summary / 108	

7. Preliminary Hazard List Analysis	109
7.1 PHL Introduction / 109	
7.2 PHL Background / 109	
7.3 PHL History / 110	
7.4 PHL Theory / 110	
7.5 PHL Methodology / 111	
7.6 PHL Worksheet / 114	
7.7 Hazard Checklists / 115	
7.8 PHL Guidelines / 117	
7.9 PHL Example: Ace Missile System / 118	
7.10 PHL Advantages and Disadvantages / 121	
7.11 Common PHL Mistakes to Avoid / 122	
7.12 PHL Summary / 124	
8. Preliminary Hazard Analysis	125
8.1 PHA Introduction / 125	
8.2 PHA Background / 125	
8.3 PHA History / 126	
8.4 PHA Theory / 126	
8.5 PHA Methodology / 127	
8.6 PHA Worksheet / 130	
8.7 PHA Guidelines / 132	
8.8 PHA Example: Ace Missile System / 133	
8.9 PHA Advantages and Disadvantages / 136	
8.10 Common PHA Mistakes to Avoid / 136	
8.11 PHA Summary / 143	
9. Subsystem Hazard Analysis	145
9.1 SSHA Introduction / 145	
9.2 SSHA Background / 145	
9.3 SSHA History / 146	
9.4 SSHA Theory / 146	
9.5 SSHA Methodology / 147	
9.6 SSHA Worksheet / 149	
9.7 SSHA Guidelines / 151	
9.8 SSHA Example: Ace Missile System / 152	
9.9 SSHA Advantages and Disadvantages / 156	
9.10 Common SSHA Mistakes to Avoid / 156	
9.11 SSHA Summary / 162	

10. System Hazard Analysis	164
10.1 SHA Introduction / 164	
10.2 SHA Background / 165	
10.3 SHA History / 166	
10.4 SHA Theory / 166	
10.5 SHA Methodology / 167	
10.6 SHA Worksheet / 167	
10.7 SHA Guidelines / 170	
10.8 SHA Example / 172	
10.9 SHA Advantages and Disadvantages / 175	
10.10 Common SHA Mistakes to Avoid / 175	
10.11 SHA Summary / 176	
11. Operating and Support Hazard Analysis	177
11.1 O&SHA Introduction / 177	
11.2 O&SHA Background / 177	
11.3 O&SHA History / 178	
11.4 O&SHA Definitions / 179	
11.4.1 Operation / 179	
11.4.2 Procedure / 179	
11.4.3 Task / 179	
11.5 O&SHA Theory / 180	
11.6 O&SHA Methodology / 181	
11.7 O&SHA Worksheet / 183	
11.8 O&SHA Hazard Checklists / 185	
11.9 O&SHA Support Tools / 186	
11.10 O&SHA Guidelines / 187	
11.11 O&SHA Examples / 188	
11.11.1 Example 1 / 188	
11.11.2 O&SHA Example 2 / 188	
11.12 O&SHA Advantages and Disadvantages / 198	
11.13 Common O&SHA Mistakes to Avoid / 198	
11.14 Summary / 198	
12. Health Hazard Analysis	199
12.1 HHA Introduction / 199	
12.2 HHA Background / 199	
12.3 HHA History / 200	
12.4 HHA Theory / 200	

12.5 HHA Methodology / 201	
12.6 HHA Worksheet / 204	
12.7 Human Health Hazard Checklist / 206	
12.8 HHA Example / 207	
12.9 HHA Advantages and Disadvantages / 207	
12.10 Common HHA Mistakes to Avoid / 207	
12.11 Summary / 211	
13. Requirements Hazard Analysis	212
13.1 RHA Introduction / 212	
13.2 RHA Background / 212	
13.3 RHA History / 213	
13.4 RHA Theory / 213	
13.5 RHA Methodology / 214	
13.6 RHA Worksheets / 214	
13.7 RHA Example / 217	
13.8 RHA Advantages and Disadvantages / 222	
13.9 Common RHA Mistakes to Avoid / 222	
13.10 Summary / 222	
14. Environmental Hazard Analysis (EHA)	224
14.1 EHA Introduction / 224	
14.2 EHA Background / 225	
14.3 EHA History / 226	
14.4 EHA Theory / 226	
14.5 EHA Methodology / 227	
14.6 EHA Worksheet / 230	
14.7 Example Checklists / 232	
14.8 EHA Example / 233	
14.9 EHA Advantages and Disadvantages / 233	
14.10 Common EHA Mistakes to Avoid / 237	
14.11 Summary / 237	
14.12 References / 237	
14.13 National Environmental Policy Act / 237	
14.14 Environmental Protection Agency / 238	
15. Fault Tree Analysis	240
15.1 FTA Introduction / 240	
15.2 FTA Background / 242	
15.3 FTA History / 243	
15.4 FTA Theory / 243	
15.5 FTA Methodology / 244	

