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Preface

i-Smooth analysis is the branch of functional analysis, that considers 
the theory and applications of the invariant derivatives of functions and 
functionals. 

Th e present book includes two parts of the i-smooth analysis theory. 
Th e fi rst part presents the theory of the invariant derivatives of functionals. 

Th e second part of the i-smooth analysis is the theory of the invariant 
derivatives of functions. 

Until now, i-smooth analysis has been developed mainly to apply to the 
theory of functional diff erential equations. Th e corresponding results are 
summarized in the books [17], [18], [19] and [22].

Th is edition is an attempt to present i-smooth analysis as a branch of the 
functional analysis.

Th ere are two classic notions of generalized derivatives in mathematics: 

a) Th e Sobolev generalized derivative of functions [34], [35]; 
b) Th e generalized derivative of the distribution theory [32]. 

In works [17], [18], [19] and [25] the notion of the invariant derivative 
(i-derivative) of nonlinear functionals was introduced, developed the cor-
responding i-smooth calculus of functionals and showed that for linear 
continuous functionals the invariant derivative coincides with the general-
ized derivative of the distribution theory.

Th e theory is based on the notion and constructions of the invariant 
derivatives of functionals that was introduced around 1980.

Beginning with the fi rst relevant publication in this direction there arose 
two questions:

Question A1: Is it possible to introduce a notion of the invariant derivative 
of functions?

Question A2: Is the invariant derivative of functions concerned with the 
Sobolev generalized derivative?
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Th is book arose as a result of searching for answers to the questions A1 
& A2: there were found positive answers on both these questions and the 
corresponding theory is presented in the second part.

Another question that initiated the idea for this EDITION was the 
following

Question B: Does anything besides a terminological and mathematical 
relation between the Sobolev generalized derivative of functions and the gen-
eralized derivative of distributions?

At fi rst glance the question looks incorrect, because the fi rst derivative 
concerns the fi nite dimensional functions whereas the second one applies 
to functional objects (distributions – linear continuous functionals).

Nevertheless as it is shown in the second part the answer to the 
question  B came out positive: the mathematical relation between both gen-
eralized derivatives can be established by means of the invariant derivative.

One of the main goals writing this book was to clarify the nature of 
the invariant derivatives and their status in the present system of known 
derivatives. By this reason we do not pay much attention to applications of 
the invariant derivatives and concentrate on developing the theory.

Th e edition is not a textbook and is assigned for specialists, so state-
ments and constructions regarding standard mathematical courses are 
used without justifi cation or additional comments. Proofs of some new 
propositions contain only key moments if rest of the details are obvious.

Th ough the edition is not a textbook, the material is appropriate for 
graduate students of mathematical departments and be interesting for 
engineers and physicists. Th roughout the book generally accepted nota-
tion of the functional analysis is used and new notation is used only for the 
latest notions.

Acknowledgements. At the initial stage of developing the invariant 
derivative theory the support of the professor V. K. Ivanov had been very 
important for me: during personal discussions and at his department sem-
inars of various aspects of the theory were discussed. Because of his recom-
mendations and submissions my fi rst works on the matter were published.

At the end of the 1970-s and the beginning of the 1980-s, many ques-
tions were cleared up in discussions with my friends and colleagues: 
PhD-students Alexander Babenko, Alexander Zaslavskii and Alexander 
Ustyuzhanin. Th eory of numerical methods for solving functional dif-
ferential equations (FDE) based on i-smooth analysis was developed in 
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cooperation with Dr. V. Pimenov1.
Th e attention and support of professor A. D. Myshkis was important to 

me during a critical stage of i-smooth analysis development.
I am thankful to Dr. U. A. Alekseeva, professor V. V. Arestov, profes-

sor A. G. Babenko, professor Neville J. Ford for their familiarization 
with the preliminary versions of the books and useful comments and 
recommendations.

Th e author is thankful to a book editor for the great work on book 
improvement and to A. V. Ivanov for preparation of the printing version 
of the book.

