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Preface

This book aims to provide a comprehensive introduction to the theory and applications
of the mechanics of transversely isotropic elastic materials. There are many reasons
why it should be written. First, the theory of transversely isotropic elastic materials is
an important branch of applied mathematics and engineering science; but because of the
difficulties caused by anisotropy, the mathematical treatments and descriptions of
individual problems have been scattered throughout the technical literature. This often
hinders further development and applications. Hence, a text that can present the theory
and solution methodology uniformly is necessary.

Secondly, with the rapid development of modern technologies, the theory of
transversely isotropic elasticity has become increasingly important. In addition to the
fields with which the theory has traditionally been associated, such as civil engineering
and materials engineering, many emerging technologies have demanded the
development of transversely isotropic elasticity. Some immediate examples are thin film
technology, piezoelectric technology, functionally gradient materials technology and
those involving transversely isotropic and layered microstructures, such as multi-layer
systems and tribology mechanics of magnetic recording devices. Thus a unified
mathematical treatment and presentation of solution methods for a wide range of
mechanics models are of primary importance to both technological and economic
progress.

The authors aim to achieve a systematic structure for this complex subject in a single
volume and provide the reader with state-of-the-art solution strategies for transversely
isotropic elasticity under a unified umbrella. The subject matter has been organized into
ten chapters to incorporate fundamental theories, solution skills and applications into an
organic whole.

Chapter 1 begins with a concise summary of the basic equations of anisotropic
elasticity used in the book, including thermo-elasticity. The materials presented here
construct the framework for the theories and solutions of transversely isotropic
problems.

The success of solutions relies largely on the strategies and mathematical treatments.
Chapter 2 is therefore arranged to explain the basic methodologies for obtaining the
general elastic solutions of transversely isotropic materials. In this way, the reader
becomes clearer about the specific approaches for individual mechanics models in the
later chapters.

Point force solutions are fundamental in solving various problems. Hence, Chapter 3
is devoted to establishing the relevant basics using a unified method that avoids the



Xii Preface

existing confusions in the literature. Meanwhile, this chapter focuses on infinite body
problems and serves as an introduction to solution skills for more complex cases.

With the understanding gained and theory developed in the previous chapters,
Chapters 4 to 10 discuss the solution of complicated engineering problems, including
half-spaces, layered media, cones, thermal stress, frictional contact and bending,
vibration and stability of plates and shells. These provide the reader not only with
specific methods for tackling mathematical systems involving transverse isotropy, but
also the fundamental solutions that can be extended to more complex situations.

This book is suitable for engineers, designers, researchers and postgraduates who are
interested in the solution of transversely isotropic elastic materials. The authors believe
that the reader who takes time to study this book will find ample reward.

The first author is indebted to Professor Hu Haichang, who introduced him to the
field of elasticity and has offered invaluable help and guidance for many years. The
authors appreciate very much the valuable comments and suggestions made by
Professor Graham Gladwell. The financial support from the National Natural Science
Foundation of China, Natural Science Foundation of Zhejiang Province as well as the
151 Talent Project of Zhejiang Province are very much appreciated. Finally, the authors
wish to thank their families for their assistance; without their encouragement the book
would never have been completed.

Haojiang DING, Weiqiu CHEN
Hangzhou, P. R. China

Liangchi ZHANG
Sydney, Australia

March 2005



BASIC EQUATIONS OF
ANISOTROPIC ELASTICITY

This chapter introduces the basic equations of anisotropic elasticity which are essential
for solving transversely isotropic elasticity problems. For simplicity, we ignore the
mathematical details of deriving these equations; the reader can find them in the relevant
references provided in Appendix A.

1.1 TRANSFORMATION OF STRAINS AND STRESSES

Consider an anisotropic and ideally elastic continuous solid subjected to small
deformation. Assume that the solid is free of stress before deformation. The stress-strain
relationship in this case is linear, i.e., it follows the generalized Hooke’s law. If the solid
is homogeneous, the coefficients in the stress-strain relationship are constant, but if it is
inhomogeneous, they will vary because the elastic properties at different points in the
solid are different; they will be functions of the coordinates.