15.5.1	FT Building Blocks / 245
15.5.2	FT Definitions / 247
15.5.3	FT Construction: Basics / 248
15.5.4	FT Construction: Advanced / 251
15.5.5	FT Construction Rules / 252
15.6	Functional Block Diagrams / 253
15.7	FT Cut Sets / 254
15.8	MOCUS Algorithm / 254
15.9	Bottom-Up Algorithm / 256
15.10	FT Mathematics / 256
15.10.1	Probability of Success / 256
15.10.2	Probability of Failure / 256
15.10.3	Boolean Rules for FTA / 256
15.10.4	AND Gate Probability Expansion / 257
15.10.5	OR Gate Probability Expansion / 257
15.10.6	FT Probability Expansion / 257
15.10.7	Inclusion–Exclusion Approximation / 257
15.11	Probability / 258
15.12	Importance Measures / 259
15.12.1	Cut Set Importance / 260
15.12.2	Fussell–Vesely Importance / 260
15.12.3	Risk Reduction Worth / 261
15.12.4	Risk Achievement Worth / 261
15.12.5	Birnbaum’s Importance Measure / 261
15.13	FT Example 1 / 262
15.14	FT Example 2 / 262
15.15	FT Example 3 / 271
15.16	Phase- and Time-Dependent FTA / 271
15.17	Dynamic FTA / 274
15.18	FTA Advantages and Disadvantages / 275
15.19	Common FTA Mistakes to Avoid / 276
15.20	Summary / 276
16.	Failure Mode and Effects Analysis 278
16.1	FMEA Introduction / 278
16.2	FMEA Background / 278
16.3	FMEA History / 279
16.4	FMEA Definitions / 280
16.5	FMEA Theory / 281
16.5.1	FMEA Structural and Functional Models / 283
16.5.2	FMEA Product and Process FMEA / 283

16.5.3	FMEA Functional Failure Modes	/ 283
16.5.4	FMEA Hardware Failure Modes	/ 284
16.5.5	FMEA Software Failure Modes	/ 285
16.5.6	Quantitative Data Sources	/ 286
16.6	Methodology	/ 286
16.7	FMEA Worksheet	/ 289
16.8	FMEA Example 1: Hardware Product FMEA	/ 292
16.9	FMEA Example 3: Functional FMEA	/ 292
16.10	FMEA Level of Detail	/ 295
16.11	FMEA Advantages and Disadvantages	/ 298
16.12	Common FMEA Mistakes to Avoid	/ 298
16.13	FMEA Summary	/ 298
17.	Hazard and Operability (HAZOP) Analysis	300
17.1	Introduction	/ 300
17.2	HAZOP Analysis Background	/ 301
17.3	HAZOP History	/ 301
17.4	HAZOP Theory	/ 302
17.5	HAZOP Methodology	/ 303
17.5.1	Design Representations	/ 305
17.5.2	System Parameters	/ 305
17.5.3	Guide Words	/ 306
17.5.4	Deviation from Design Intent	/ 307
17.6	HAZOP Worksheet	/ 309
17.7	HAZOP Example 1	/ 310
17.8	HAZOP Example 2	/ 311
17.9	HAZOP Advantages and Disadvantages	/ 311
17.10	Common HAZOP Analysis Mistakes to Avoid	/ 313
17.11	HAZOP Summary	/ 313
18.	Event Tree Analysis (ETA)	316
18.1	ETA Introduction	/ 316
18.2	ETA Background	/ 316
18.3	ETA History	/ 317
18.4	ETA Definitions	/ 317
18.5	ETA Theory	/ 318
18.6	ETA Methodology	/ 320
18.7	ETA Worksheet	/ 323
18.8	ETA Example 1	/ 323
18.9	ETA Example 2	/ 323
18.10	ETA Example 3	/ 324

