


PREFACE

When solids have dimensions of nanometers, the properties

of the solids change. Such properties as strength, melting

temperature, color, electrical conductivity, thermal

conductivity, reactivity, and magnetic properties are

affected, and the magnitude of the change depends on the

size of the solid in the nanometer regime. The changes also

depend on the number of dimensions that are nanometers

in size. Thus, size in the nanometer regime can be used to

design and engineer materials with new and possibly

technologically interesting properties. The development of

applications based on nanoscience research is referred to

as nanotechnology. Because of this potential,

nanotechnology and nanoscience have generated much

interest in recent years in the materials science, chemistry,

physics, and engineering communities. As a result,

chemistry, physics, materials science, and engineering

departments at universities are developing courses in the

various subfields of nanotechnology.

Nanostructured magnetic materials have a particularly

strong possibility for developing new and interesting

applications. In fact, there are already a number of

technologies that employ nanostructured magnetic

materials such as computer data storage and ferrofluids.

The development of digital computers capable of handling

large software programs has created a strong need for

increased storage capability. Storage density has almost

doubled every year. This is a result of a major research

thrust in developing magnetic nanoparticles of smaller

sizes with appropriate properties, which enables increased

storage density. This increased density of smaller magnetic

nanoparticles has driven the need to develop more



sensitive methods of reading the storage devices because

smaller particles have lower magnetizations. Nanosized

magnetoresistive materials such as magnetic tunnel

junctions have the potential to increase the sensitivity of

reading devices.

Presently, there is also active research to develop new

applications in the medical field. Such ideas as using

magnetic nanoparticles for targeted delivery of drugs and

enhancement of images in magnetic resonance imaging are

presently under investigation. Using magnetic

nanoparticles loaded with chemotherapeutic drugs to

deliver them directly to the tumor has a large potential to

eliminate the negative side effects of the drugs.

Understanding this research and its possibilities requires

knowledge of the basic ideas and properties of magnetic

materials, how they are measured, and how nanosizing

affects these properties.

This book, The Physics of Magnetic Nanostructures, is

intended to provide this understanding as an introduction

to the subject for those who wish to learn about the field or

become involved in research on the subject. With omission

of some sections, the book could also be the basis of a

senior undergraduate or graduate level textbook on how

and why reducing the size of solids to nanodimensions

changes magnetic properties. Thus, exercises have been

included at the end of each chapter. The objectives of the

book are to describe how magnetic properties depend on

the size and dimension in the nanometer regime and to

explain using relatively simple models of the solid state

why these changes occur. Experimental methods for

measuring the magnetic properties are described as the

data from them are first presented.

The first chapter presents a basic overview of the effect

reducing the size of a solid to nanometers on the



fundamental properties of the materials. The next chapter

reviews the physics of magnetism and methods of

measuring magnetic properties, which is necessary to

understand how nanosizing affects magnetism. The

remaining chapters discuss various kinds of magnetic

structures and how nanosizing influences their magnetic

properties. This includes two chapters that present

potential and actual applications, one on devices and the

other on medical applications.
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1

PROPERTIES OF NANOSTRUCTURES

Nanostructures are generally considered to consist of a

number of atoms or molecules bonded together in a cluster

with at least one dimension less than 100 nm. A nanometer

is 10−9 m or 10 Å. Spherical particles having a radius of

about 1000 Å or less can be considered to be nanoparticles.

If one dimension is reduced to the nano range, while the

other two dimensions remain large, then we obtain a

structure known as a well. If two dimensions are reduced,

while one remains large, the resulting structure is referred

to as a wire. The limiting case of this process of size

reduction in which all three dimensions reach the low

nanometer range is called a dot. Figure 1.1 illustrates the

structures of rectangular wells, wires, and dots. This

chapter will discuss how the important properties of

materials such as the cohesive energy and the electronic

and vibrational structure are affected when materials have

at least one length in the nanometer range. Elementary

models of the solid state will be used to explain why the

changes occur on nanosizing.



FIGURE 1.1 Structures corresponding to a rectangular

well, wire, and dot having one, two, and three dimensions

of nanometer length, respectively.

1.1 COHESIVE ENERGY

The atoms or ions of a solid are held together by

interactions between them, which can be electrostatic

and/or covalent. The electrostatic interaction is described

by the Coulomb potential between charged particles.