We can use various coordinate systems when studying the stresses and strains in a
solid generated by external loading. In this book, we use a Cartesian coordinate system,
(x, v, ), a cylindrical coordinate system, (r,a,z) or a spherical coordinate system,
(R, 8, ). There are simple relationships between these coordinates, as listed in Tables
1.1 and 1.2, where angle & (0 < <2x) is measured from the positive direction of the
x-axis to that of the y-axis, and angle 8 (0<8 <) is measured from the positive
direction of the z-axis to the negative direction of the same axis.

Correspondingly, we use (u,v,w), (u,,u,,w) or (up,u,,u,), respectively, to

denote the displacements at a point in the solid in Cartesian, cylindrical or spherical
coordinate systems. In tensor form, the displacements will be written as u, (i=1, 2, 3),
but in matrix form, we write them as {u}=[u,v, w]", [ur,ua,w]T or [MR,ug,ua]T,

respectively, here the superscript T stands for transpose.



2 Chapter 1 Basic Equations of Anisotropic Elasticity

Table 1.1 Direction cosines between coordinate axes in Cartesian and cylindrical coordinates.

X )y z

» cosa sin¢ 0
—sino cosa 0

z 0 0 1

Table 1.2 Direction cosines between coordinate axes in Cartesian and spherical coordinates.

X )y z
R sinfcoso sin #sin & cosé
6 cosf@cosa cosfsina —siné
o —sino cosa 0

In the three coordinate systems, the stresses and strains can be written, respectively, as

o, 1, T £ Ve e
7, o, 7. ad |1y, £ 17, |,
T 7. O Ve 3V &

O T T & e T
T o az |° and % rot & %yaz >
v Tw O Vo e E
Or Tre Ter 1 &y % Vo %%m
TRH O.B TH{I H and %}/Ré‘ ‘% %}/ﬁa ’
TaR TH{I O-rx i % %xk % %90( gaf

where . are the engineering shear strains and have the relationship,

v, =2¢; (i#j), with the strain tensor, €, . Thus, in Cartesian coordinates

i
&,=¢€,=7,/2, in cylindrical coordinates ¢,=¢,,=7,,/2, and in spherical

coordinates €, =€, = ¥pp/2-

In tensor form, the stress tensor, o; and the strain tensor, &£,, are expressed

i’

respectively as
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Both the stress and strain are symmetric tensors of rank two, i.e., 0, =0, and £, = ¢,

and they follow the following transformation rule:

o =1l,0,, (1.L.1)

€y = Lyl (1.1.2)

ritai<iji

where o, stands for the stresses in Cartesian coordinates, (x, y,z), 0, represents
the stresses in a new Cartesian coordinate system after rotation, (x’, y’, z"),and [, are

the direction cosines between two coordinate axes, as listed in Table 1.3. For example,

1., =cos(x’, x), 1, =cos(x’, y), 1, =cos(y’, z).

Table 1.3 Direction cosines between coordinate axes.

X Y z
x’ Iy, Iy, Lys
y, Ly, Ly, Ly
z’ 13’1 13’2 13’3

In Egs. (1.1.1) and (1.1.2), the repetition of a subscript in a term denotes a summation
with respect to the index over its range from 1 to 3. In tensor analysis such an index is
called a dummy index, while one that is not summed out is called a free index. This
summation convention will apply throughout the book unless otherwise stated.

Using Eq. (1.1.1) and Tables 1.1 and 1.3, we can easily obtain the relationships
between the stresses in cylindrical and Cartesian systems, i.e.,

0, =0,cos’ +0, sin’ ¢ +27, sinocosa,
0,=0,sin’ a+0,cos’ -2t sinacosa,

7,=(0,—0,)sinacosa+7, (cos’ @—sin’ o),
i (1.1.3)
T,=T,C08+7 sina,

zr

oz

7, =-T,sin¢+7_cosc,
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Note that in deriving the above equations, we have used the symmetry of the stress
tensor and simplified the formulae because some of the direction cosines are zero. These
reduce the nine summation items in Eq. (1.1.1) to six and bring about the constant factor
2 in the first two equations and terms cos” & and —sin® & in the third.

