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Preface

This book aims to provide a comprehensive introduction to the theory and applications 

of the mechanics of transversely isotropic elastic materials.  There are many reasons 

why it should be written.  First, the theory of transversely isotropic elastic materials is

an important branch of applied mathematics and engineering science; but because of the 

difficulties caused by anisotropy, the mathematical treatments and descriptions of 

individual problems have been scattered throughout the technical literature. This often

hinders further development and applications. Hence, a text that can present the theory

and solution methodology uniformly is necessary.

Secondly, with the rapid development of modern technologies, the theory of 

transversely isotropic elasticity has become increasingly important. In addition to the 

fields with which the theory has traditionally been associated, such as civil engineering

and materials engineering, many emerging technologies have demanded the 

development of transversely isotropic elasticity. Some immediate examples are thin film 

technology, piezoelectric technology, functionally gradient materials technology and 

those involving transversely isotropic and layered microstructures, such as multi-layer 

systems and tribology mechanics of magnetic recording devices. Thus a unified 

mathematical treatment and presentation of solution methods for a wide range of 

mechanics models are of primary importance to both technological and economic 

progress. 

The authors aim to achieve a systematic structure for this complex subject in a single 

volume and provide the reader with state-of-the-art solution strategies for transversely

isotropic elasticity under a unified umbrella. The subject matter has been organized into 

ten chapters to incorporate fundamental theories, solution skills and applications into an 

organic whole. 

Chapter 1 begins with a concise summary of the basic equations of anisotropic

elasticity used in the book, including thermo-elasticity. The materials presented here

construct the framework for the theories and solutions of transversely isotropic

problems.

The success of solutions relies largely on the strategies and mathematical treatments. 

Chapter 2 is therefore arranged to explain the basic methodologies for obtaining the 

general elastic solutions of transversely isotropic materials.  In this way, the reader 

becomes clearer about the specific approaches for individual mechanics models in the 

later chapters. 

Point force solutions are fundamental in solving various problems.  Hence, Chapter 3

is devoted to establishing the relevant basics using a unified method that avoids the



Preface ii

existing confusions in the literature.  Meanwhile, this chapter focuses on infinite body

problems and serves as an introduction to solution skills for more complex cases. 

With the understanding gained and theory developed in the previous chapters, 

Chapters 4 to 10 discuss the solution of complicated engineering problems, including

half-spaces, layered media, cones, thermal stress, frictional contact and bending, 

vibration and stability of plates and shells. These provide the reader not only with 

specific methods for tackling mathematical systems involving transverse isotropy, but 

also the fundamental solutions that can be extended to more complex situations. 

This book is suitable for engineers, designers, researchers and postgraduates who are

interested in the solution of transversely isotropic elastic materials. The authors believe 

that the reader who takes time to study this book will find ample reward. 

The first author is indebted to Professor Hu Haichang, who introduced him to the 

field of elasticity and has offered invaluable help and guidance for many years. The 

authors appreciate very much the valuable comments and suggestions made by 

Professor Graham Gladwell. The financial support from the National Natural Science 

Foundation of China, Natural Science Foundation of Zhejiang Province as well as the 

151 Talent Project of Zhejiang Province are very much appreciated. Finally, the authors 

wish to thank their families for their assistance; without their encouragement the book 

would never have been completed.  

Haojiang DING, Weiqiu CHEN 

Hangzhou, P. R. China 

Liangchi ZHANG 

Sydney, Australia

March 2005 
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1

BASIC EQUATIONS OF 

ANISOTROPIC ELASTICITY 

This chapter introduces the basic equations of anisotropic elasticity which are essential 

for solving transversely isotropic elasticity problems. For simplicity, we ignore the 

mathematical details of deriving these equations; the reader can find them in the relevant 

references provided in Appendix A.

1.1 TRANSFORMATION OF STRAINS AND STRESSES  

Consider an anisotropic and ideally elastic continuous solid subjected to small 

deformation. Assume that the solid is free of stress before deformation. The stress-strain 

relationship in this case is linear, i.e., it follows the generalized Hooke’s law. If the solid 

is homogeneous, the coefficients in the stress-strain relationship are constant, but if it is 

inhomogeneous, they will vary because the elastic properties at different points in the 

solid are different; they will be functions of the coordinates.

We can use various coordinate systems when studying the stresses and strains in a 

solid generated by external loading. In this book, we use a Cartesian coordinate system,

),,( zyx , a cylindrical coordinate system, ),,( zr α  or a spherical coordinate system,

),,( αθR . There are simple relationships between these coordinates, as listed in Tables

1.1 and 1.2, where angle α )20( πα ≤≤ is measured from the positive direction of the

x-axis to that of the y-axis, and angle θ )0( πθ ≤≤ is measured from the positive 

direction of the z-axis to the negative direction of the same axis. 