18.11 ETA Example 4 / 324	
18.12 ETA Advantages and Disadvantages / 324	
18.13 Common ETA Mistakes to Avoid / 325	
18.14 Summary / 326	
19. Cause—Consequence Analysis	327
19.1 Introduction / 327	
19.2 CCA Background / 327	
19.3 CCA History / 328	
19.4 CCA Definitions / 328	
19.5 CCA Theory / 329	
19.6 CCA Methodology / 330	
19.7 CCD Symbols / 331	
19.8 CCA Worksheet / 332	
19.9 CCA Example 1: Three-Component Parallel System / 332	
19.10 CCA Example 2: Gas Pipeline System / 333	
19.10.1 Reducing Repeated Events / 335	
19.11 CCA Advantages and Disadvantages / 337	
19.12 Common CCA Mistakes to Avoid / 338	
19.13 Summary / 338	
20. Common Cause Failure Analysis	339
20.1 Introduction / 339	
20.2 CCFA Background / 340	
20.3 CCFA History / 340	
20.4 CCFA Definitions / 341	
20.4.1 Independent Event / 341	
20.4.2 Dependent Event / 341	
20.4.3 Independence (in Design) / 341	
20.4.4 Dependence (in Design) / 341	
20.4.5 Common Cause Failure / 342	
20.4.6 Common Mode Failure / 342	
20.4.7 Cascading Failure / 343	
20.4.8 Mutually Exclusive Events / 343	
20.4.9 CCF Root Cause / 343	
20.4.10 CCF Coupling Factor / 343	
20.4.11 Common Cause Component Group / 343	
20.5 CCFA Theory / 344	
20.6 CCFA Methodology / 346	
20.6.1 CCFA Process Step 2: Initial System Fault Tree Model / 347	

20.6.2	CCFA Process Step 3: Common Cause Screening /	348
20.6.3	CCFA Process Step 4: Detailed CCF Analysis /	351
20.7	CCF Defense Mechanisms /	354
20.8	CCFA Example /	354
20.9	CCFA Models /	358
20.10	CCFA Advantages and Disadvantages /	359
20.11	Common CCFA Mistakes to Avoid /	360
20.12	Summary /	361
21.	Software Hazard Analysis	363
21.1	SwHA Introduction /	363
21.2	SwHA Background /	364
21.3	SwHA History /	365
21.4	SwHA Theory /	365
21.5	SwHA Methodology /	366
21.6	SwHA Worksheet /	367
21.7	Software Criticality Level /	368
21.8	SwHA Example /	369
21.9	Software Fault Tree Analysis /	376
21.10	SwHA Advantages and Disadvantages /	377
21.11	SwHA Mistakes to Avoid /	379
21.12	SwHA Summary /	379
22.	Process Hazard Analysis	381
22.1	PHA Introduction /	381
22.2	PHA Background /	381
22.3	PHA History /	382
22.4	Processing Mishaps /	382
22.5	Process Safety Management /	383
22.6	PHA Theory /	384
22.7	PHA Methodology /	385
22.8	PHA Worksheet /	386
22.9	Supporting Notes /	387
22.10	PHA Advantages and Disadvantages /	388
22.11	Common PHA Mistakes to Avoid /	389
22.12	Summary /	389
23.	Test Hazard Analysis	390
23.1	THA Introduction /	390
23.2	THA Background /	390

23.3	THA History / 391
23.4	THA Theory / 391
23.5	THA Methodology / 393
23.6	THA Worksheet / 394
23.7	THA Considerations / 395
23.7.1	Verification / 395
23.7.2	Validation / 395
23.8	Testing in the System Development Life Cycle / 396
23.9	Types of Testing / 397
23.9.1	Standard Development Test Types / 397
23.9.2	Performance Tests / 397
23.9.3	Software Performance Tests / 397
23.9.4	Special Safety-Related Testing / 398
23.10	THA Safety Goals / 398
23.11	THA Advantages and Disadvantages / 404
23.12	Common THA Mistakes to Avoid / 404
23.13	Summary / 404