Research was supported by the Russian Foundation for Basic Research 
(projects 08-01-00141, 14-01-00065, 14-01- 00477, 13-01-00110), the pro-
gram “Fundamental Sciences for Medicine” of the Presidium of the Russian 
Academy of Sciences, the Ural-Siberia interdisciplinary project.

1 Th e author developed a general approach to elaborating numerical methods for FDE and Dr. V. 

Pimenov developed complete theory, presented in the second chapter of this book
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Chapter 1

The invariant derivative
of functionals

In this chapter we consider the basic constructions of non-
linear i-smooth calculus of nonlinear on C[a, b] functionals.

A study of nonlinear mappings can be realized by local
approximations of nonlinear operators by linear operators.
Corresponding linear approximations are called derivatives
of nonlinear mappings. Depending on the form of linear
approximations of various types of derivatives can be in-
troduced. Further

C[a, b] is the space of continuous functions φ(·) : [a, b]→
R with the norm ‖φ(·)‖C = max

a≤x≤b
‖φ(x)‖ ;

Ck[a, b] is the space of k–times continuous differentiable
functions φ(·) : [a, b]→ R ;

C∞[a, b] is the space of infinitely differentiable functions
φ(·) : [a, b]→ R .

1 Functional derivatives

In the general case a derivative of a mapping

f : X → Y (1.1)
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(X & Y are topological vector spaces) at a point x0 ∈ X
is a linear mapping

f ′(x0) : X → Y (1.2)

which approximates in an appropriate sense the difference

f(x0 + h)− f(x0) (1.3)

by h. Subject to the specific form of difference approx-
imation difference(1.3) one can obtain various notions of
derivatives.
Consider the classic derivatives of functionals 1

V [·] : C[a, b]→ R . (1.4)

1.1 The Frechet derivative

The Frechet derivative (strong derivative) of the functional
(1.4) at a point φ(·) ∈ C[a, b] is a linear continuous func-
tional

Lφ[·] : C[a, b]→ R , (1.5)

satisfying the condition

V [φ+ ψ] = V [φ] + Lφ[ψ] + o(ψ) , (1.6)

where lim
‖ψ‖C→0

‖o(ψ)‖C
‖ψ‖C = 0 .

If there exists a functional L, satisfying the above con-
ditions, then it is denoted by ψ → V ′[φ]ψ and is called the
Frechet differential.

1.2 The Gateaux derivative

The Gateaux derivative of the functional (1.4) at a point
φ ∈ C[a, b] is a linear mapping V ′

Γ[φ] : C[a, b] → R, satis-
fying the condition

V [φ+ ψ]− V [φ] = V ′
Γ[φ]ψ + ε(ψ) , (1.7)

where lim
t→0

ε(t ψ)

t
= 0 .

1Complete theory see for example in [16], [28].
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2 Classification of functionals on C[a, b]

Many specific classes of functionals have integral forms.
The investigation of such integral functionals formed the
basis of the general functional analysis theory.
Along with integral functionals (which are called reg-

ular functionals) beginning with the works of Dirac and
Schwartz mathematicians we generally use singular func-
tionals among which the first and most well known is the
δ–function.
Further as a rule integrals are understandood in the Rie-

mann sense 2.

2.1 Regular functionals

Analysing the structure of specific functionals one can sin-
gle out basic (elementary) types of integral functionals on
C[a, b] :

V [φ] =

b∫
a

α[φ(x)] dx , (2.1)

V [φ] =

b∫
a

β[x, φ(x)] dx , (2.2)

V [φ] =

b∫
a

β[x,

b∫
x

φ(ξ) dξ ] dx , (2.3)

V [φ] =

b∫
a

b∫
a

ω[φ(x), φ(ξ)] dx dξ , (2.4)

α : R → R, β : [a, b] × R → R, ω : R × R → R are
continuous functions.

2In some examples we use the Stilties integral.
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Special classes of regular functionals can be constructed
using the Stilties integral:

W [φ] =

b∫
a

β[x, φ(x)] dλ(x) ,

W [φ] =

b∫
a

α(ν,

b∫
ν

β[x, φ(x)] dx) dλ(ν) ,

where β : [−τ, 0] × Rn → R are continuous functions,
λ : [−τ, 0]→ R is a function with bounded variation.