Correspondingly, we use ) , ),,( wuur α or ),,( αθ uuuR , respectively, to

denote the displacements at a point in the solid in Cartesian, cylindrical or spherical 

coordinate systems. In tensor form, the displacements will be written as iu  (i = 1, 2, 3), 

but in matrix form, we write them as T],,[}{ wvuu = , T],,[ wuur α  or T],,[ αθ uuuR ,

respectively, here the superscript T stands for transpose. 
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Table 1.1  Direction cosines between coordinate axes in Cartesian and cylindrical coordinates.

x y z

r cosα sinα 0
α sinα cosα 0
z 0 0 1 

Table 1.2  Direction cosines between coordinate axes in Cartesian and spherical coordinates.

x y z

R sin cosθ α sin sinθ α cosθ
θ cos cosθ α cos sinθ α θsin−
α αsin− cosα 0

In the three coordinate systems, the stresses and strains can be written, respectively, as 

σ τ τx xy zxx xy zxσ τ τx xyxy

xy y yzτ σ τxy yy

zx yz zτ τ σzx yzyzτ τ σ
,  and 

1 1ε γ γγ γ1

1 1

x xy zx2 2
ε

2 2 x2x 2
ε γ γ

22
1 1

2 2xy y yz2
γ ε γ

2

1 1

1 1

y y y

2 zx yz z2
γ γ

22
ε1 1γ γγ1 ε

,

r r zrσ τ τr rrαr r zrα

τ σ τ
zrr r

r zα α αr zτ σ τrα αατ σ τ

zr z zαzr z zτ τ σzr zzα z

,  and  

1 1ε γ γγ1

2 2
1 1

r r zr2 2
ε z2 22r r r2
ε γ γ

22α
1 1

2 2 zα α α2 z2
γ εαα γ1 1

1 1

2 2 z z2 αγ γ ε
2 2 zz2 α z

1 1γ γ εγ γ1

,

R R RRRσ τ τR RθR R Rθ αR

τ σ τ
R R R

Rθ θ θαRτ σ τRθ θθτ σ τ

α θα αRα θα αRτ τ σα θαθαRR

,  and 

1 1

2 2
1 1

2 2
1 1

2 2

R R R2

R

α2 RR2

θ θαθ 2

θα α2

ε γ γγ γ1 1
R R2 θ 2

γ εθθ γθ

γ γ εγ1
α θαθα2R

,

where ijγ are the engineering shear strains and have the relationship, 

2 ( )ij ij jγ = 2 (2 , with the strain tensor, ijε . Thus, in Cartesian coordinates

2/12 xyxy γεε == , in cylindrical coordinates 2/12 αα γεε rr == , and in spherical

coordinates 2/12 θθ γεε RR == .

In tensor form, the stress tensor, σ ij , and the strain tensor, ε ij , are  expressed 

respectively as

−

2
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11 12 13σ σ σ11 121211 12 13

σ σ σ
11 12 13

21 22 23σ σ σ21 2222σ σ σ

31 32 3331 32 33σ σ σ31 3232

,  and 
11 12 13ε ε ε11 121211 12 13

ε ε ε
11 12 13

21 22 23ε ε ε21 2222ε ε ε

31 32 3331 32 33ε ε ε31 3232

.

Both the stress and strain are symmetric tensors of rank two, i.e., jiij σσ =  and jiij εε =

and they follow the following transformation rule:

ijjqipqp ll σσ ′jj′′′ = , (1.1.1)

ε ε′ ′ ′ ′=p q p i q j ijε′ ′ ′ ′′ ′l l′′p ip i′′′ , (1.1.2)

where ijσ stands for the stresses in Cartesian coordinates, ( , , )y,, , σ ′ ′p q′  represents

the stresses in a new Cartesian coordinate system after rotation, ( , , )′ ′ ′y, ,, , , and lp il ′ are

the direction cosines between two coordinate axes, as listed in Table 1.3. For example, 

),cos(11 xxl ′=′ , ),cos(21 yxl ′=′ , )32 y′ .

Table 1.3  Direction cosines between coordinate axes.

x y z

′x 11′l 21′l 31′l

y′
12′l 22′l 32′l

′z 13′l 23′l 33′l

In Eqs. (1.1.1) and (1.1.2), the repetition of a subscript in a term denotes a summation

with respect to the index over its range from 1 to 3. In tensor analysis such an index is 

called a dummy index, while one that is not summed out is called a free index. This 

summation convention will apply throughout the book unless otherwise stated.

Using Eq. (1.1.1) and Tables 1.1 and 1.3, we can easily obtain the relationships 

between the stresses in cylindrical and Cartesian systems, i.e.,

2 2i 2 i2 2
r x y xyσ σ α σ α τ α αcos sin 2 sin cossin 2 sinr x y xyx ycos sssi2 2σ cos sinsinsin2 2 ,

2 2i 2 i2 2
x y xyασ σ α σ α τ α αsin cos 2 sin coscos 2 sinx y xyys coscoscosα i 2 2σ sin coscoscos2 2 ,

2 2( )sin cos (cos sin )2 2
r y x xy( ))rτ ( )sin cos (cos sin ))sin cos (cos sin2( )s cos)s cos)s cosrα ( ) i ( 2( )sin cos (cos)sin cos (cos)sin cos (cos2 ,

izr zx yzτ τ α τ αcos sinzr zx yzzx cosτ cos ,

iz zx yzα zτ τ α τ αsin cosz zx yzzx sα z iττ sin ,

z zσ σz .