24. Fault Hazard Analysis 406

24.1	FHA Introduction / 406
24.2	FHA Background / 406
24.3	FHA History / 407
24.4	FHA Theory / 407
24.5	FHA Methodology / 408
24.6	FHA Worksheet / 410
24.7	FHA Example / 411
24.8	FHA Advantages and Disadvantages / 414
24.9	Common FHA Mistakes to Avoid / 414
24.10	Summary / 414

25. Sneak Circuit Analysis 416

25.1	SCA Introduction / 416
25.2	SCA Background / 417
25.3	SCA History / 418
25.4	SCA Definitions / 418
25.5	SCA Theory / 419
25.6	SCA Methodology / 419
25.6.1	Step 1: Acquire Data / 420
25.6.2	Step 2: Code Data / 421
25.6.3	Step 3: Process Data / 421
25.6.4	Step 4: Produce Network Trees / 422

25.6.5	Step 5: Identify Topographs /	422
25.6.6	Step 6: Perform Analysis /	423
25.6.7	Step 7: Generate SCA Report /	424
25.7	Example 1: Sneak Path /	424
25.8	Example 2: Sneak Label /	425
25.9	Example 3: Sneak Indicator /	425
25.10	Example Sneak Clues /	425
25.11	Software Sneak Circuit Analysis /	425
25.12	SCA Advantages and Disadvantages /	428
25.13	Common SCA Mistakes to Avoid /	428
25.14	Summary /	429
26.	Markov Analysis	430
26.1	MA Introduction /	430
26.2	MA Background /	430
26.3	MA History /	431
26.4	MA Definitions /	431
26.5	MA Theory /	432
26.6	MA Methodology /	434
26.6.1	State Transition Diagram Construction /	434
26.6.2	State Equation Construction /	436
26.7	MA Examples /	438
26.7.1	Markov Chain /	438
26.7.2	Markov Model of Two-Component Series System with No Repair /	438
26.7.3	Markov Model of Two-Component Parallel System with No Repair /	439
26.7.4	Markov Model of Two-Component Parallel System with Component Repair /	439
26.7.5	Markov Model of Two-Component Parallel System with Component/System Repair /	440
26.7.6	Markov Model of Two-Component Parallel System with Sequencing /	440
26.8	MA and FTA Comparisons /	441
26.9	MA Advantages and Disadvantages /	442
26.10	Common MA Mistakes to Avoid /	445
26.11	Summary /	445
27.	Petri Net Analysis	446
27.1	PNA Introduction /	446
27.2	PNA Background /	447
27.3	PNA History /	447

27.4	PNA Definitions / 448	
27.5	PNA Theory / 448	
27.6	PNA Methodology / 452	
27.7	PNA Example / 452	
27.8	PNA Advantages and Disadvantages / 453	
27.9	Common PNA Mistakes to Avoid / 454	
27.10	Summary / 454	
28.	Barrier Analysis	456
28.1	BA Introduction / 456	
28.2	BA Background / 456	
28.3	BA History / 457	
28.4	BA Definitions / 457	
28.4.1	Energy Source / 458	
28.4.2	Energy Path / 458	
28.4.3	Energy Barrier / 458	
28.5	BA Theory / 458	
28.6	BA Methodology / 459	
28.6.1	Example Checklist of Energy Sources for BA / 460	
28.6.2	BA Considerations / 463	
28.7	BA Worksheet / 465	
28.8	BA Example / 467	
28.9	BA Advantages and Disadvantages / 469	
28.10	Common Barrier Analysis Mistakes to Avoid / 469	
28.11	Summary / 470	
29.	Bent Pin Analysis	471
29.1	BPA Introduction / 471	
29.2	BPA Background / 471	
29.3	BPA History / 472	
29.4	BPA Theory / 472	
29.5	BPA Methodology / 474	
29.6	BPA Worksheet / 474	
29.7	BPA Example / 476	
29.8	BPA Advantages and Disadvantages / 478	
29.9	Common BPA Mistakes to Avoid / 478	
29.10	Summary / 482	
30.	Management Oversight Risk Tree Analysis	483
30.1	Introduction To MORT Analysis / 483	
30.2	MORT Background / 483	