On any infinitesimal area in a solid with an external normal 7, if the projections of

the stress in x-, y- and z-directions in a Cartesian coordinate system are p, , p, and

p.,then

p, =0, cos(n,x)+7,, cos(n,y)+17,, cos(n,z),
p, =7, cos(n,x) + o, cos(n,y)+ T, cos(n,z), (1.1.4)

p. =T cos(n,x)+7_cos(n,y)+0, cos(n,z).

We can get similar formulae for stresses in cylindrical and spherical coordinate
systems.
1.2 BASIC EQUATIONS
The basic equations of elasticity are geometric equations (strain-displacement relations),
equations of motion and constitutive equations (stress-strain relations). Using the
coordinate transformation discussed above, we can easily get the basic equations in
different coordinate systems, as listed below.

1.2.1  Geometric Equations

In Cartesian coordinates, we have

du v ow

6‘\,:—’ yvz =_+_’

Toox o0z dy

Yooyt T ox o9z (1.2.1)
ow Jdu dv

€ = =—+—

% Ty

In cylindrical coordinates, they become
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e =P, O 0w
R A R VIR PV
10u, u ow du
= ey =20 L. 1.2.2
Za r80{+r Var 8r+az ( )
g 29w, 10w ou, u,

T }/m_raa o r

In spherical coordinates, they can be written as

ou,, 1 0u, u,
£, = , E,=——2 4K
F 9rR> " ROO R

1 ou

[23

£, =— +u—R+u—‘9cot€,
Rsin@ do R R

1(du 1 ou
=—| —%—u_cotd |+ g
}/90! [ ae ua j

R Rsin@ oo’ (1.2.3)
1 OJu, Ju, u
+

o o

T Rsin® oo OR R’
1 du, du, u,

=— R4 00

Yo =96 TOR TR

y{xR

In tensor form, the geometric equations in Cartesian coordinate system can be written
concisely as

1
&y =, + ), (1.2.4)

with 2¢; =y, when i=# j. Here u,; means du,/dx,. Sometimes, it is also useful to

express the equations in matrix form, i.e.,
{e}=E"(V){u}, (1.2.5)

where {u} =[u, v, w]' and E(V) is an operator matrix defined by
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i o O i i
ox oz dy
Ev=lo L o0 2 o 2] (1.2.6)
ay dz ox
g 0 0
0 0 — = == 0
L aZ ay ax i

The geometric equations specify strains when displacements are known. They can
also be regarded as the first order partial differential equations for solving displacements
when strains are known. In this case, however, we will be using six equations to solve
for three displacement components. This cannot yield a solution unless the six strain
components follow certain conditions, called the compatibility conditions, which can be
obtained easily as

£

i TE

i — Eji — €y =0 (1.2.7)

ljki

Equation (1.2.7) represents six independent equations. In Cartesian coordinate system,
they can be written as

d’e, e, 9y,
>t 2 =0,
0z Jdy dyoz
2 2 2
de 9& 9%
ox oz dzox
e, d'e, a7,

>t 2 —=0,
dy ox®  Oxdy

¢, +li 97, Y. 97, 0 (1.2.8)
dydz 20dx| ox dy Oz ,
Ve, 190y, W o),
dzdx 29yl dy oz x >
8252 +li a]/xy _ayw _a}/zx o
oxdy 20dz| oz ox dy :