(1.1.3)

3
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Note that in deriving the above equations, we have used the symmetry of the stress 

tensor and simplified the formulae because some of the direction cosines are zero. These 

reduce the nine summation items in Eq. (1.1.1) to six and bring about the constant factor 

2 in the first two equations and terms 2cos α  and 2sin α− in the third.

On any infinitesimal area in a solid with an external normal n , if the projections of 

the stress in x-, y- and z-directions in a Cartesian coordinate system are xp , yp and 

zp , then

).,cos(),cos(),cos(

),,cos(),cos(),cos(

),,cos(),cos(),cos(

znynxnp

znynxnp

znynxnp

zyzzxz

yzyxyy

zxxyxx

σττ
τστ
ττσ

++=

++=

++=

(1.1.4)

We can get similar formulae for stresses in cylindrical and spherical coordinate

systems. 

1.2 BASIC EQUATIONS

The basic equations of elasticity are geometric equations (strain-displacement relations), 

equations of motion and constitutive equations (stress-strain relations). Using the 

coordinate transformation discussed above, we can easily get the basic equations in 

different coordinate systems, as listed below. 

1.2.1 Geometric Equations 

In Cartesian coordinates, we have 

.,

,,

,,

x

v

y

u

z

w

z

u

x

w

y

v

y

w

z

v

x

u

xyz

zxy

yzx

∂xx

∂+
∂yy

∂=
∂zz

∂=

∂zz

∂+
∂xx

∂=
∂yy

∂=

∂yy

∂+
∂zz

∂=
∂xx

∂=

γε

γε

γε

(1.2.1)

In cylindrical coordinates, they become

4
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.
1

,

,,
1

,,

r

u

r

uu

rz

w

z

u

r

w

r

uu

r

r

w

z

u

r

u

r
rz

r
zr

r

z
r

r

αα
α

α
α

α
α z

α
γε

γ
α

ε

α
γε

−
∂

∂
+

∂
∂

=
∂z

∂=

∂zz

∂
+

∂
∂=+

∂
∂

=

∂
∂+

∂zz

∂
=

∂
∂

=

(1.2.2)

In spherical coordinates, they can be written as 

.
1

,
sin

1

,
sin

1
cot

1

,cot
sin

1

,
1

,

R

u

R

uu

R

R

u

R

uu

R

u

R
u

u

R

R

u

R

uu

R

R

uu

RR

u

R
R

R
R

R

RR
R

θθ
θ

αα
αRR

θ
α

α
θα

θα
α

θ
θ

θ
γ

αθ
γ

αθ
θ

θ
γ

θ
αθ

ε

θ
εε

−
∂
∂

+
∂
∂

=

−
∂
∂

+
∂
∂

=

∂
∂

+θ−
∂
∂

=

++
∂
∂

=

+
∂
∂

=
∂RR

∂
=

(1.2.3)

In tensor form, the geometric equations in Cartesian coordinate system can be written

concisely as 

1
( )

2ij i j j i, ,( , ,2
ε = (( , (1.2.4)

with ijij γε =2  when ji ≠ . Here jiu , means ji xjju ∂xx∂ / . Sometimes, it is also useful to 

express the equations in matrix form, i.e.,

}){(}{ T uE ∇=ε , (1.2.5)

where T],,[}{ wvuu =  and E(∇) is an operator matrix defined by

5
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∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=∇

0

0

0

00

00

00

)(

x∂∂y∂

x∂∂z∂∂

y∂z∂∂

z∂∂

y∂

x∂∂
E . (1.2.6)

The geometric equations specify strains when displacements are known. They can

also be regarded as the first order partial differential equations for solving displacements

when strains are known. In this case, however, we will be using six equations to solve

for three displacement components. This cannot yield a solution unless the six strain 

components follow certain conditions, called the compatibility conditions, which can be

obtained easily as 

0,,,, =−−+ ljkikilj,ijklklij εεεε . (1.2.7)

Equation (1.2.7) represents six independent equations. In Cartesian coordinate system,

they can be written as

2 2

2 2

2 22

2 2

2 22

2 2

0,

0,

0,

y yz

zxz

y xyx

y zz y

xz

x yy x

ε γ2
y

ε γ2
xε

ε γ2
yε

∂2ε 2
y + − =−

2

yz

∂ ∂y zy z∂ ∂2z yz y

∂2ε x∂
+ − =−

2
x zxx

∂ ∂z xz x∂ ∂2x zx z

∂2ε y∂
+ − =−

2

y xy

∂ ∂x yx y∂ ∂2y xy x

,0
2

12

=
∂

∂
−

∂
∂

−
∂

∂
∂
∂+

∂∂
∂

z∂∂y∂x∂∂x∂∂z∂∂y∂
xyzxyzx

γγγε

.0
2

1

,0
2

1

2

2

=
∂

∂
−

∂
∂

−
∂

∂
∂
∂+

∂∂
∂

=
∂

∂
−

∂
∂

−
∂

∂
∂
∂+

∂∂
∂

y∂x∂∂z∂∂z∂∂y∂x∂∂

x∂∂z∂∂y∂y∂x∂∂z∂∂

zxyzxyz

yzxyzxy

γγγε

γγγε

(1.2.8)