30.3	MORT History /	484
30.4	MORT Theory /	484
30.5	MORT Methodology /	485
30.6	MORT Analysis Worksheet /	486
30.7	MORT Advantages and Disadvantages /	487
30.8	Common MORT Analysis Mistakes to Avoid /	489
30.9	MORT Summary /	489
31.	Job Hazard Analysis	490
31.1	JHA Introduction /	490
31.2	JHA Background /	491
31.3	JHA History /	492
31.4	JHA Theory /	492
31.5	JHA Methodology /	493
31.6	JHA Worksheet /	497
31.7	Example Hazard Checklist /	499
31.8	JHA Tool /	501
31.9	JHA Example /	502
31.10	JHA Advantages and Disadvantages /	502
31.11	Common JHA Mistakes to Avoid /	505
31.12	Summary /	505
32.	Threat Hazard Analysis	506
32.1	THA Introduction /	506
32.2	THA Background /	506
32.3	THA History /	507
32.4	THA Theory /	507
32.5	THA Methodology /	509
32.5.1	Cradle-to-Grave Sequences /	509
32.5.2	Threat Scenarios /	510
32.5.3	Characterization of Environments /	511
32.5.4	Threats /	511
32.6	THA Worksheet /	511
32.7	THA Example /	515
32.8	THA Advantages and Disadvantages /	518
32.9	Common THA Mistakes to Avoid /	518
32.10	Summary /	518
33.	System of Systems Hazard Analysis	520
33.1	SoSHA Introduction /	520
33.2	SoSHA Background /	521

33.3	SoSHA History / 522
33.4	SoS Theory / 522
33.5	SoS Safety and Hazards / 526
33.6	SoSHA Tools / 528
33.6.1	SMM / 528
33.6.2	SoS Component System Matrix / 530
33.7	SoSHA Methodology / 531
33.8	SoSHA Example / 533
33.9	SoSHA Worksheet / 534
33.10	SoSHA Guidelines / 535
33.11	SoSHA Advantages and Disadvantages / 535
33.12	Common SoSHA Mistakes to Avoid / 535
33.13	Summary / 536
34.	Summary 537
34.1	Tenets of Hazard Analysis / 537
34.2	Description of Tenets / 538
34.2.1	Hazards and Mishaps are Not Chance Events; Hazards Lead to Mishaps If Left Unchecked / 538
34.2.2	Hazards are Created During System Design and Exist with the Design / 538
34.2.3	Hazards are Comprised of Three Components: HA, IMs, and TTO / 539
34.2.4	Many Hazards Cannot be Eliminated due to the Hazard Sources that are Required by the System / 540
34.2.5	Hazards Present Risk; Risk is the Metric for Measuring the Criticality or Danger Level of a Hazard / 541
34.2.6	Hazards can be Modified via Design Methods, which in Turn can Reduce Risk / 541
34.2.7	Hazard Analysis is the Key to Preventing Mishaps; Hazard Identification and Mitigation Reduce Mishap Risk / 543
34.2.8	The System Mishap Model is an Effective Hazard Analysis Tool / 543
34.2.9	Hazard Analysis and Hazard Descriptions can Easily Become Abused, Confused, and/or Misused / 544
34.2.10	Utilizing More than One Hazard Analysis Technique is Recommended / 544
34.2.11	Hazard Mitigation is not Hazard Elimination / 545
34.2.12	Hazard Risk is the Same as Mishap Risk / 546

34.2.13 There are Both Primary and Secondary Hazard Analysis Techniques /	546
34.2.14 There are Pseudo-Hazards and Real Hazards /	546
34.3 FINIS /	547
Appendix A List of Acronyms	549
Appendix B Glossary	552
Appendix C Hazard Checklists	567
Appendix D References	609
Index	613

Preface

During my 50 year career in system safety, there have been two things about hazard analysis that have always bothered me. First, there has never been a formal description of hazard theory that defines the components of a hazard and the hazard–mishap actuation process. This is significant because risk cannot be determined unless the hazard is fully understood and described. Second, there is a lack of good reference material describing in detail how to perform the most relevant hazard analysis techniques or methodologies. This too is significant because hazard analysis is more complex than most people think, thus good descriptions and reference material are needed. I wrote this book to resolve these issues for system safety engineers and practitioners. The material in this book is applicable to both experienced professionals and those analysts just starting out in the field.

One of the main features of this book is that it describes hazard theory in detail. The hazard–risk–mishap connection is explained, with illustrations and examples provided. In addition, the three required components of a hazard are presented, along with the hazard triangle model.