In other coordinate systems, the explicit form of the compatibility conditions is
lengthy. For convenience, we list only those in cylindrical coordinates when
deformation is axisymmetric, i.e.,
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2
e —e, —yO%x_g 95,08 9V _ (1.2.9)

or or 0z2 0z

1.2.2  Equations of Motion

In Cartesian coordinates, the equations of motion can be expressed as

aGX az'xy asz 9%u
+ + tF =p—s,
ox  dy oz ot
dr, do, 0T, 9’y
Xy + Y + yz +F, =p—, 1.2.10
x "y T D Py ( )
a 2
%_Fi_kaﬂ.y F = pa w

ox dy oz : o’

where p is the density of the material and F, is the component in i-direction of the
body force per unit volume.
In cylindrical coordinates, these equations become

do, 190z, 07, O,-0, d’u,
—L+= + + +F, =p—-,
or r da oz r ot
2 2
iz, 1o, +Braz + 2 +F, :pa_”;z, (1.2.11)
or rda oz r ot
dr, 1dz, do. T, *w
At ——E A —+ -+ F =p—.
o r da oz r ot
In spherical coordinates, these equations can be written as
0o, 107y, 1 dr, 1 u
+— +—Q20, —0,—0, +Tzcotd) + F, = p—=,
R R 96 Rsind aa | RCOH 00 Tt Tt B =005
d7,, 100, 1 dz, |1 d’u,
—+— “+—(o, —0 )cot0+37,,)|+F,=p—=, 1.2.12
OR R 06 Rsind ox R[( 0~ 0u) wltFo=p or’ ( )
d7, 107, 1 do, 1 d’u
——= £ +—|27,,cotd+37, )|+ F, = z.
OR R 96 Rsinf dx R[ o W+ F, P

The equations of motion in Cartesian coordinates can be also written concisely in

tensor form as
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o, +F =pii,, (i=1,2,3), (1.2.13)

where a dot indicates partial differentiation with respect to time #. If the motion of the
solid does not involve acceleration, Eq. (1.2.13) reduces to the equations of equilibrium,

ie.,
o, +F =0, (i=123). (1.2.14)

1.2.3  Constitutive Equations

The constitutive equations in linear elasticity are represented by the generalized Hooke’s
law. If the state of vanishing strain corresponds to zero stress, then in Cartesian
coordinates the generalized Hooke’s law can be written as

) = s (1.2.15)

where ¢, are components of a fourth-rank tensor, representing the properties of a

material, which generally varies from one point to another in the material. If ¢, do
not change across a material, it is called a homogeneous material. This book will only
consider homogeneous and elastic materials whose ¢, are independent of coordinates.

Since o), is symmetric, the exchange of indices i and j in Eq. (1.2.15) does not alter
the result, which gives rise to

Ciwr = Cjin»

Without losing the generality, ¢, can be regarded symmetric with respect to the last
two indices as detailed below.

First, define

’ L4
Cir = (g + €)1 25 Clg = (g =€y )/ 2,

”

and c,

. 4
H ie c

ijkl
antisymmetric with respect to the last two indices. Then, c,,, can be expressed as

. ’ ’ L4
which shows ¢, =cjy, =—Ciy

. ”
» are symmetric and ¢y, are
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’ n
Ciw = Ciju T Cjg -

Thus, Eq. (1.2.15) can be written as

’ ”
O, =Cyp&y T Cyp€n-
Noting that the second term of the right-hand side vanishes because &, =¢, and
r ” h

Ciw = —Cpy » W€ have

_ 7

0 = Cyu€u

where c;,, are symmetric with respect to either the first two indices or the last two
indices.

It is therefore reasonable to assume that c;, in Eq. (1.2.15) has the following

symmetry:
Cirt = Ciim = S -

Thus, among the total 81 components of ¢, , the maximum number of independent ones
is 36.

To avoid the double summation over & and / in Eq. (1.2.15), introduce the
following notations

0, =0y, 0, =0,, 03 =0;, 0=0,, O3 =05, Oy, =0,

£, =8, &€, =6, &;,=8&, 26,=¢,, 26,=¢&, 26,=¢&,

where €,, & and g are the engineering shear strains. Equation (1.2.15) can then be

rewritten as

O-l = Cllgl + cl2€2 + 01363 + c14g4 + CIS€5 + Cl()gé 4
0-2 = CZIEI + 022‘92 + C23€3 + 02454 + C25£5 +C26£6 °

0-6 = Célgl +062€2 +Cé3€3 +CG4€4 +c65€5 +666€6’
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or in a more concise form,

The corresponding matrix form is
{o} =[clie}, (1.2.16)

where {0} and {g} are vectors of stress and engineering strain, respectively. In
Cartesian coordinates, they become
T
{O-} = [O-x7 O-y’ O-z’ z-yz’ sz’ z-.\jv] ?

ey =[e, 6,6,V Vor V]

In Eq. (1.2.16), [¢]=[c,] should be a nonsingular and reversible matrix, i.e det[c]# 0.