In other coordinate systems, the explicit form of the compatibility conditions is 

lengthy. For convenience, we list only those in cylindrical coordinates when

deformation is axisymmetric, i.e.,

6
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0,0
2

2

=
∂

∂−
∂

∂
+

∂
∂=

∂
∂

−−
z∂∂z∂∂

r
rr

r zrz
r

γεεεεε αα
α . (1.2.9)

1.2.2 Equations of Motion 

In Cartesian coordinates, the equations of motion can be expressed as
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where ρ is the density of the material and iFi  is the component in i -direction of the
body force per unit volume.

In cylindrical coordinates, these equations become 
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In spherical coordinates, these equations can be written as 
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(1.2.12)

The equations of motion in Cartesian coordinates can be also written concisely in 

tensor form as

7



Chapter 1  Basic Equations of Anisotropic Elasticity 

iijij uFi ρuuσ =+, ,   )3,2,1( =i , (1.2.13)

where a dot indicates partial differentiation with respect to time t. If the motion of the 

solid does not involve acceleration, Eq. (1.2.13) reduces to the equations of equilibrium,

i.e.,

0, =+ ijij Fiσ ,   ) . (1.2.14)

1.2.3 Constitutive Equations 

The constitutive equations in linear elasticity are represented by the generalized Hooke’s

law. If the state of vanishing strain corresponds to zero stress, then in Cartesian

coordinates the generalized Hooke’s law can be written as

ij ijkl klσ εij ijklc , (1.2.15)

where ijklc are components of a fourth-rank tensor, representing the properties of a

material, which generally varies from one point to another in the material. If ijklc  do
not change across a material, it is called a homogeneous material. This book will only 

consider homogeneous and elastic materials whose ijklc are independent of coordinates.

Since ijσ  is symmetric, the exchange of indices i and j in Eq. (1.2.15) does not alter j

the result, which gives rise to

ijkl jiklc cijkl ,

Without losing the generality, ijklc  can be regarded symmetric with respect to the last 
two indices as detailed below.

First, define

( ) / 2ijkl ijkl ijlk(cijkl (′ ((( , ( ) / 2ijkl ijkl ijlk(c (ijkl (′′ (( ,

which shows ijkl ijlkc cijkl
′ ′  and ijkl ijlkc cijkl

′′ ′′ , i.e. ijklc′  are symmetric and ijklc′′  are

antisymmetric with respect to the last two indices. Then, ijklc can be expressed as 
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§1.2  Basic Equations

ijkl ijkl ijklc c cijkl ijklijkl
′ ′′+ccijklijkl
′ .

Thus, Eq. (1.2.15) can be written as 

ij ijkl kl ijkl klσ ε εij ijkl kl ijklkl ijklcijkl klijkl kl
′ ′′+εεcijkl kl
′ .

Noting that the second term of the right-hand side vanishes because kl lkε εkl  and 

ijkl ijlkc cijkl
′′ ′′ , we have 

ij ijkl klσ εij ijklc′ ,

where
ijklc′  are symmetric with respect to either the first two indices or the last two

indices.  

It is therefore reasonable to assume that ijklc  in Eq. (1.2.15) has the following

symmetry:

ijkl jikl ijlkc c cijkl jikljiklcc .

Thus, among the total 81 components of ijklc , the maximum number of independent ones 

is 36.

To avoid the double summation over k  and l  in Eq. (1.2.15), introduce the 

following notations 

11 1σ σ11 , 22 2σ σ22 , 33 3σ σ33 , 23 4σ σ23 , 31 5σ σ31 , 12 6σ σ12 ,

11 1ε ε11 , 22 2ε ε22 , 33 3ε ε33 , 23 42ε ε23 , 31 52ε ε31 , 12 62ε ε12 ,

where 4ε , 5ε and 6ε are the engineering shear strains. Equation (1.2.15) can then be

rewritten as 

1 11 1 12 2 13 3 14 4 15 5 16 6σ ε ε ε ε ε ε1 11 1 12 2 13 3 14 4 15 5 161 12 2 13 3 14 4 15 5 16c11 1 12 2 13 3 14 4 15 511 1 12 2 13 3 14 4 15 51 12 2 13 3 14 4 15+ + + + +ε ε ε ε εε ε ε ε εc c c c cc c c cc c c c11 1 12 2 13 3 14 4 15 511 1 12 2 13 3 14 41 12 2 13 3 14 4 1512 2 13 3 14 4 15 5 ,

2 21 1 22 2 23 3 24 4 25 5 26 6σ ε ε ε ε ε ε2 21 1 22 2 23 3 24 4 25 5 261 22 2 23 3 24 4 25 5 26c21 1 22 2 23 3 24 4 25 521 1 22 2 23 3 24 4 25 51 22 2 23 3 24 4 25+ + + + +ε ε ε ε εε ε ε ε εc c c c cc c c cc c c c21 1 22 2 23 3 24 4 25 521 1 22 2 23 3 24 41 22 2 23 3 24 4 2522 2 23 3 24 4 25 5 ,

……………………. 