Covalent bonding involves overlap of wave functions of

outer electrons of nearest neighbor atoms in the lattice. A

crystal is stable if the total energy of the lattice is less than

the sum of the energies of the atoms or molecules that

make up the crystal when they are isolated from each

other. The energy difference is the cohesive energy of the

solid. As materials approach nanometer dimensions, the

percentage of atoms on the surface increases. Figure 1.2

demonstrates a plot of the percentage of atoms on the

surface of a hypothetical face-centered cubic (fcc) structure

having a lattice parameter of 4 Å. Appendix A provides a



table relating the diameter of spherical nanoparticles to the

number of atoms in the particle and the percentage on the

surface. Below about 14 nm, more than 10% of the atoms

are on the surface. This holds true for metallic particles as

well as ionically and covalently bonded materials. Since the

atoms on the surface have less nearest neighbor atoms, this

means that the cohesive energy of an ionic solid decreases

as the size is reduced in the nanometer range. One of the

results of this decrease in cohesive energy is an increase in

the separation of the constituents of the lattice. Figure 1.3

shows an X-ray diffraction measurement of the lattice

parameter of the ionic solid CeO2 as a function of particle

size showing the increase in the lattice parameter as the

particle size is reduced. This results in a reduction of the

strength of the interaction between the ions of the solid

and thus a reduction in the cohesive energy.



FIGURE 1.2 Percentage of atoms on surface of a face-

centered cubic lattice versus particle size. The lattice

parameter is 4 Å.
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FIGURE 1.3 Experimental measurement of the lattice

parameter of the ionic crystal, CeO2, versus particle size.

(Reproduced with permission from Zhang et al. [1]. © 2002, AIP Publishing

LLC.)

Ionic solids are ordered arrays of positive and negative ions

such as sodium chloride, which is an fcc structure of

positive sodium ions and an interpenetration of fcc negative

chlorine ions. The interaction potential between the ions of

charge Q is electrostatic, ±Q/r. Ions of opposite sign are

attracted, while ions of the same sign repel each other. The

total electrostatic energy of any one ion i is Ui given by the

sum of all the Coulomb interactions between the ith ion and

all positive and negative ions of the lattice:



(1.2)

where rij is the distance between ions i and j. In the case of

the interaction between the nearest neighbors, a term has

to be added to Equation 1.1 to take into account that the

electron core around the nucleus repels those of the

nearest neighbors. The form of this has been derived from

experiment and is given by

The constants λ and ρ for NaCl are 1.75 × 10−9 ergs and

0.321. The larger the rij , the smaller the cohesive energy.

Thus, for ionic crystals, the cohesive energy decreases as

the lattice parameter increases. Figure 1.4 shows a plot of

the experimentally determined cohesive energy of crystals

having the NaCl structure versus lattice parameter. The

reduction of the cohesive energy also affects other

properties such as the melting temperature. Figure 1.5

illustrates a plot of the melting temperature of some alkali

halides versus cohesive energy. In general, when materials

have nanometer dimensions, the melting temperature

decreases.



FIGURE 1.4 Cohesive energy of ionic alkali halide crystal

having NaCl structure versus lattice parameter.



FIGURE 1.5 Melting temperature of some alkali halide

crystals versus cohesive energy.

Most of the experimental observations of the effect of size

of metal nanoparticles on the lattice parameters show it

decreases as the diameter decreases. The decrease is

attributed to the effect of surface stress. The surface stress

causes small particles to be in a state of compression

where the internal pressure is inversely proportional to the

radius of the particle. Figure 1.6 demonstrates a plot of the

measured decrease in the lattice parameter of copper

versus the diameter in angstroms. Notice that the changes

don’t occur until the diameter reaches a very small value of

0.9 nm. In the case of gold, measurements show that at 3.5 

nm the lattice parameter has decreased to 0.36% of the

bulk value. In aluminum, significant changes are not

observed until the particle size is below 1.8 nm. In the

discussion of models of the electronic properties of metals

in the following section, it will be assumed that the lattice



parameter is not significantly dependent on particle sizes

for values greater than 4 nm. As will be seen, the number of

atoms in a metal nanoparticle has a much more significant

influence on the electronic structure.

FIGURE 1.6 Measured lattice parameter of copper versus

particle size.

(Reprinted with permission from Ref. [2]. © 1986 by the American Physical

Society.)