Hence, Eq. (1.2.16) can also be written as
{e} =[s]{o}, (1.2.17)

where [s]=[s,] is the inverse of [c], ie. [s]=[c]". In the above, ¢, are called the
elastic stiffnesses (or moduli) of a material, having the dimension of stresses (F/L?)
because strains are dimensionless, and s, are called the elastic compliances of the
material with the dimension of L*/F.

If there exists a strain energy density function,

1 .
W=Ecij€i£j’ (,j=12,---,6) (1.2.18)
then
ow
. =0, =€, (1.2.19)

and
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R4
=C; .
dgoe;, '
Similarly,
IW
=C;.
de;de, !

Therefore ¢; =c,, since the order of differentiation is immaterial. This indicates that
the number of independent elastic stiffnesses ¢, is further reduced from 36 to 21.
Similarly, we have s, =s,. Thus, for a general anisotropic elastic material, there are
only 21 independent elastic stiffness constants or elastic compliance coefficients.
Because the strain energy density W is always non-negative and becomes zero only
when ¢ =0, (i=1,2,-,6),itis clear that the stiffness matrix [¢] and its inverse, the
compliance matrix [s], are both positive definite.

In a different coordinate system (x’, 3", z*), the constitutive equations will have the
same form as Eq. (1.2.16) or (1.2.17), i.e.,

{o’} =[c]{e}, (1.2.20)
or
{ey=[sNo"}. (1.2.21)

Using Egs. (1.1.1) and (1.1.2), we can transfer Eq. (1.2.20) into the linear relationship
between {0} and {&}. Then by comparing it with Eq. (1.2.16), we can easily obtain the
transformation formula between [¢’] and [c].

As just mentioned, for a general anisotropic material, [c¢] or [s] has twenty-one
independent elements and hence the application of the constitutive equation (1.2.16) or
(1.2.17) will bring about tremendous difficulties in solving a problem. Fortunately, the
equation can be much simplified when the elastic properties of a material possess
certain symmetries. We will now introduce the simplified constitutive equations for
various materials with special properties.
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(1) Plane of elastic symmetry

At any point in a solid, if there exists a plane about which the elastic properties are

symmetrical, the number of independent elements in [¢] will reduce to thirteen. The

direction perpendicular to this plane of elastic symmetry is often called the principal

elastic direction or the principal direction of the material. Consider a substance

elastically symmetric with respect to the xOy coordinate plane. The symmetry is

expressed by the statement that [c] is invariant under the transformation x =x, y' =y,

and z'=-z. Thus, according to Eq. (1.2.20), we have
{0’} =[c]ie’}.
For this transformation, we have

Ly =1y, =1, Ly =-1, Loy =lyy =l =1y, =1y, =1,,=0.

O-x' = O-.\' > O-y' = o-y > Jz' = Gz ’ Ty'z' = _I'vz > Zz'x' = _sz ’ Zx'y' = Txy ’

£y =€, gy' = gy » £ =8, 7_y':' = _7yz > Vo = TV }/x'y’ = 7n :
Using these relations, we get from Eqgs. (1.2.22) and (1.2.16)
Cly =Cp5 =Cyy =Cp5 =C3y = C35 =Cyq =Cs6 =0

Thus the generalized Hooke’s law of Eq. (1.2.16) becomes

O, =C\E, +CE, TCRE. T CGY,,,
O, = CpE, +CpE, +CpE. +Cy Y,y
O, =C;,E, + 6’238}, + CyE, + C3 ]/xy,
Ty =CuYy: TCos7V s
T, =Cus?y TCssVoys
T, = CoE, +Cp €, +CyE. +Cii 7,