6 61 1 62 2 63 3 64 4 65 5 66 6σ ε ε ε ε ε ε6 61 1 62 2 63 3 64 4 65 5 661 62 2 63 3 64 4 65 5 66c61 1 62 2 63 3 64 4 65 561 1 62 2 63 3 64 4 65 51 62 2 63 3 64 4 65+ + + + +ε ε ε ε εε ε ε ε εc c c c cc c c cc c c c61 1 62 2 63 3 64 4 65 561 1 62 2 63 3 64 41 62 2 63 3 64 4 6562 2 63 3 64 4 65 5 ,

9



Chapter 1  Basic Equations of Anisotropic Elasticity

or in a more concise form,

i ij jσ εi ijc , ( , 1, 2, , 6)j,, .

The corresponding matrix form is 

{ } [ ]{ }{ } [ ]{ }} [ ]{ , (1.2.16)

where { }{ and { } are vectors of stress and engineering strain, respectively. In 

Cartesian coordinates, they become 

T{ } [ , , , , , ]x y z yz zx xy, , , , ,, , , , ,{ } [ , , , , ,} [ , , , , ,, , , , ,, , , ,, , , , ,

T{ } [ , , , , , ]x y z yz zx xy{ } [ , , , , ,} [ , , , , ,x y z yz zxyz zx, , , , ,, , , ,, , , , .

In Eq. (1.2.16), [ ] [ ]ij] [] [ should be a nonsingular and reversible matrix, i.e. det[ ] 0 .

Hence, Eq. (1.2.16) can also be written as 

}]{[}{ σ{ε s= , (1.2.17)

where [ ] [ ]ij] [] [ is the inverse of [ ] , i.e. 1[ ] [ ]] [] [ − . In the above, ijc are called the 

elastic stiffnesses (or moduli) of a material, having the dimension of stresses (F/L2)

because strains are dimensionless, and ijs  are called the elastic compliances of the

material with the dimension of L2/F.

If there exists a strain energy density function,

1

2 ij i jW c
1 ε εii , ( , 1, 2, , 6)j,, (1.2.18)

then

i ij j

i

W σ εi ij jjc
ε

∂ = σ
∂

, (1.2.19)

and 
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2

ij

i j

W
c

ε
∂ =

∂ ∂iε i

.

Similarly, 
2

ji

j i

W
cjjε

∂ =
∂ ∂jε j

.

Therefore ij jic cij , since the order of differentiation is immaterial. This indicates that 

the number of independent elastic stiffnesses ijc  is further reduced from 36 to 21.

Similarly, we have ij jis sij . Thus, for a general anisotropic elastic material, there are

only 21 independent elastic stiffness constants or elastic compliance coefficients. 

Because the strain energy density W  is always non-negative and becomes zero only

when 0iε , ( 1, 2, , 6) , it is clear that the stiffness matrix [ ]  and its inverse, the

compliance matrix [ ] , are both positive definite.

In a different coordinate system ( , , )y ,,′ ′ ′ , the constitutive equations will have the

same form as Eq. (1.2.16) or (1.2.17), i.e.,

}]{[}{ εσ{ ′′=′ c , (1.2.20)

or

}]{[}{ σ{ε ′′=′ s . (1.2.21)

Using Eqs. (1.1.1) and (1.1.2), we can transfer Eq. (1.2.20) into the linear relationship 

between {σ} and {σ ε}. Then by comparing it with Eq. (1.2.16), we can easily obtain theε
transformation formula between ][c′ and [c].

As just mentioned, for a general anisotropic material, [c] or [s] has twenty-one 

independent elements and hence the application of the constitutive equation (1.2.16) or 

(1.2.17) will bring about tremendous difficulties in solving a problem. Fortunately, the

equation can be much simplified when the elastic properties of a material possess

certain symmetries. We will now introduce the simplified constitutive equations for 

various materials with special properties.
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Chapter 1  Basic Equations of Anisotropic Elasticity

(1) Plane of elastic symmetry

At any point in a solid, if there exists a plane about which the elastic properties are 

symmetrical, the number of independent elements in [c] will reduce to thirteen. The 

direction perpendicular to this plane of elastic symmetry is often called they principal 

elastic direction or the principal direction of the material. Consider a substance

elastically symmetric with respect to the xOy coordinate plane. The symmetry is 

expressed by the statement that [c] is invariant under the transformation xx =′ , yy =′ ,

and zz −=′ . Thus, according to Eq. (1.2.20), we have 

}]{[}{ εσ{ ′=′ c . (1.2.22)

For this transformation, we have 

12211 == ′′ ll , 133l , ==== ′′′′ 23321221 llll 03113 == ′′ ll .