2.2 Singular functionals

Functionals of the form

V [φ] = P (φ(ζ)), φ ∈ C[a, b], (2.5)(
P (·) : R → R, ζ ∈ (a, b)

)
are called the singular func-

tionals. For example:

V [φ] = φ

(
a+ b

2

)
(2.6)

is the singular functional.
Another example of the singular functional is the fol-

lowing
V [φ] = max

a≤x≤b
‖φ(x)‖ . (2.7)

3 Calculation of a functional along a line

3.1 Shift operators

Consider the procedure of calculation of the functional
(1.4) along a continuous curve (function) 3 γ(y), y ∈ R.

3Without loss of generality we assume that the curve has infinite length (i.e.
is defined on R).
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We have to consider the segment{
γ(x+ y) , a ≤ x ≤ b

}
of the function as the element of the space C[a, b]. Such
representation is called the segmentation principle and al-
lows one switch from the line γ(y) to the set of continuous
functions

Tyγ ≡
{
γ(x+ y) , a ≤ x ≤ b

}
. (3.1)

The corresponding operator Ty is called the shift operator.
For the shift operator we also use the notation γy = Tyγ.

Remark 3.1 One can introduce two types of shift opera-
tors:
a) r-shift operator (right shift operator)

T+
y γ ≡

{
γ(x+ y) , a ≤ x ≤ b

}
; (3.2)

b) l-shift operator (left shift operator)

T−
y γ ≡

{
γ(x− y) , a ≤ x ≤ b

}
. (3.3)

�

Remark 3.2 We usually use the right shift operator T+
y .

So if there can be no misunderstanding we, as a rule, omit
the sign ”+”, and write Ty instead of T

+
y . �

3.2 Superposition of a functional and a function

The function (1.4) calculated along the curve γ(y) is the
function

v(y) = V [Tyγ] , y ∈ R , (3.4)

i.e. the superposition of the functional V and the shift
operator Tyγ.
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3.3 Dini derivatives

For investigating properties of the functional (1.4) one can
use Dini derivatives of the functional (1.4) along the func-
tion γ(y):

D+V [Tyγ] ≡ lim sup
Δy→0

V [Ty+Δyγ]− V [Tyγ]

Δy
, (3.5)

D−V [Tyγ] ≡ lim inf
Δy→0

V [Ty+Δyγ]− V [Tyγ]

Δy
. (3.6)

If (3.4) is the differentiable function then

D+V [Tyγ] = D−V [Tyγ] = v̇(y) .

4 Discussion of two examples

4.1 Derivative of a function along a curve

Consider a differentiable function g(x) : R → R and a
smooth curve4 x = γ(y), y ∈ R. The derivative of the
superposition

w(y) = g(γ(y)), y ∈ R , (4.1)

by the rule of differentiation of a superposition can be cal-
culated as

ẇ(y) =
dg(x)

dx

∣∣∣∣
x=γ(y)

γ̇(y) , y ∈ R. (4.2)

In applications and concrete examples as a rule elemen-
tary functions or their combinations are usually used. The
derivatives of these functions can be calculated apriori. In
this case for calculating derivative of a function g(x) along
the curve γ(y) one can formally substitute γ(y) into before-

hand calculated function (derivative)
dg(x)

dx
, and multiply

the obtained expression by γ̇(y).
4which is also a smooth function.
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4.2 Derivative of a functional along a curve

Calculation of the Dini derivative by the definition (see.
paragraph 3.3) requires calculating the functional (1.4)
along the curve γ, while for calculating derivative of the
differentiable function g(x) along the curve one can use
the formula (4.2) which does not require calculating the
function along the curve.
One can state the following question: can we calculate

the derivative of the functional (1.4) along the curve γ by
the analogy with the elementary function g? In other words
consider the following

Question C: Is it possible define apriori a derivative
∂V of the functional (1.4) and obtain the derivative of the
functional V along the function γ substituting γ into ∂V ?
�

Example 4.1 Let us calculate the derivative of the func-
tional

V [φ] =

b∫
a

α[φ(x)] dx, φ ∈ C[a, b] , (4.3)

along a curve x = γ(y), y ∈ R (here α : R → R is a
continuous function). The functional (4.3) calculated along
the curve γ is the function

v(y) ≡ V [Tyγ] =

b∫
a

α[γ(y + x)] dx , (4.4)

The function (4.4) is differentiable and its derivative is

dV [Tyγ]

dy
=

d

dy

b∫
a

α[γ(y + x)] dx =
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=
d

dy

y+b∫
y+a

α[γ(x)] dx = α[γ(y + b)]− α[γ(y + a)] . (4.5)

Let us consider the functional

∂V [φ] = α[φ(b)]− α[φ(a)] , φ ∈ C[a, b] , (4.6)

Then obviously
v̇(y) = ∂V [Tyγ] . (4.7)

Hence the derivative of the functional (4.3) along the
curve γ coincides with the functional (4.6) calculated along
the curve γ. �

Further the functional (4.7) is called the invariant
derivative of the functional (4.3).

Example 4.2 Calculating the singular functional (2.6)
along the curve γ. We obtain the superposition

v(y) ≡ V [Tyγ] = γ

(
y +

a+ b

2

)
. (4.8)

The function v(y) is differentiable if γ(y) is the smooth
(differentiable) curve. In this case

dV [Tyγ]

dy
= v̇(y) = γ̇

(
y +

a+ b

2

)
. (4.9)

Consider the functional

∂V [φ] = φ̇

(
a+ b

2

)
, φ ∈ C[a, b] , (4.10)

Then
v̇(y) = ∂V [Tyγ] . (4.11)

Hence the derivative of the functional (2.6) along the
curve γ coincide with the functional (4.10) calculated along
γ. �
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5 The invariant derivative

5.1 The invariant derivative

In this section we give rigorous definition of the invariant
derivative of the functional (1.4).
For φ ∈ C[a, b] and κ > 0 denote by

Eκ[φ] ≡
{
Φ ∈ C[a− κ, b+ κ]

∣∣∣∣∣ Φ(x) = φ(x), x ∈ [a, b]
}

the set of continuous extensions of the function φ, and by

[TyΦ](x) = Φ(x+ y) , a ≤ x ≤ b ∈ C[a, b] ,

the shift operator of a function Φ ∈ Eκ[φ] (i.e. contraction
of the function Φ on the interval [a + y, b + y]). At that
TΦ ∈ C[a, b], y ∈ [−κ, κ].
Definition 5.1 A functional V : C[a, b] → R has at a
point φ ∈ C[a, b] the invariant derivative ∂V [φ], if for any
Φ ∈ Eκ[φ] the corresponding function

vΦ(y) = V [TyΦ] , y ∈ [−κ, κ], (5.1)

has at the zero finite derivative v̇Φ(0) invariant with respect
to functions Φ ∈ Eκ[φ], i.e. the value v̇Φ(0) of this deriva-
tive is the same for all Φ ∈ Eκ[φ]. In this case

∂V [φ] = v̇Φ(0). (5.2)

�

Note that the invariant derivative does not depend on
the value κ > 0 because it is defined as the limit.
If a functional V has at a point φ ∈ C[a, b] the invariant

derivative, then we say that V is invariantly differentiable
(i-differentiable) at the point φ. Operation of calculating
the invariant derivative is called i-differentiation (invariant
differentiation).
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Example 5.1 Consider the linear on C[a, b] functional

V [φ] =

b∫
a

φ(x) dx , (5.3)

and fix arbitrary φ ∈ C[a, b] and Φ ∈ Eκ[φ]. The corre-
sponding function vΦ(y) = V [TyΦ] has the form

vΦ(y) ≡
b∫

a

Φ(y + x) dx =

y+b∫
y+a

Φ(x) dx ,

Its derivative at the point y = 0 has the form

dvΦ(y)

dy

∣∣∣∣
y=0

=

⎛
⎝ d

dy

y+b∫
y+a

Φ(x) dx

⎞
⎠

y=0

=

= Φ(b)− Φ(a) = φ(b)− φ(a)

and is invariant with respect to Φ ∈ Eκ[φ]. Thus the in-
variant derivative of the functional (5.3) is

∂V [φ] = φ(b)− φ(a) . (5.4)

�

This example shows that the invariant derivative dif-
fers from the Frechet derivative (the Gateaux derivative)
because the Frechet derivative of a linear continuous func-
tional coincides with the functional.