(2) Orthotropic material

(1.2.22)

(1.2.23)

(1.2.24)

If there exist three orthogonal planes of elastic symmetry at any point in a solid, then
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there are nine independent elements in [c], and the material is said to be orthotropic. Let
the three coordinate planes of a Cartesian system, xQOy, xOz and yOz, coincide with these
planes of symmetry. Performing the similar transformation with respect to each
coordinate plane, we will get, in addition to Eq. (1.2.23),

Cly = Clg = Cyy = 0o =03y =0 = €4 =05 =0,
(1.2.25)
Cis = Clg = Cps = Coq = Cy5 = Cag = Cy5 = Cyg = 0.
Hence Eq. (1.2.24) further reduces to
O, =c¢,&, +C]28y +CisE,,
O'y =CphE, +622€y +CE,,
_ (1.2.26)
O, =CjE, +6238y +tCE.,
T_vz = c44 yyz ° sz = CSS }/zx > rxy = c66 }/xy :

In this case, all the coordinate axes are in the principal directions of the material.
Equation (1.2.26) shows that in an orthotropic material, normal stresses depend only on
normal strains; a shear stress on a plane depends only on the shear strain on the same
plane. This makes the stress and deformation analysis of an orthotropic solid much easier
than that of a general anisotropic material.

We can also express the strains in Eq. (1.2.26) in terms of the stresses using the

compliance matrix [s]=[c]",

£, =5,0, 5,0, +5,0,

X

gy = Slzo-x +S220y +s23o-z’

3 (1.2.27a)
£ =550, 1530, 53,0,
}/yz = S44Tyz > :V;v = SSSTz\' 2 IVJ\): = ‘8‘667@"
In the literature, one often finds engineering constants, £;, G, and v,, in the

stress-strain relationship of Eq. (1.2.27a), i.e.,

1 1% v
gx :_O-x _io-v _io-z’
E E, 7 E

2 3
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g = 0'X+L0' 20,

y E~1 E2 y E3

g Mg Yug o (12.270)
z El E2 v E3 z

¥ _LT Y. —L’[ 7. _LT

” Gy o G;, A G, .

where
vy lE, =V, IlE, Vi lE, =V IE, V,/E =v,/E,.

The most important and frequently encountered type of curvilinear anisotropy is
cylindrical anisotropy. Natural wood is a representative example of such materials. In
this case, if cylindrical coordinates (r, ¢r, z) are adopted with the z-axis coincident
with the axis of anisotropy, then the generalized Hooke’s law still holds its form of Eq.
(1.2.16) or (1.2.17), while the stress and strain vectors should now be written as
{oy=lo,,0,,0..17,..7,,7,]" and {e}=[¢,,€,,€, ., V.., Accordingly,
the number of independent elastic stiffness constants ¢, or compliance coefficients s,
is still 21. If any plane perpendicular to the z -axis is a plane of elastic symmetry, then
Eq. (1.2.23) also holds, and the number of independent elastic stiffness constants c;
(or compliance coefficients s, ) reduces to 13. Moreover, if, at an arbitrary point in the
material, there exist three planes of elastic symmetry that are perpendicular to -, o-
and z-directions, respectively, then Egs. (1.2.23) and (1.2.25) keep unchanged, and the
number of independent elastic stiffness constants ¢, (or compliance coefficients s, )
further reduces to 9. Materials having this type of anisotropy are cylindrically
orthotropic. Similar to Egs. (1.2.26) and (1.2.27), for a cylindrically orthotropic
material, we have

O, =&, +CpE, +CE,,

O, =CpE, TCpE, TCxE.,

(1.2.28)
0. =CRE, +CpuE, tC3E.,
To: =CusVuz > T =CssVa > Tty =Cs6Vrar

or in an inverse form
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E =8,0,+5,0,+5,0,,