Substituting these direction cosines into Eqs. (1.1.1) and (1.1.2) yields 

xx σσ =′ , yy σσ =′ , zz σσ =′ ,
yzzy ττ −=′′ ,

zxxz ττ −=′′ ,
xyyx ττ =′′ ,

xx εε =′ , yy εε =′ , zz εε =′ ,
yzzy γγ −=′′ ,

zxxz γγ −=′′ ,
xyyx γγ =′′ .

Using these relations, we get from Eqs. (1.2.22) and (1.2.16)

05646353425241514 ======== cccccccc . (1.2.23)

Thus the generalized Hooke’s law of Eq. (1.2.16) becomes

.

,

,

,

,

,

66362616

5545

4544

36332313

26232212

16131211

xyzyxxy

zxyzzx

zxyzyz

xyzyxz

xyzyxy

xyzyxx

cccc

cc

cc

cccc

cccc

cccc

γ6εεετ
γ5γ5τ
γ5γ4τ

γ6εεεσ
γ6εεεσ

γεεεσ

+++=

+=

+=

+++=

+++=

+++=

(1.2.24)

(2) Orthotropic material 

If there exist three orthogonal planes of elastic symmetry at any point in a solid, then
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§1.2  Basic Equations

there are nine independent elements in [c], and the material is said to be orthotropic. Let 

the three coordinate planes of a Cartesian system, xOy, xOz and z yOz, coincide with these

planes of symmetry. Performing the similar transformation with respect to each 

coordinate plane, we will get, in addition to Eq. (1.2.23),  

14 16 24 26 34 36 45 56 0c c c c c c c c14 16 24 26 34 36 4516 24 26 34 36 45 =c c c c c c cc c c c c c ,

04645363526251615 ======== cccccccc .
(1.2.25)

Hence Eq. (1.2.24) further reduces to

.,,

,

,

,

665544

332313

232212

131211

xyxyzxzxyzyz

zyxz

zyxy

zyxx

ccc

ccc

ccc

ccc

γ6τγ5τγ4τ
εεεσ
εεεσ
εεεσ

===

++=

++=

++=

(1.2.26)

In this case, all the coordinate axes are in the principal directions of the material. 

Equation (1.2.26) shows that in an orthotropic material, normal stresses depend only on 

normal strains; a shear stress on a plane depends only on the shear strain on the same 

plane. This makes the stress and deformation analysis of an orthotropic solid much easier 

than that of a general anisotropic material. 

We can also express the strains in Eq. (1.2.26) in terms of the stresses using the

compliance matrix 1[ ] [ ]] [] [ − ,

66

,

,

,

.66

x x y z11 12 1312

y x y z12 22 2322

z x y z13 23 3323

yz yz zx zx xy xy44 55 665555 665555 ss555555s4444

ε σ σ σ13x x y11 12 131212s s s11 12121211 12121212

ε σ σ σ23y x y12 22 232222s s s12 22222212 22222222

ε σ σ σ33z x y13 23 332323s s s13 23232313 23232323

γ τ444 γ τ55 γ τ66

+ +σ σσ σs sss11 121212

+ +σ σσ σs sss12 222222

+ +σ σσ σs sss13 232323

= s ss

(1.2.27a)

In the literature, one often finds engineering constants, iE , ijG  and ijν , in the
stress-strain relationship of Eq. (1.2.27a), i.e.,   

3121

1 2 3

1
x x y z

E E E1 2 32

x yx y

ννε σ σ σ3121
x x yx yσ σσ σσ ,
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3212

1 2 3

1
y x y z

E E E1 2 32

x yx y

ννε σ σ σ32
y x yx y+12 σ σσ σσ12 ,

13 23

1 2 3

1
z x y z

E E E1 2 32

x yx y

ν νε σ σ σz x yx y +13 23σ σσ σσ13 23 ,

23 31 12

1 1 1
, ,yz yz zx zx xy xy, ,

G G G23 31 131

yz zx zx xyyz zx zx xy, ,γ τ γ τ γ τ= == τ γ τ γ ,

(1.2.27b)

where

21 2 12 1/ /2 122 12 E1/2 12ν , 31 3 13 1/ /3 133 133 E1ν , 32 3 23 2/ /3 233 233 E2ν .

The most important and frequently encountered type of curvilinear anisotropy is

cylindrical anisotropy. Natural wood is a representative example of such materials. In 

this case, if cylindrical coordinates ( , , ), ,, ,, are adopted with the z-axis coincident

with the axis of anisotropy, then the generalized Hooke’s law still holds its form of Eq. 