5.2 The invariant derivative in the class B[a, b]

Continuity of a function φ ∈ C[a, b] and as the consequence
of continuity of Φ ∈ Eκ[φ] can be insufficient for differen-
tiability of the function vΦ(y) (for instance in the example
4.2, if γ is not the smooth curve). Therefore in this sec-
tion we introduce the notion of the invariant derivative in
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a class of functions B[a, b], where B[a, b] is a space of suf-
ficiently smooth functions, for example C1[a, b], C∞[a, b],
etc.
For φ ∈ B[a, b] , κ > 0 denote

Êκ[φ] ≡ { Φ : [a− κ, b+ κ]→ R

∣∣∣∣ TyΦ ∈ B[a, b]

y ∈ [−κ, κ]; T0Φ = φ

}
.

Definition 5.2 A functional

V [·] : B[a, b]→ R (5.5)

has at a point φ ∈ B[a, b] the invariant derivative ∂V [φ] in

the class B[a, b], if for any Φ ∈ Êκ[φ] the function

vΦ(y) = V [TyΦ], y ∈ [−κ, κ] , (5.6)

has at the point y = 0 the derivative v̇Φ(0) invariant with

respect to functions Φ ∈ Êκ[φ]. �
The invariant derivative in the class B[a, b] is also called

B-invariant derivative, for example, C1-invariant deriva-
tive in case of B[a, b] = C1[a, b].

For B[a, b] = Cm[a, b] the set Êκ[φ] is denoted by

E
(m)
κ [φ].

5.3 Examples

Example 5.2 We already noted in the example 4.1 that
the derivative of the functional (2.1) has along the curves
the invariance property. Let us calculate the invariant
derivative of this functional by the definition 5.1; We as-
sume that α : [a, b]→ R is a continuous function.
Fix arbitrary functions φ ∈ C[a, b] and Φ ∈ Eκ[φ]. For

the functional (2.1) the corresponding function vΦ(y) =
V [TyΦ] has the form

vΦ(y) ≡
b∫

a

α[Φ(y + x)] dx =

y+b∫
y+a

α[Φ(x)] dx ,
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and its derivative

dvΦ(y)

dy

∣∣∣∣
y=0

=

⎛
⎝ d

dy

y+b∫
y+a

α[Φ(x)] dx

⎞
⎠

y=0

=

= α[Φ(b)]− α[Φ(a)] = α[φ(b)]− α[φ(a)]

is invariant with respect to Φ ∈ Eκ[φ]. Therefore the func-
tional

∂V [φ] = α[φ(b)]− α[φ(a)] (5.7)

is the invariant derivative of the functional (2.1). �
Example 5.3 Let in the functional

V [φ] =

b∫
a

α

⎡
⎣ b∫
ξ

β[φ(x)] dx

⎤
⎦ dξ (5.8)

α : R → R is a continuous differentiable function, β :
Rn → R is a continuous function.
To calculate the invariant derivative of the functional V

at a point φ ∈ C[a, b] let us fix a function Φ ∈ Eκ[φ] and
consider

vΦ(y) ≡
b∫

a

α
[ b∫
ξ

β[Φ(y + x)] dx
]
dξ =

=

b∫
a

α
[ y∫
ξ+y

β[Φ(x)] dx
]
dξ .

Calculate the derivative

dvΦ(y)

dy

∣∣∣∣
y=0

=
d

dy

( b∫
a

α
[ y∫
ξ+y

β[Φ(x)]ds
]
dξ
)
y=+0

=

= β[Φ(b)]

b∫
a

α̇
[ b∫
ξ

β[Φ(x)] dx
]
dξ−