Another primary feature of this book is that it describes 28 of the most commonly used hazard analysis methodologies in the system safety discipline. Each of the 28 hazard analysis methodologies covered in this book is given an entire chapter devoted to just that technique. In addition, each methodology chapter is organized in a similar pattern that is intended to provide consistency in answering the most common questions that an analyst might have. Detailed examples are provided to help analysts learn and understand these methodologies.

System safety is a proven engineering discipline that is applied during system development to identify and mitigate hazards, and in so doing eliminate or reduce the risk of potential mishaps and accidents. System Safety is ultimately about saving lives. It is my greatest hope that the readers of this book can use the material contained herein to better understand hazard identification and analysis. This in turn will help in designing and constructing systems that are safe, thereby saving many lives.

This revised version of the book has added eight new chapters, six of which are additional hazard analysis techniques. Also, this updated version has added new and revised material to reflect changes made as a result of the new MIL-STD-882, version E, which was released in 2012.

Acknowledgments

In a book of this undertaking, there are naturally many people to acknowledge. This book reflects my life's journey through 50 years of engineering in the system safety discipline. My life has been touched and influenced by many people, far too many people to list and credit. For those whom I have left out I apologize. But it seems that there are a few people that always remain in the forefront of one's memory.

First and foremost, I would like to dedicate this book to my parents, Clifton Ericson I and Margaret Ericson. They instilled in me many good qualities that I might not have found without them, particularly the values of reading, education, science, religion, morality, and a work ethic.

I would like to acknowledge and dedicate this book to the Boeing System Safety organization on the Minuteman Weapon System development program. This was the crucible where the experiment of system safety really started, and this is where I started my career in system safety engineering. This group has provided my most profound work-related memories and probably had the greatest influence on my life. It was led by Niel Classon, who was an early visionary and leader in the system safety field. Other people in this organization who helped in my development included Dave Haasl, Gordon Willard, Dwight Leffingwell, Kaz Kanda, Brad Wolfe, Joe Muldoon, Harvey Moon, and Bob Schroder. Another Boeing manager who provided system safety guidance early in my career was Hal Trettin.

Later in my career, Perry D'Antonio of Sandia National Laboratories pushed me to excel in the System Safety Society and to eventually become president of this international organization. Paige Ripani of Applied Ordnance Technology, Inc. helped turn my career in a new direction, consulting for the Navy. And, last but not least, Ed Kratovil of the Naval Ordnance Safety and Security Activity (NOSSA) provided me with the opportunity to work on special Navy system and software safety projects.

In addition, I would like to acknowledge and thank the following individuals for reviewing early drafts of this manuscript: Jim Gerber, Sidney Andrews, Dave Shampine, Mary Ellen Caro, Tony Dunay, Chuck Dorney, John Leipper, Kurt Erthner, Ed Nicholson, William Hammer, and Jerry Barnette. Many of their comments and suggestions proved invaluable.

Chapter 1

System Safety and Hazard Analysis

1.1 INTRODUCTION

We live in a world comprised of systems. When viewed from an engineering perspective, most aspects of life involve systems. For example, houses are a type of system, automobiles are a type of system, and electrical power grids are another type of system. Commercial aircraft are systems that operate within a larger transportation system that in turn operate in a larger worldwide airspace system. Systems have become a necessity for modern living.

As a result of living in a system-centric world, we also live in a world comprised of hazards and risk. With systems and technology also comes exposure to hazards and potential mishaps. A hazard is a potential condition existing within a system, which when actuated becomes an actual mishap event resulting in damage, loss, injury, and/or deaths. Risk is the probability that a hazard occurs accompanied by the severity of the resulting outcome.

Hazard risk is a metric that predicts the likelihood and severity of a possible mishap. We live with risk, and make risk decisions, on a daily basis. For example, there is the hazard that a traffic light will fail, resulting in the mishap of another auto colliding with your auto. Automobiles, traffic, and traffic lights form a unique system that we use daily and accept the hazard risk potential because the risk is small. There is the danger that the gas furnace in our house will fail and explode, thereby resulting in the mishap of a burned house, or worse. This is another unique system, with known adverse side effects that we choose to live with because the mishap risk is small and the benefits are great. We live in a world comprised of many different systems with many different risks.