(1.2.16) or (1.2.17), while the stress and strain vectors should now be written as  
T],,,,,[}{ ααα τττσσσσ{ rzrzzr= and T],,,,,[}{ ααα γγγεεεε rzrzαzr= . Accordingly, 

the number of independent elastic stiffness constants ijc or compliance coefficients ijs

is still 21. If any plane perpendicular to the z -axis is a plane of elastic symmetry, then

Eq. (1.2.23) also holds, and the number of independent elastic stiffness constants ijc

(or compliance coefficients
ijs ) reduces to 13. Moreover, if, at an arbitrary point in the

material, there exist three planes of elastic symmetry that are perpendicular to r-, α -

and z-directions, respectively, then Eqs. (1.2.23) and (1.2.25) keep unchanged, and the 

number of independent elastic stiffness constants ijc (or compliance coefficients ijs )

further reduces to 9. Materials having this type of anisotropy are cylindrically

orthotropic. Similar to Eqs. (1.2.26) and (1.2.27), for a cylindrically orthotropic 

material, we have 

11 12 13 z13r 11 12 ασ ε ε ε1313r 11 1212c c c11 12121211 1212+ +ε εε εc ccc11 121212 ,

23 z23α α12 2222 ε2323σ cα 12 22c12 222222+ +ε εε εc ccc12 222222c12 2222 ,

13 23 33z r z13 23 33α ε3333cσ z 13 2323c13 232313 2323+ +ε εε εc ccc13 232323 ,

66cc cc5555c44α α α α55 6655 66z z zr zr r r44 55 66555555555555c44 555544τ γ4 τ γ55 τ γ6cc= c ,

(1.2.28)

or in an inverse form 
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11 12 13

23

3 3 33

66

,

,

,

.66

r r z11 12 13

z23

z r z13 23 33

ss5555s44

α

α α12 2222

α

α α α α44 55 6655 66z z zr zr r r44 55 66555555 6655555555s4444

σ1313sε r 11 1212s11 121211 1212

ε σ σ σ2323sα 12 22s12 222222

ε σ σ σ33z r13 23 3323s s s13 23232313 232323

γ τ444 γ τ55 γ τ66

+ +σ σσ σs sss11 121212

+ +σ σσ σs sss12 222222s12 2222

+ +σ σσ σs sss13 232323

= s ss

(1.2.29a)

Using engineering symbols, we can rewrite Eq. (1.2.29a) as
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(1.2.29b)

where 

i ji j ijEi E jνi νj= ,  ( , , , )j , ,, ,, . (1.2.30)

Another frequently encountered type of curvilinear anisotropy is spherical anisotropy, 

of which a typical example is the model of Earth considering the effect of curvature in 

its constitutive description1. In this case, if spherical coordinates ( , , ), ), are used, 

the generalized Hooke’s law is still in the form of Eq. (1.2.16) or (1.2.17), but the stress 

and strain vectors need to be replaced by T],,,,,[}{ θαθααθ τττσσσσ{ RRααR= and 
T],,,,,[}{ θαθααθ γγγεεεε RRααR= . For a general case, there are only 21 independent

elastic stiffness constants ijc  (or compliance coefficients ijs ). If, at any point in the

material, there are three planes of elastic symmetry that are perpendicular to R -, θ -

and α -directions (Fig. 1.1), respectively, then Eqs. (1.2.23) and (1.2.25) still hold and

the number of independent elastic stiffness constants ijc  (or compliance coefficients

ijs ) becomes 9. Materials with this type of anisotropy are spherically orthotropic.

The generalized Hooke’s law for a spherically orthotropic material takes a similar l

form to Eq. (1.2.26), i.e.

1 See the ACY400 Earth model in Montagner and Anderson (1989). The analytical determination of 
stress fields in the interior of the Earth using this model was presented and discussed by Ding, Zou and 
Ding (1996).
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.,,

,

,

,

665544

332313

232212

131211

θθααθαθα

αθα

αθθ

αθ

γ6τγ5τγ4τ
εεεσ
εεεσ
εεεσ

RRRααRαα

R

R

RR

ccc

ccc

ccc

ccc

===
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(1.2.31)

Fig. 1.1  The directions of coordinates at a point on the spherical surface.

(3) Transversely isotropic material 

If at any point there is an axis of symmetry such that the elastic properties in any

direction within a plane perpendicular to the axis are all the same, the total number of 

independent elements in [c] will reduce to five. The plane is called an isotropic plane and 

the material is called a transversely isotropic material. The hexagonal crystals, like 

Cadmium and Zinc, are transversely isotropic.

If we take the coordinate plane xOy to coincide with the isotropic plane, then the 

z-axis is the axis of symmetry. Taking a new Cartesian system such that yx =′ , xy −=′ ,

and zz =′ , then we have

13321 == ′′ ll , 112 −=′l , 0231332223111 ====== ′′′′′′ llllll .