Metals conduct electricity because the outer electrons of

the atoms of the solid are delocalized and hence free to

move about the lattice. This makes the development of a

theory of binding energy of metals a bit more complex than

for ionic or covalent solids. Because the outer electrons of

the atoms can be itinerant, the atoms can be considered to

be positively charged. The binding energy of a metal can be

treated as arising from the Coulomb interaction of a lattice

of positive ions embedded in a sea of negative conduction
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electrons. One relatively simple model is to consider the

binding energy to be the interaction of a positive point

charge e with a negative charge −e distributed uniformly

over a sphere of radius R0 and volume V0 equal to the

atomic volume. The cohesive energy on this simple model

can be shown to be [3]

where Ef is the Fermi level, the top occupied energy level,

of the metal nanostructure. One would not expect the

atomic volume to change significantly with reduced size,

and thus, the first term in Equation 1.3 will not change

much with nanosizing. In the next section, it will be shown

that the magnitude of the Fermi energy Ef increases as the

particle size is reduced. From Equation 1.3, this implies

that the cohesive energy of metals decreases as the particle

size decreases in the nanometer regime. However, this

decrease will not happen until the particle size is quite

small.

Solids such as silicon are covalently bonded, meaning that

the bonding involves overlap of the wave functions of

nearest neighbors. Reduction in particle size would lead to

a decrease in the binding energy. Figure 1.7 shows a plot of

the calculated binding energy per monomer as a function of

the length of a polyacetylene polymer in the nanometer

range. Polyacetylene is a chain of covalently bonded

monomers, C2H2. The binding energy of the monomer in

the chain is given by

where BEpa is the binding energy of the polymer, BEmonomer

is the binding energy of the monomer, and n is the number



of monomers in the chain.

FIGURE 1.7 Density functional calculation of binding

energy per monomer, C2H2, of the linear chain polymer,

polyethylene versus polymer length.

(Adapted from Ref. [4].)

Generally, the interaction between the constituents of

organic crystals is a dipole–dipole potential, which depends

on their separation as 1/R3. Because of its short range, the

crystals would have to be quite small to affect the lattice

parameter. The potential describing the interaction

between atoms in inert gas solids is the Lennard–Jones

potential, which has a 1/R6 dependence on the atomic

separation, meaning that the reduction in the size of the

crystal to nanometers will have little effect on the cohesive

energy. However, there have been no experimental studies

of the effect of size on the lattice parameters of organic or

inert gas solids.
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1.2 ELECTRONIC PROPERTIES

One of the simplest models of the electronic structure of

metals treats the conduction electrons as though they see

no potential at all, but are confined to the volume of the

solid. The model is best applicable to monovalent metals

such as lithium, sodium, or potassium, where the ion cores

only occupy about 15% of the volume of the solid. The

energies are obtained by solving the Schrödinger wave

equation for V(r) = 0, with boundary conditions. For the

case of a one-dimensional system, the wave equation has

the form

where Ψn is the wave function of the electron in the nth

state and En is the energy. The boundary conditions for a

one-dimensional lattice of length L are

The eigenvalues obtained by solving Equation 1.5 are [3]

where n is a quantum number having integer values 0, 1, 2,

3,…, etc.

Equation 1.7 is useful in understanding how the electronic

structure of metals is affected when the dimensions are

nanometers. The separation between the energy levels of

state n and n + 1 is
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(1.10)

It is seen from Equation 1.8 that as the length of the chain,

L, decreases, the separation between energy levels

increases, and eventually, the band structure opens up into

a set of discrete levels. This also means that the density of

states, the number of energy levels per interval of energy,

will decrease with size. When the energy levels are filled

with electrons, only two electrons are allowed in each level

because of the Pauli exclusion principle. These two

electrons must have different spin quantum numbers ms of

+1/2 and −1/2, meaning that the two electron spins in each

level n are antiparallel and there is no net spin in the level.

The Fermi energy is the energy of the top filled level, which

for a monovalent metal will have the quantum number nf =

N/2 where N is the number of atoms in the solid. Thus, for

the one-dimensional solid, the Fermi energy is obtained

from Equation 1.7 to be

In a manner analogous to the derivation of Equation 1.9 for

the Fermi level in one dimension, the Fermi level in the free

electron model of metals in three dimensions is obtained to

be

Figure 1.8 demonstrates a calculation of the relative

change of the Fermi level for the face-centered copper

lattice versus diameter. The plot shows that the Fermi level



does not increase significantly until the particle size is

quite small, less than 2.5 nm for copper.

FIGURE 1.8 Calculation of the relative shift of the Fermi

level for copper versus particle diameter.

An important property of solids is the density of states, that

is, the number of energy levels per interval of energy given

by D(E) = dN/dE. The density of states determines a

number of properties of solids such as the electronic

specific heat and the magnetic susceptibility arising from

the conduction electrons. The density of states depends on

the dimensionality of the material. For a wire, a one-

dimensional material, the density of states can be

calculated from Equation 1.7 and has the form 1/2 C1E−1/2.