E,=8,0,+t8,,0, +5,,0_,

(1.2.29a)
£ =80, +85,,0, +5,,0,,
Vor =S4Tz > Yo =555T5 5 Ve = Se6bra
Using engineering symbols, we can rewrite Eq. (1.2.29a) as
1 V,, V., 1
E="70,——""0,——"0,, V.= Ty
EV Ea EZ GC(Z
g =Yg 1o Vo o 1, 1.2.295
o Er r Ea o EZ z?d zr Gzr zr? ( ol )
Vrz V(IZ 1
£. = o, _O-a+_o-z’ Vie =5 Tra»
Ei‘ E(Z z Grtz
where
Ev,=Ev;,, (i j=raz). (1.2.30)

Another frequently encountered type of curvilinear anisotropy is spherical anisotropy,
of which a typical example is the model of Earth considering the effect of curvature in
its constitutive description'. In this case, if spherical coordinates (R, 8, ¢r) are used,
the generalized Hooke’s law is still in the form of Eq. (1.2.16) or (1.2.17), but the stress
and strain vectors need to be replaced by {0} =[0,,0,,0,, Ty TpsTrel and

(€Y =[E4, €9y Ey» Vou> Vors Yol - For a general case, there are only 21 independent
elastic stiffness constants ¢, (or compliance coefficients s, ). If, at any point in the

material, there are three planes of elastic symmetry that are perpendicular to R-, &-
and o-directions (Fig. 1.1), respectively, then Eqgs. (1.2.23) and (1.2.25) still hold and
the number of independent elastic stiffness constants ¢, (or compliance coefficients
s;,) becomes 9. Materials with this type of anisotropy are spherically orthotropic.

The generalized Hooke’s law for a spherically orthotropic material takes a similar
form to Eq. (1.2.26), i.e.

' See the ACY400 Earth model in Montagner and Anderson (1989). The analytical determination of
stress fields in the interior of the Earth using this model was presented and discussed by Ding, Zou and
Ding (1996).
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Op =Cp€p +CpEG TC13E,,
Oy =Cpp€p TCp&y +Cp€,, (1.231)
O, =C;€, +C236‘9 +C‘33€a,

Towo =Cauaoo> Tor =CssVar> Tre = CocVro-

Fig. 1.1 The directions of coordinates at a point on the spherical surface.

(3) Transversely isotropic material
If at any point there is an axis of symmetry such that the elastic properties in any
direction within a plane perpendicular to the axis are all the same, the total number of
independent elements in [c] will reduce to five. The plane is called an isotropic plane and
the material is called a framsversely isotropic material. The hexagonal crystals, like
Cadmium and Zinc, are transversely isotropic.

If we take the coordinate plane xOy to coincide with the isotropic plane, then the
z-axis is the axis of symmetry. Taking a new Cartesian system such that x' =y, 3" =-x,

and z’ =z, then we have
lyy=ly; =1, lyy==1, l,, =l =1, =l =1, =1, =0.
Substituting into Eqs. (1.1.1) and (1.1.2), yields

X y v T Yo O-z' - O-z ’ Z-y'z' = _sz H T:'x' = _Tyz s Tx'y' = _Txy ’

6.\" = gy > Sy' = gx > gz' = gz > yy'z' = Vas Vv = _}/y; s Vo = _7xy N
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Using these relations as well as Eqs. (1.2.23) and (1.2.25), we get from Egs. (1.2.22) and
(1.2.26)

Cii =Cp» €3 =Cp3,  Cyy = Css- (1.2.32a)
In view of this equation, there are only six independent constants in the constitutive

relations in Eq. (1.2.26). Now taking another transformation by rotating the original
coordinate system 45 degree about the z -axis, we have the relations

X=(+)/N2, Y =(y-x)/2, =z,
and
Ly =l =Ly =1/N2, Ly ==1N2, Ly =1, Iy =1y =1, =1, =0.
Substituting these direction cosines into Eqs. (1.1.1) and (1.1.2), yields

o,=(,+0,+2t,)/2, 0,=(0,+0,-27,)/2, 0. =0,
T =, —1)IN2, T = (41 )IN2, 1, =(0,-0,)/2,
e =(e,+e, +y,)/2, £, =(e,+€,-7,)/2, €. =¢_,