Substituting into Eqs. (1.1.1) and (1.1.2), yields

x yσ σx , xy σσ =′ , zz σσ =′ ,
zxzy ττ −=′′ ,

yzxz ττ −=′′ ,
xyyx ττ −=′′ ,

yx εε =′ , xy εε =′ , zz εε =′ ,
zxzy γγ −=′′ ,

yzxz γγ −=′′ ,
xyyx γγ −=′′ .

x

y

z

R

θ

α α

θ
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Using these relations as well as Eqs. (1.2.23) and (1.2.25), we get from Eqs. (1.2.22) and

(1.2.26)

554423132211 ,, cccccc === . (1.2.32a)

In view of this equation, there are only six independent constants in the constitutive 

relations in Eq. (1.2.26). Now taking another transformation by rotating the original 

coordinate system 45 degree about the z -axis, we have the relations 

2/)( yxx +=′ , 2/)( xyy −=′ , zz =′ ,

and 

2/1222111 === ′′′ lll , 2/112 −=′l , 133 =′l , 023133231 ==== ′′′′ llll .

Substituting these direction cosines into Eqs. (1.1.1) and (1.1.2), yields 

2/)2( xyyxx τ2σσ(σ ++=′ , 2/)2( xyyxy τ2σσ(σ −+=′ , zz σσ =′ ,

2/)( zxyzzy ττ(τ −=′′ , 2/)( zxyzxz ττ(τ +=′′ , 2/)( xyyx σστ −=′′ ,

2/)( xyyxx γεεε ++=′ , 2/)( xyyxy γεεε −+=′ , zz εε =′ ,

2/)( zxyzzy γγ(γ −=′′ , 2/)( zxyzxz γγ(γ +=′′ ,
xyyx εεγ −=′′ .

Using these relations as well as Eqs. (1.2.23), (1.2.25) and (1.2.32a), we get from Eqs. 

(1.2.22) and (1.2.26) 

1211662 ccc −= . (1.2.32b)

Thus, Eq. (1.2.26) becomes

66

,

,

,

,66

x x y z11 12 1312

y x y z12 11 1311

z x y z13 13 3313

yz yz zx zx xy xy44 44 664444 664444 cc cc444444c4444

σ ε ε ε13x x y11 12 131212c c c11 12121211 12121212

σ ε ε ε13y x y12 11 131111c c c12 11111112 11111111

σ ε ε ε33z x y13 13 331313c c c13 13131313 13131313

τ γ4 τ γ44 τ γ66

+ +ε εε εc ccc11 121212

+ +ε εε εc ccc12 111111

+ +ε εε εc ccc13 131313

= c c

(1.2.33)
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where 2)( 121166 .

Similarly, the expressions for strains in terms of stresses, given by Eq. (1.2.27a), 

become

,,,

,

,

,

664444

331313

131112

131211

xyxyzxzxyzyz

zyxz

zyxy

zyxx

sss

sss

sss

sss

τ6γτ4γτ4γ
σσσε
σσσε
σσσε

===

++=

++=

++=

(1.2.34)

where )(2 121166 sss −= . We can also express this equation in terms of engineering 

constants, i.e.,

,
1

,
1

)(

,
1

,)(
1

,
1

,)(
1

xyxyzyxz

zxzxzyxy

yzyzzyxx

GEE

GEE

GEE

τγσσσ(νε

τγσνσνσε

τγσννσσ(ε

=
′

++
′
′

−=

′
=

′
′

−+−νν=

′
=

′
′

−−=

 (1.2.35)

where

)1/(2 ν+= EG . (1.2.36)

In cylindrical coordinates, Eq. (1.2.33) becomes 

3

3

13 13 33

66

,

,

,

,66

z13r 11 12

z13
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+ +ε εε εc ccc11 121212

+ +ε εε εc ccc12 111111c12 1111

+ +ε εε εc ccc13 131313

cc= c

(1.2.37)

where 2/)( 121166 ccc −= , and Eq. (1.2.34) becomes 
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γ τ4444 γ τ4444 γ τ66

+ +σ σσ σs sss11 121212

+ +σ σσ σs sss12 111111s12 1111

+ +σ σσ σs sss13 131313

ss= s

(1.2.38)
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§1.2  Basic Equations

where )(2 121166 sss −= .

The constitutive relations for a spherically orthotropic material are given by Eq.

(1.2.31). Further, if the elasticity property in any direction is the same at the point of 

intersection in a plane perpendicularly intersecting the radial R , the material is said to

be spherically isotropic2. By a derivation similar to that of Eq. (1.2.33), we get the

generalized Hooke’s law of a spherically isotropic material in spherical coordinates l
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(1.2.39a)

where 

2322442 ccc −= . (1.2.39b)

If Eq. (1.2.39) is used to describe a small portion of material where R is very large, the 

material can be treated approximately as transversely isotropic since the effect of 

curvature may be ignored. For this approximation, it will be convenient to rewrite Eq.

(1.2.39) by rearrangement of the subscripts of elastic constants as 
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(1.2.40a)

where 

1211662 ccc −= . (1.2.40b)

The materials described by Eq. (1.2.40) are also called transversely isotropic materials in

some references, see Shenderov (1985), Bufler (1998), Khoma (1998), among others.

Using engineering symbols, we have

2 A classical solution of spherically isotropic material was obtained by Saint-Venant for a spherical shell 
subjected to uniform internal and external pressures, see Love (1927) and Lekhnitskii (1981). 
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