For two dimensions, a well, the density of states can be

shown to be D(E) = C, and for three dimensions, D(E) =

C3E1/2. Thus, we see that the density of states of a material



depends on its dimensions. Figure 1.9 gives a plot of the

density states for the different dimensions.

FIGURE 1.9 Plot of the density of states versus energy

based on the free electron model of metals for structures

having one, two, and three dimensions of nanometer

length.

The band gap of a material is the energy separation

between the top filled energy level and the first unfilled

level. One way to measure the effect of nanosizing on the

band gap of a nanosized semiconductor is to measure the

absorption of light as a function of the wavelength for

different particle sizes. An absorption will occur when the

energy of the photon of the light is equal to or greater than

the band gap. When this happens, an electron is excited

from the valence band to the conduction band and light

energy is absorbed. Nanosized cadmium selenide is a

semiconductor. Figure 1.10 illustrates a plot of the

measured band gap of cadmium selenide versus the inverse



square of the particle radius showing a nearly straight line

dependence. A nanowire is a nanostructure in which two

dimensions have nanometer size, and the other is large,

generally greater than microns. Figure 1.11 shows the

result of the measurement of the band gap of a silicon

nanowire versus its diameter, showing the band gap

increasing as the diameter of the wire is reduced.

FIGURE 1.10 Band gap of CdSe versus inverse square of

particle radius.

(Adapted from Ref. [5].)



FIGURE 1.11 Measured band gap of silicon nanowire

versus diameter in nanometers

(Adapted from Ref. [6].)

1.3 QUANTUM DOTS

Semiconductors are materials having small band gaps

typically ranging from 2.5  to 0.18 eV such that an electron

at higher temperatures can be excited from the valence

band to the conduction band providing a source of charge

carriers for current. For example, silicon, which is widely

used in transistor devices, has four valence electrons that

are shared in covalent bonds with four neighboring silicon

atoms in the lattice. The electronic structure of the lattice

is determined by this covalent bonding. Thus, Equations

1.6, 1.7, 1.8, 1.9, and 1.10 cannot be used to describe the

electronic structure of bulk semiconductors. There is one

situation where similar equations can be used to describe
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the energy levels. This is at the size where quantum

confinement occurs. As the dimensions of wires, wells, and

dots are decreased, there is a size where the separation of

the surfaces of the particles is in the order of the

wavelength of the charge carriers. The charge carriers are

said to be confined, and the effect is referred to as the

quantum size effect. At these sizes, the structures in Figure

1.1 are referred to as quantum wires, wells, and dots. At

this size, the energy levels of the structures are not

determined by the chemical nature of the atoms of the

material but by the dimensions of the structure. It is

interesting to note that the quantum size effect occurs in

semiconductors at larger sizes because of the longer

wavelength of conduction electrons and holes in

semiconductors due to the larger effective mass. In a

semiconductor, the wavelength can be as long as 1 µm,

whereas in a metal, it is in the order of 0.5 nm.

A simple model that exhibits the principal characteristics of

such a potential well is a square well in which the boundary

is very sharp or abrupt. Square wells can exist in one, two,

three, and higher dimensions, and for simplicity, a one-

dimensional case will be considered.

Standard quantum mechanical texts show that for an

infinitely deep square potential well of width, a, in one

dimension, the coordinate x has the range of values −½(a) 

≤ x ≤ ½(a) inside the well, and the energies there are given

by the expressions



(1.12)

where E0 = h2/2ma2 is the ground state energy and the

quantum number n assumes the values n = 1, 2, 3,…. The

electrons that are present fill up the energy levels starting

from the bottom, until all available electrons are in place.

An infinite square well has an infinite number of energy

levels, with ever-widening spacings as the quantum number

n increases. If the well is finite, then its quantized energies

En are smaller than the corresponding infinite well

energies, and there are only a limited number of them.

Figure 1.12 illustrates the case for a finite well of potential

depth V0 = 7E0, which only has three allowed energies. No

matter how shallow the well, there is always at least one

bound state E0. For the case of a cubic quantum dot having

edges of length, a, the energy levels will be



FIGURE 1.12 Energy levels of a finite potential well.