Our lives are intertwined within a web of different systems, each of which can affect our safety. Each of these systems has a unique design and a unique set of components. In addition, each of these systems contains inherent hazards that present unique mishap risks. We are

always making a tradeoff between accepting the benefits of a system and the mishap risk they present. As we develop and build systems, we should be concerned about eliminating and reducing mishap risk. Some risks are so small that they can easily be accepted, while other risks are so large that they must be dealt with immediately. Risks are akin to the invisible radio signals that fill the air around us, in that some are loud and clear, some very faint, and some are distorted and unclear. Life, as well as safety, is a matter of knowing, understanding, and choosing the risk to accept.

System safety is the formal engineering discipline and process for identifying and controlling hazards, and the risk associated with these hazards. As systems become more complex and more hazardous, more effort is required to understand and manage system mishap risk. Hazard (and mishap) risk can be intentionally reduced and controlled to a small and acceptable level through the system safety process.

The key to system safety and effective risk management is the identification and mitigation of hazards. To successfully control hazards, it is necessary to understand hazards and know how to identify them. The purpose of this book is to better understand hazards and the tools and techniques for identifying them, in order that they can be effectively controlled during the development of a system. The system safety process is sometimes referred to as *design for safety* (DFS).

1.2 THE NEED FOR HAZARD ANALYSIS

Forensic engineering is the detailed investigation of a mishap after it has occurred, performed to determine the specific causes for the mishap in order that corrective action can be applied to prevent reoccurrences. System safety, on the other hand, is a form of preemptive forensic engineering, whereby potential mishaps are identified, evaluated, and controlled before they occur. Potential mishaps and their causal factors are anticipated and identified during the design stage, and then design safety features are incorporated into the design to control the occurrence of the potential mishaps – safety is intentionally designed in and mishaps are effectively designed out. This proactive approach to safety involves hazard analysis, risk assessment, risk mitigation through design, and testing to verify the design results. Potential mishaps are recognized and identified by the hazards that ultimately cause them. System safety is a proactive approach to affecting the future (i.e., preventing mishaps before they occur) by identifying hazards and then eliminating or controlling the risk they present.

Systems are intended to improve our way of life, yet they also contain the inherent capability to spawn many different hazards that present us with mishap risk. It is not that systems are intrinsically bad; it is that systems can go awry, and when they go awry they typically result in mishaps. System safety is about determining how systems can go bad and implementing design safety mitigations to eliminate, correct, or work around safety imperfections in the system.

Murphy's law states that "if anything can go wrong, it will." This truism illustrates that the unexpected and undesired must be anticipated and controlled in order to prevent mishaps, and this can be achieved only through the system safety process. Hazards and risk often cannot be eliminated; however, hazards and risk can be anticipated and mitigated via safety design features, thereby preventing or reducing the likelihood of mishaps. If system safety is not applied, accidents and loss of life will not be prevented. System users are typically not aware of the actual risk they are exposed to, and without system safety this risk may be much higher than the users realize.

Hazard analysis is the basic key component of the system safety process. Therefore, it is necessary to fully understand the hazard theory and the hazard analysis process in order to develop safe systems.

1.3 SYSTEM SAFETY BACKGROUND

The primary guidance document for system safety is MIL-STD-882, System Safety Standard Practice. Version E was released on May 11, 2012. This standard has been in existence since 1969; its predecessor MIL-S-38130 was released in 1963.

MIL-STD-882 and its predecessor MIL-S-38130 are the genesis of system safety. The US military, along with US aerospace companies, saw the need for a holistic and proactive “systems” approach for the design, development, test, and manufacture of “safe” systems. Working together, these two groups developed the system safety methodology and discipline. MIL-S-38130 was originally released on September 30, 1963 and replaced by MIL-STD-882 on July 15, 1969. System safety was actually documented as a process prior to any formal documentation of the systems engineering discipline. System safety as a formal discipline was originally developed and promulgated by the military-industrial complex to prevent aircraft and missile mishaps that were costing lives, dollars, and equipment loss. As the effectiveness of the discipline was observed by other industries, it was adopted and applied to these industries and technology fields, such as commercial aircraft, nuclear power, chemical processing, rail transportation, the FAA, and NASA, to name a few.

The ideal objective of system safety is to develop a system free of hazards. However, absolute safety is not possible because complete freedom from all hazardous conditions is not always possible, particularly when dealing with complex inherently hazardous systems, such as weapon systems, nuclear power plants, commercial aircraft, etc.