Voo =V = V) IN2Z s Vo= (7, +7.)IN2 L v =€, €,

Using these relations as well as Egs. (1.2.23), (1.2.25) and (1.2.32a), we get from Egs.
(1.2.22) and (1.2.26)

25 =y =€y (1.2.32b)
Thus, Eq. (1.2.26) becomes

O, =&, +CpE TCE.,
O'y =C,E, +C“€y +C5E,,

(12.33)
O-z = Cl3gx +013€y +C33gz’

= T =c..,v T =C
Tyz C44 yyz 2 Yzx Y444 zx 0 Yy ~66 7xy ’
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where ¢ =(c,, —¢,)/2.

Similarly, the expressions for strains in terms of stresses, given by Eq. (1.2.27a),
become

£, =5,0,+5,0,+5,0,,
£, =5,0,+5,0,+5,0_,
(1.2.34)
£, =5,0,+5,0, +55,0_,

yyz = s44TyZ > yzx = s44sz H 7/xy = S(J(JT.\”}’ >

where s, =2(s,, —s,,). We can also express this equation in terms of engineering
constants, i.e.,

’

£ —i(a —-vo )—V—O' =—7
x E x y E/ z? yyz Gr yz?
g =—(—vo,+0 )—L,G —ir (1.2.35)
v E X v E/ z yzx G/ zx? A
£ ——V—,(O' +0 )+i0' —lr
z E/ x v E/ z? yxy G xy?
where
2G=E/1+V). (1.2.36)

In cylindrical coordinates, Eq. (1.2.33) becomes

0, =C &, tCE, +CE,,

r

O, =& T €, TC5E,,

(1.2.37)
0. = (38, T C3E, T €.,
Tllz = C44 yaz 2 Tzr = C44 ?/zr ’ Tra = 666 rocd
where ¢, =(c,, —c,)/2,and Eq. (1.2.34) becomes
£, =80, +5,0,+5;0,
&, =50, 15,0, +5,,0, (1.2.38)

E, =80, t5,0,+5,,0_,

= v =5..7 v =9
}/az S44 thz B ! zr S44%zr 2 fra “661'
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where s =2(s,, —5,,)-

The constitutive relations for a spherically orthotropic material are given by Eq.
(1.2.31). Further, if the elasticity property in any direction is the same at the point of
intersection in a plane perpendicularly intersecting the radial R, the material is said to
be spherically isotropic’. By a derivation similar to that of Eq. (1.2.33), we get the
generalized Hooke’s law of a spherically isotropic material in spherical coordinates

Op =CpEg +CpEy TCE,,

Op =CpEp +CpEy +CxE,,

(1.2.39a)
Oy =CpEp T Cp&y +CpE,,
Toa =CaaVoa>Tor = CssVar>Tro = Cs5V o>
where
2644 = 622 - 023 . (1.2.39b)

If Eq. (1.2.39) is used to describe a small portion of material where R is very large, the
material can be treated approximately as transversely isotropic since the effect of
curvature may be ignored. For this approximation, it will be convenient to rewrite Eq.
(1.2.39) by rearrangement of the subscripts of elastic constants as

Oy =C €y T CrE, TC 3,

O, =CpEy +C €, TC13E,

(1.2.40a)
Op =C3€y T CRE, +C33E,,
Tor = CaaVorsTre = Caa¥Vro5T0a = Ce6Vou>
where
2ce =y =€y (1.2.400)

The materials described by Eq. (1.2.40) are also called transversely isotropic materials in
some references, see Shenderov (1985), Bufler (1998), Khoma (1998), among others.
Using engineering symbols, we have

? A classical solution of spherically isotropic material was obtained by Saint-Venant for a spherical shell
subjected to uniform internal and external pressures, see Love (1927) and Lekhnitskii (1981).