Quantum dots such as the cubic dot, having energy levels

given by the above equation, have been developed into one

of the major applications of nanotechnology. The quantum

dot laser is used in CD players to read the groves on the

disk. The separation between the levels in the dot can be

chosen by the value of a in Equation 1.12. There is a value

of a in which the separation of the energy levels from the

conduction band can be in the infrared (IR) frequency

range. This means an IR photon can excite an electron to

the conduction band and application of a voltage produces

a current. This is the basis for the use of the quantum dot

as an IR detector. It is possible with appropriate excitation

to produce a population inversion in the energy levels of

the dot. This means that one of the upper levels has more

electrons than a lower level, which is necessary to produce

laser light.



1.4 VIBRATIONAL PROPERTIES

The constituents of a solid lattice vibrate. The specific

frequencies, called the normal modes of vibration, are

determined by the nature of the interaction between

constituents of the lattice and the symmetry of the lattice.

The vibrational frequencies of solids can be measured by IR

spectroscopy and Raman spectroscopy. IR spectroscopy

measures the absorption of IR light when it induces a

transition from the N = 0 vibrational state to the N = 1

state. The basis of Raman spectroscopy is illustrated in

Figure 1.13. Laser light is used to excite the lowest energy

level of a vibration to some higher level. The higher level

excited state then decays back to the lowest level.

However, some of decay goes to a vibrational state above

the ground state. The frequency of this emitted light is

measured, and the difference between the frequencies of

exciting laser light and the emitted light measures the

vibrational frequency. When solids are reduced to

nanometer dimensions, the frequencies generally decrease.

Figure 1.14 shows a plot of the decrease in the frequency

of the longitudinal optical mode of silicon as a function of

particle size measured by Raman spectroscopy. There are

two reasons for this decrease. It is seen earlier that the

lattice parameter generally increases as the particle size

decreases. This weakens the interaction between the

constituents of the lattice and thus causes a lowering of the

frequencies. The other reason for the decrease is phonon

confinement, a process similar to electron confinement

discussed earlier. This occurs when the dimensions of the

solid are in the order of the wavelength of the lattice

vibrations. The uncertainty principle can be used to explain

phonon confinement.



FIGURE 1.13 Illustration of excitation and emission of

light from vibrational energy levels providing the basis of

Raman spectroscopy.
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FIGURE 1.14 Plot of the frequency of the longitudinal

optical mode of silicon versus the particle size measured by

Raman spectroscopy.

(Adapted from Ref. [7].)

The uncertainty principle says that the order of magnitude

of the uncertainty in position ΔX times the order of

magnitude of the uncertainty in momentum ΔP must at

least be Planck’s constant, h, divided by 2π, that is,

Let us assume that ΔX is the diameter of the nanoparticle,

D, and that it can be measured accurately by some

technique such as scanning electron microscopy. This

means the uncertainty in the momentum P will have a

range of values. It can be shown that the momentum of a

phonon is hk/2π where k is the wave vector given by ω/c
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and c is the velocity of light. Thus, we have DΔk ≥ 1 or the

minimum uncertainty in k is

Raman spectroscopy measures frequencies at the center of

the Brillouin zone, k = 0.

However, that is a precise value that Equation 1.14 shows

has some uncertainty, meaning that there is a spread of

values for k for a Raman measurement in small particles.

This means nonzero values of k will contribute to the

Raman spectrum. Let us assume that for small values of k,

the dependence of the frequency on k, that is, the

dispersion relationship, is quadratic:

From this, it follows that

where C is a constant. Thus,

However, if the dependence of the frequency on k is other

than k2, say kγ , then the dependence of the frequency shift

on particle diameter will be 1/Dγ , which is what is

observed with γ ranging from 1 to 1.5 depending on the

material.

The vibrational density of states D(ω) is the number of

vibrational modes per interval of frequency, dN/dω. For a
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one-dimensional line having N atoms, the number of

vibrational modes is N. For a three-dimensional lattice, it is

3N. The normal modes may be considered a set of

independent oscillators with each oscillator having the

energy εn given by

where n is a quantum number having integral values

ranging from 0, 1, 2,… to n.

The average energy of a harmonic oscillator assuming a

Maxwell–Boltzmann distribution function is

The total energy of a collection of oscillators is

When there is a large number of atoms, the allowed

frequencies are very close and can be treated as a

continuous distribution allowing replacement of the

summation by an integral, where D(ω)dω is the number of

modes of vibration in the range ω to ω + dω. It turns out it

is more convenient to work in k space and deal with the

number of modes D(k)dk in the interval k to k + dk. As

shown in Figure 1.15, the number of values of k in three

dimensions between k and k + dk will be proportional to the

volume element on a sphere of radius k, which is given by