Since it is generally not possible to eliminate all hazards, the realistic objective becomes that of developing a system with acceptable mishap risk. This is accomplished by identifying potential hazards, assessing their risks, and implementing corrective actions to eliminate or mitigate the identified hazards. This involves a systematic approach to the management of mishap risk. Safety is a basic part of the risk management process.

Hazards will always exist, but their risk can and must be made acceptable. Therefore, safety is a relative term that implies a level of risk that is measurable and acceptable. System safety is not an absolute quantity, but rather an optimized level of mishap risk management that is constrained by cost, time, and operational effectiveness (performance). System safety requires that risk be evaluated and the level of risk accepted or rejected by an appropriate decision authority. Mishap risk management is the basic process of system safety engineering and management functions. System safety is a process of disciplines and controls employed from the initial system design concepts, through detailed design and testing to system disposal at the completion of its useful life (i.e. “cradle to grave” or “womb to tomb”).

The fundamental objective of system safety is to identify, eliminate or control, and document system hazards. System safety encompasses all the ideals of mishap risk management and design for safety; it is a discipline for hazard identification and control to an acceptable level of risk. Safety is a system attribute that must be intentionally designed into a product.

From a historical perspective, it has been learned that a proactive preventive approach to safety during system design and development is much more cost-effective than trying to add safety to a system after the occurrence of an accident or mishap. System safety is an initial investment that saves future losses that could result from potential mishaps.

1.4 SYSTEM SAFETY OVERVIEW

System safety is effectively a design-for-safety process, discipline, and culture. DFS means that the design process utilizes the system safety process to intentionally design-in safety. This process anticipates potential safety problems (i.e., hazards) and eliminates them or reduces the risk they present. Safety risk is calculated from the identified hazards, and risk is eliminated or reduced by eliminating or mitigating the appropriate hazard causal factors. System safety, by necessity, considers function, criticality, risk, performance, and cost parameters of the system. Risk mitigation is achieved through a combination of design mechanisms, design features, warning devices, safety procedures, and safety training to counter the effect of hazard causal factors.

System safety involves a systems approach, which accounts for the distinctive name. System safety is the art and science of looking at all aspects and characteristics of a system as an integrated whole, rather than looking at individual components in isolation from the system. System safety is a holistic approach that considers the subject as an integrated sum-of-the-parts combination, rather than a piecemeal approach of looking at separate individual and solitary pieces of the system.

Often, system safety is not fully appreciated for the contribution it can make to creating safe systems that present a minimal chance of deaths and serious injuries. System safety applies a planned and disciplined methodology for purposely designing safety into a system. A system can be made safe only when the system safety methodology is consistently and properly applied. Safety is more than eliminating hardware failure modes; it involves designing the safe system interaction of hardware, software, humans, procedures, and the environment, under all normal and adverse failure conditions. Safety must consider the entirety of the problem, not just a portion of the problem, that is, a systems perspective is required for full safety coverage. System safety anticipates potential problems and either eliminates them or reduces their risk potential, through the use of design safety mechanisms applied according to a safety order of precedence.

System safety is the process of managing the system, personnel, environmental, and health mishap risks encountered in the design development, test, production, use, and disposal of systems, subsystems, equipment, materials, and facilities.

A system safety program (SSP) is a formal approach to eliminate hazards through engineering, design, education, management policy, and supervisory control of conditions and practices. It ensures the accomplishment of the appropriate system safety management and engineering tasks. The formal system safety process has been primarily established by the US Department of Defense (DoD) and its military branches and promulgated by MIL-STD-882. However, the same process is also followed in private industry for the development of commercial products, such as commercial aircraft, rail transportation, nuclear power, and automobiles, to mention a few.

The goal of system safety is the protection of life, systems, equipment, and the environment. The basic objective is the elimination of hazards that can result in death, injury, system loss, and damage to the environment. When hazard elimination is not possible, the next objective is to reduce the risk of a mishap through design control measures. Reducing mishap risk is achieved by reducing the probability of the mishap and/or the severity of the mishap.

This objective can be attained at minimum cost when the SSP is implemented early in the conceptual phase and is continued throughout the system development and acquisition cycle. The overall complexity of today's systems, particularly weapon systems, is such that system